

DAMNIT architecture

Thomas Kluyver, European XFEL
26th June 2025

Web interface

Context file

Running the code
Migration
service

Calibration
service

Solaris
job

Maxwell
job

Listener

Manual
request

“Finished”

“Finished”

Kafka
Slurm

Save results
(HDF5 & sqlite)

User
interface

Kafka

Directory structure
<proposal>/usr/Shared/amore

├── context.py
├── extracted_data
│ ├── p001234_r1.h5
│ ├── p001234_r2.h5
│ ...
├── process_logs
│ ├── r1-p001234.out
│ ├── r2-p001234.out
│ ...
├── runs.sqlite

API

from damnit import Damnit

db = Damnit(7925)

data = db[100, "i0"].read()

https://damnit.readthedocs.io/en/latest/api/

Automate initial analysis steps, retrieve data for further

analysis

https://damnit.readthedocs.io/en/latest/api/

Services
● Current / classic model:

– Per-proposal listener

● New model:
– Web API server (with GPFS access)
– Web UI server (accessible from outside)
– Central listener for all proposals
– Central DB writer?

Web servers
● UI server

– Serve JS files (compiled from Typescript)
– Proxy to API server

● API server
– GraphQL
– Python & FastAPI
– Mutual TLS (mTLS) allows requests only via UI server

Possible service accounts
● xdamnear (listener)

– Broad permissions, no user code
– Add to all upex Slurm reservations

● xdamnrun
– Executes user code
– Minimal base permissions
– Sandboxing adds proposal access as needed

● xdamnweb (web API server)
– Access to every proposal’s DAMNIT directory

●

Web server interactions

Web authorisation
● Sign in via keycloak
● Look up groups by username in LDAP

– e.g. 60006736-dmgt, fxedata

● Allow access only to corresponding proposals
● Future option: check user’s permissions in

myMdC

Sandboxing
● Goal: restrict context file code to 1 proposal
● xdamnear (full access) starts process as
xdamnrun (no access)

● Process adds itself to proposal group
● Sets ‘no new privileges’ flag
● Executes context file

Sandboxing detail
$ proposal-sandbox 7925 -- some-command --foo

● Run some-command with access to proposal 7925

● Uses setgroups() – needs CAP_SETGID capability

● seteuid() & setegid() to switch user

● prctl() to set no_new_privs flag

https://git.xfel.eu/dataAnalysis/proposal-sandbox/-/merge_requests/1

https://git.xfel.eu/dataAnalysis/proposal-sandbox/-/merge_requests/1

Sandboxing & Slurm
● Context file code can (& does) submit Slurm jobs
● Jobs would have no proposal access by default

– Fail safe – but still fails
● Need to re-enter the same sandbox in Slurm job

– Secure way to know proposal submitter belongs to?
– MUNGE token?
– Use Slurm task prolog?
– Tweak sandboxing to change primary group? (passes

through Slurm)

Online processing?
● Faster results in DAMNIT are desirable
● Online processing is interesting
● Obstacles

– No Slurm on online cluster
– Not safe to modify SQLite DB in synced usr

DB writer coordination
● Summary data in SQLite DB for each proposal

– No need for a DB server
– Data all together in proposal folder

● But write contention can be an issue
– We limit concurrent jobs to mitigate this

● Centralised writer service?
– Could batch writes when busy

HDF5 writer coordination
● Larger results stored in HDF5 file for each run

– Concurrent writes less likely
– Avoid unnecessary sending/copying of data

● Concurrent writes can corrupt files
– HDF5 uses flock(), not effective across nodes

● Prevent concurrent jobs for 1 run?
● Separate output file for each job?

– Recombine files later on when things are quiet?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

