

Community Software and Software Sustainability

Graeme Stewart (CERN)

WLCG/HSF Workshop in Orsay

- Worldwide LHC Computing Grid and HEP Software Foundation workshop
 - Tradition now to bring together the distributed computing and the HEP software communities
- Latest workshop was in May 2025, at IJCLab in Orsay
 - Covering many aspects of computing and Software, including...
 - Al and heterogeneous resources
 - Common software
 - WLCG facilities
 - Analysis at HL-LHC
 - WLCG operations
 - Sustainability
- I will give an overview here of the **bold** topics

Al Overview

- Al has been disruptive, highly beneficial and very broadly applicable
 - Cheaper: ultra fast high-fidelity simulation
 - Better: x100 improvement in background rejection
 - New: anomaly detection with auto-encoders
 - It also has, and is, moving very fast
 - New techniques come all the time
 - Areas of applicability expand
 - Al will impact our computing resources
 - Need to prepare for this
 - Providing the correct resources and (grid) accounting for them

- 1st axis: application domain
 - Online, offline, analysis
- 2nd axis: Al technology
 - GNNs, GANs, Fully connected, ...
- 3rd axis: resource domain
 - Training: laptop, server, GPU, many servers and GPUs
 - Inference: laptop, WLCG nodes, GPUs, FPGA, ...
- 4th axis: experiment
- 5th axis: when?

To be followed up in the "Heterogeneous architectures in WLCG" workshop Dec 3-5

Heterogeneous computing

- What computing that we do on CPUs could be envisioned on GPUs in 5 or 10 years?
 - We have some outstanding examples of success: ALICE TPC reconstruction, LHCb Allen L1 trigger
- What could be next?
 - Event generation
 - Detector simulation
- KPI: event throughput per unit cost
- Heterogeneous computing is challenging and needs training
 - Not too much interest from students in C++/legacy codes
 - Long time to train people, struggle to retain
 - Can we live with single/reduced precision?
 - NGT Openlab "Optimising Floating Point Precision" Workshop next week
 - Not many experts in our field (CUDA, Alpaka, ...)
 - Distill experience and expertise in languages, compilers, platforms, etc.

Common software - Simulation with G4HepEm, AdePT

Accelerate HEP simulations of electrons, positrons and photons:

- G4HepEm: specialized tracking for e^- , e^+ , and γ on **CPU**
 - Provides a significant (20%) speedup for the Run 4
 ATLAS/CMS detector simulations
- AdePT: offloading electromagnetic showers to GPU
 - Still very much R&D, some promising indications of speed-ups, but not proven yet in full use cases
 - Geometry bottleneck (VecGeom) is being worked on

Common software - ROOT and RooFIT

- 2025 Programme of Work proceeding well
- Steady increase in number of issues closed over the past year
- 1st stable RNTuple format released in 6.34.00
- New histograms under development towards a thread-safe & fast class (for ROOT7)
- RFile will replace TFile (WIP)
- A lot of work on interoperability (SOFIE, for ML)
- Python ecosystem seeing a lot of attention
- Histograms to honour Scikit-HEP's proposed UHI protocol
- Many significant performance enhancements in RooFit - for CPUs and GPUs
- E.g., Automatic Differentiation available via Clad

Per unit time: $N_{contributors} \simeq 1.5 \text{ x } N_{Core Dev FTEs}$

All contribution counts for ROOT!

Common software -Virtual Research Env. user experience

reana

- Good experience using the CERN VRE and rerunning an ATLAS analysis
 - Containerised workflow steps key

- Integration with Data Lake tech.
- Integration with REANA

Sustainable Software

What do we mean by sustainable?

- Efficient Code (for machines)
 - Energy consumption to do a calculation should be as low as possible
 - Worldwide data centre power consumption is about 1.5%, but rising fast
 - Computing for LHC has a significant environmental footprint, which we want to minimise
- Sustainable Code (for humans)
 - Code needs to be maintained for decades
 - Experiment lifetimes are long
 - Preservation lifetimes for results are even longer
 - Code needs to be easy as possible to understand and maintain
 - Concentrate on our problems, reuse as much as possible

Sustainable software - Julia

- Jet reconstruction is a good "Goldilocks" problem to study
- Sequential jet reconstruction implemented natively in Julia
 - Tested alongside C++ and Python
- Excellent ergonomics in Julia
 - Expressive, compact code
 - Array operations and broadcast
 - Code composes very well
 - Macros allow spot optimisation

CPUs use "the same energy at 100%, irrespective of code source

Julia can be faster (=use less energy) than C++ due to superior use of SIMD - many ergonomic/ecosystem advantages

```
@inbounds dij_min = dij[1]
@turbo for here in 2:n
   newmin = dij[here] < dij_min
   best = newmin ? here : best
   dij_min = newmin ? dij[here] : dij_min
end</pre>
```

meosc Everse

Sustainable software: EVERSE Project

Engagement with 5 European Science Clusters ESCAPE covers HEP, plus Life Science, Environmental, Social, Photon and Neutron

EVERSE

Paving the way towards a **E**uropean **V**irtual Institut**e** for **R**esearch **S**oftware **E**xcellence

EVERSE aims to create a framework for research software and code excellence, collaboratively designed and championed by the research communities, in pursuit of building a European network of Research Software Quality and setting the foundations of a future Virtual Institute for Research Software Excellence

- ensure research software curation, quality, preservation and adoption of best practices, by the Communities, for the Communities, build on collaboration
 with the five EOSC Science Clusters
- adopt a three-tier model for research software, i.e., analysis code, prototype tools and research software infrastructure, which captures the varying complexity of research software and its development, and can be used as a basis for research software excellence

Green Software -Generator Benchmarks

- Goal is to understand the energy cost of computing at University of Manchester
- Drell-Yan events simulated in Herwig 7.3
 - Energy consumption grows linearly with number of events
- CO² Emissions vary widely per country
- Lifecycle environmental impact is very complicated
 - Vendor numbers are not standardised
 - Difficult to get estimates for modern equipment
 - Idea is to grow expertise in the community on understanding these impacts
 - Improve policies to lower impact

- Extrapolation to LHC scales (10^16 events)
 - o LHC (13 TeV): 6.75e+04 t CO2e
 - FCC (100 TeV): 2.86e+06 t CO2e

Significant CO2 emissions at LHC scale workloads

Laptops are efficient for small workloads!

Outlook and next steps

- Software's importance can hardly be overstated!
- Software projects are making great strides towards HL-LHC
 - Al is becoming ubiquitous
 - Heterogeneous computing is hard, but there are successes and promising R&D
- HSF's mission is to help us to get to better, more sustainable and efficient software in the field
 - Will work closely with projects like EVERSE to define indicators and support tools that do that
 - VREs helping also with reproducibility
- Understanding sustainable software can be improved
 - Develop expertise in assessing the impacts of our software
 - Leverage important trends towards usability and efficiency (Eduardo's talk on Scikit-HEP)
 - o Improve the community's understanding and level of skills (Michel's talk on training)

The HSF is bottom up - we want to hear your ideas and suggestions too!