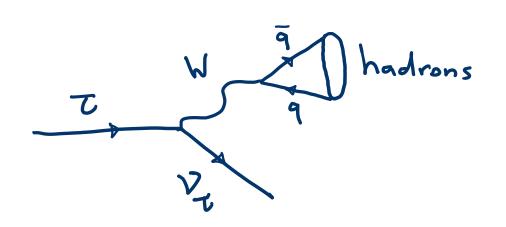


Charged Pions in MAIA

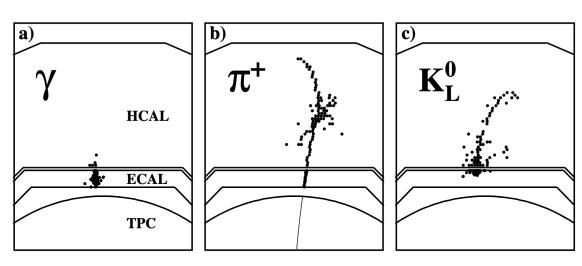
Gregory Penn Yale University



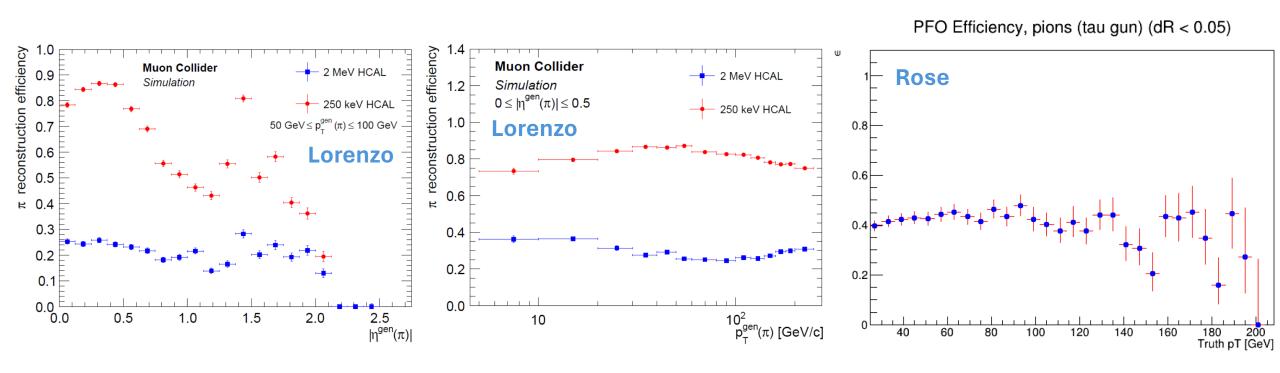
Quick Reminder

- Of course: hadronic taus decay predominantly into an odd number of charged pions (+ neutral hadrons)
- Tau reconstruction is dependent on the ability to reconstruct and identify charged pions

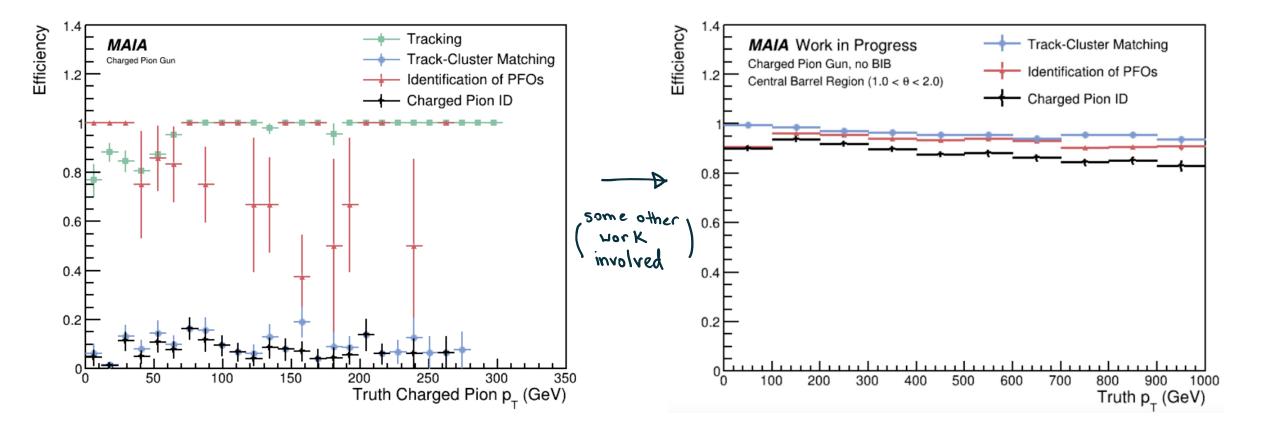
Hadronic Decays


(numbers for $h = \Xi \pi^-, K^-3$)

Final State	Intermediate Meson	Branching Fraction
てートンマ		11.5%
てートガールを	p(770 MeV)	25.9%
てるでするよう	a, (1260 MeV)	9.3%
てきなけらりを	a, (1260 MeV)	9.4%
てったけれて。ひと		2.8%
Other hadronic		5.9%


The Algorithm

- Pions are reconstructed and identified using the *Pandora* Particle Flow Algorithm
- More details in my IMCC <u>talk</u>
 - Includes short overview of particle flow
- Designed for a detector (ILD) at the International Linear Collider
 - 500 GeV (ish) e^+e^- linear collider very different from our environment!
- Very complicated algorithm: 10,000 lines of C++, sub-algorithms talking to one another in unclear ways
 - Some hard-coded assumptions about detector technology
- Requires optimization for a 10 TeV muon collider environment
- Work for optimization in MAIA is very much ongoing


Previous Work

- Previous studies on taus (<u>Lorenzo Valla</u> @ 3 TeV, <u>Rose Powers</u> @ 10 TeV) revealed fundamental limitation caused by charged pion reconstruction and identification inefficiency (from Pandora)
 - Default reconstruction efficiency: O(25%)
 - Lorenzo's studies lowered the HCal threshold → recovered efficiency, not intended as permanent solution
 - Rose isolated the problem to track-cluster matching → moved to study different objects

Bug-finding

- Ethan and I quickly reproduced the same problem
- Solution: We found a bug that filled the track position @ the calorimeter face to zero
 - This caused much of track-cluster matching to fail
 - This required a switch of the tracking container from SiTracks to SiTracks_Refitted (not bugged)

Current Status

- Pandora results are difficult to interpret
 - Foresight / advice from other groups: Things will get particularly confusing when BIB is added
- Current strategy:
 - Develop and compare two versions of Pandora:
 - **Out-of-the-box** (with some parameter modifications): OK performance without BIB, expected to be confusing to interpret with BIB
 - "Minimal Pandora": Run just the algorithms that are required. Simpler and easy to interpret, may take a small hit in efficiency
 - Current status: understanding results without BIB
 - Comparison of charged pion tracks to muons
 - Understanding of clustering performance
 - Calorimeter energy associated to the charged pion vs. truth energy
 - Cluster fragmentation
 - Soon: Add BIB, comparing the two Pandora versions