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Directory structure
<proposal>/usr/Shared/amore

├── context.py
├── extracted_data
│   ├── p001234_r1.h5
│   ├── p001234_r2.h5
│   ...
├── process_logs
│   ├── r1-p001234.out
│   ├── r2-p001234.out
│   ...
├── runs.sqlite



  

API

from damnit import Damnit

db = Damnit(7925)

data = db[100, "i0"].read()

https://damnit.readthedocs.io/en/latest/api/

Automate initial analysis steps, retrieve data for further 

analysis

https://damnit.readthedocs.io/en/latest/api/


  

Services
● Current / classic model:

– Per-proposal listener 

● New model:
– Web API server (with GPFS access)
– Web UI server (accessible from outside)
– Central listener for all proposals
– Central DB writer?



  

Web servers
● UI server

– Serve JS files (compiled from Typescript)
– Proxy to API server

● API server
– GraphQL
– Python & FastAPI
– Mutual TLS (mTLS) allows requests only via UI server



  

Possible service accounts
● xdamnear (listener)

– Broad permissions, no user code
– Add to all upex Slurm reservations

● xdamnrun
– Executes user code
– Minimal base permissions
– Sandboxing adds proposal access as needed

● xdamnweb (web API server)
– Access to every proposal’s DAMNIT directory

●



  

Web server interactions



  

Web authorisation
● Sign in via keycloak
● Look up groups by username in LDAP

– e.g. 60006736-dmgt, fxedata

● Allow access only to corresponding proposals
● Future option: check user’s permissions in 

myMdC



  

Sandboxing
● Goal: restrict context file code to 1 proposal
● xdamnear (full access) starts process as 
xdamnrun (no access)

● Process adds itself to proposal group
● Sets ‘no new privileges’ flag
● Executes context file



  

Sandboxing detail
$ proposal-sandbox 7925 -- some-command --foo

● Run some-command with access to proposal 7925

● Uses setgroups() – needs CAP_SETGID capability

● seteuid() & setegid() to switch user

● prctl() to set no_new_privs flag

https://git.xfel.eu/dataAnalysis/proposal-sandbox/-/merge_requests/1

https://git.xfel.eu/dataAnalysis/proposal-sandbox/-/merge_requests/1


  

Sandboxing & Slurm
● Context file code can (& does) submit Slurm jobs
● Jobs would have no proposal access by default

– Fail safe – but still fails
● Need to re-enter the same sandbox in Slurm job

– Secure way to know proposal submitter belongs to?
– MUNGE token?
– Use Slurm task prolog?
– Tweak sandboxing to change primary group? (passes 

through Slurm)



  

Online processing?
● Faster results in DAMNIT are desirable
● Online processing is interesting
● Obstacles

– No Slurm on online cluster
– Not safe to modify SQLite DB in synced usr



  

DB writer coordination
● Summary data in SQLite DB for each proposal

– No need for a DB server
– Data all together in proposal folder

● But write contention can be an issue
– We limit concurrent jobs to mitigate this

● Centralised writer service?
– Could batch writes when busy



  

HDF5 writer coordination
● Larger results stored in HDF5 file for each run

– Concurrent writes less likely
– Avoid unnecessary sending/copying of data

● Concurrent writes can corrupt files
– HDF5 uses flock(), not effective across nodes

● Prevent concurrent jobs for 1 run?
● Separate output file for each job?

– Recombine files later on when things are quiet?
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