
Top Reconstruction with LGATR

Jorn Bach

DESY CMS Top Reconstruction Discussion

01.07.2025

01.07.25 Your name here (insert->page number) 2

Contents

● 1. Introduction to LGATR

● 2. Why LGATR – dilepton top pair specifics

● 3. Detailed Setup

– 3.1 Input Data

– 3.2 Model Setup

– 3.3 Hacks, Normalizations and Misc.

● 4. Performance Evaluation

● 5. Outlook – Bullying Mads into using ML top reco

01.07.25 Your name here (insert->page number) 3

1. Introduction to Transformers

● Transformers have emerged as well-scaling, powerful tools in NLP

● Based on the Attention Mechanism to learn relationships in data

01.07.25 Your name here (insert->page number) 4

1. Introduction to LGATR

● https://arxiv.org/abs/2405.14806, https://arxiv.org/abs/2411.00446,
https://github.com/heidelberg-hepml/lorentz-gatr

● Now take the allmighty TRANSFORMER but make it physics (lorentz
equivariant)

● In fact: make it structurally physics: Everything it computes, inputs and
outputs is a Lorentz Algebra Object:

https://arxiv.org/abs/2405.14806
https://arxiv.org/abs/2411.00446
https://github.com/heidelberg-hepml/lorentz-gatr

01.07.25 Your name here (insert->page number) 5

LGATR – WHY?

● Imposed Lorentz Structure means more efficient learning

● Their paper shows competitive/superior performance on: Amplitude
Regression, Jet Tagging, Event Generation

● Scaling with data and network size outperforms regular transformers!

● Their code is really good: MLFLOW for logging, config management via
hydra

● Latest code revision 3 weeks ago – maintained!

01.07.25 Your name here (insert->page number) 6

LGATR for Top Reconstruction

● Lives in my github: https://github.com/jobach18/lorentz-gatr-ttbarreco

● experiments/top-reco/ houses some script to put pepper output into place,
experiment code (training, validation, plotting) and some wrapper.py to get a
suitable lgatr instance

https://github.com/jobach18/lorentz-gatr-ttbarreco

01.07.25 Your name here (insert->page number) 7

Dilepton Reconstruction Setup

● Pepper output compiled by Dominic on A/H selection from last year

● On detector level objects:

● Input: 7 jets, lepton, antilepton, bottom, antibottom, MET
● Bottoms are already mlb matched, should not matter because

LGATR could learn the matching method and “rematch” if needed
● For particles: (t, x, y ,z) for MET (pt, x,y,phi) (this might be wrong?)
● Output: top, antitop (from GEN)

● Output aggregation: (just pick one element vs. mean or sum)

01.07.25 Your name here (insert->page number) 8

Experiments

● Credits to Oscar for keeping up with my bullying

● Checked many different configs, training
configurations, output aggregation, spurion
symmetry breaking, input scaling

● Key Findings:

● Input needs to be proper 4 vectors,
“normalization” can only be done
Lorentz Invariant! (think:
subtracting 4-vector norm)

● Performance is very sensitive to
Symmetry Breaking (no breaking
vs. breaking with x-y plane,
breaking with a z-direction beam
token)

● Training Hyperparameter set
identified that works reliably

● Small LGATR configurations work
already well, experiments with
many parameters outstanding (rn:
~2-4h of training, could scale that!)

0 5000 10000 15000 20000 25000

Number of iterations

101

102

103

Lo
ss

train loss
val loss

0.96

0.98

1.00

1.02

1.04

Le
ar

ni
ng

ra
te

×10−5

01.07.25 Your name here (insert->page number) 9

Results

01.07.25 Your name here (insert->page number) 10

Results

01.07.25 Your name here (insert->page number) 11

Conclusion

● All the cool kids use transformers

● The even cooler ones use physics informed transformers

● We can get away with very small models (10k-200k parameters) and get
very good performance already → more optimization might lead to further
advancements

● Have a pipeline for validation and visualization and could also plug the
trained model into pepper

01.07.25 Your name here (insert->page number) 12

Further Ideas

● Implement b-quark scalar token to force the network to match b-
quarks correctly

● Add auxiliary terms to loss for important variables to model them
better (m_tt)

● Larger networks, longer training (Jonas’s NNs had 5-10 Mio
parameters!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

