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1. Introduction to Transformers

● Transformers have emerged as well-scaling, powerful tools in NLP 

● Based on the Attention Mechanism to learn relationships in data
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1. Introduction to LGATR

● https://arxiv.org/abs/2405.14806, https://arxiv.org/abs/2411.00446, 
https://github.com/heidelberg-hepml/lorentz-gatr 

● Now take the allmighty TRANSFORMER but make it physics (lorentz 
equivariant) 

● In fact: make it structurally physics: Everything it computes, inputs and 
outputs is a Lorentz Algebra Object:

https://arxiv.org/abs/2405.14806
https://arxiv.org/abs/2411.00446
https://github.com/heidelberg-hepml/lorentz-gatr
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LGATR – WHY?

● Imposed Lorentz Structure means more efficient learning

● Their paper shows competitive/superior performance on: Amplitude 
Regression, Jet Tagging, Event Generation

● Scaling with data and network size outperforms regular transformers!

● Their code is really good: MLFLOW for logging, config management via 
hydra

● Latest code revision 3 weeks ago – maintained! 
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LGATR for Top Reconstruction

● Lives in my github: https://github.com/jobach18/lorentz-gatr-ttbarreco 

● experiments/top-reco/ houses some script to put pepper output into place, 
experiment code (training, validation, plotting) and some wrapper.py to get a 
suitable lgatr instance 

https://github.com/jobach18/lorentz-gatr-ttbarreco
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Dilepton Reconstruction Setup

● Pepper output compiled by Dominic on A/H selection from last year 

● On detector level objects: 

● Input: 7 jets, lepton, antilepton, bottom, antibottom, MET
● Bottoms are already mlb matched, should not matter because 

LGATR could learn the matching method and “rematch” if needed
● For particles: (t, x, y ,z) for MET  (pt, x,y,phi) (this might be wrong?)
● Output: top, antitop (from GEN)

● Output aggregation: (just pick one element vs. mean or sum)
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Experiments

● Credits to Oscar for keeping up with my bullying 

● Checked many different configs, training 
configurations, output aggregation, spurion 
symmetry breaking, input scaling

● Key Findings:

● Input needs to be proper 4 vectors, 
“normalization” can only be done 
Lorentz Invariant! (think: 
subtracting 4-vector norm)

● Performance is very sensitive to 
Symmetry Breaking (no breaking 
vs. breaking with x-y plane, 
breaking with a z-direction beam 
token)

● Training Hyperparameter set 
identified that works reliably

● Small LGATR configurations work 
already well, experiments with 
many parameters outstanding (rn: 
~2-4h of training, could scale that!) 
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Results
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Results
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Conclusion

● All the cool kids use transformers

● The even cooler ones use physics informed transformers

● We can get away with very small models (10k-200k parameters) and get 
very good performance already → more optimization might lead to further 
advancements

● Have a pipeline for validation and visualization and could also plug the 
trained model into pepper 
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Further Ideas

● Implement b-quark scalar token to force the network to match b-
quarks correctly

● Add auxiliary terms to loss for important variables to model them 
better (m_tt)

● Larger networks, longer training   (Jonas’s NNs had 5-10 Mio 
parameters!)
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