NN reconstruction development and performance

Emaneule Coradin, Jonas Rübenach, Dominic Stafford

01.07.2024 tt reconstruction meeting

Jonas' NN

- Feed-forward NN developed by Jonas as alternative to Sonnenschein
- Gitlab repo for training (on pepper outputs): https://github.com/jrueb/reconn/tree/master
- Implementation in pepper: https://gitlab.cern.ch/jrubenac/pepper/-/blob/ HIG-22-013/pepper/kinreco_ttbarnn.py?ref_ type=heads
- Note: all truth level results are with last copy bottoms- not best choice, see Tim's talk

Jonas' NN Model

Neural Nework for bottom jet tagging

- Input:
 - 7 jets 4-momenta + DeepJet b tag
 - All 4-momenta are given in xyzE and p_Tφηm coordinates
- Output:
 - A 7x7 matrix. Each entry O_{ij} is interpreted as the probability that the ij jets come from by bb-bar quarks

 Number of neurons in green

Jonas' NN Model

Neural Nework for top quarks 4-momenta reconstruction

- Input:
 - 7 jets 4-momenta + DeepJet b tag
 - All 4-momenta are given in xyzE and p_Tφηm coordinates
- Output:
 - Reconstructed ttbar 4-momenta in xyzm coordinates

Metrics

Useful Definitions

f (x) is the prediction, t represents the true value

$$Bias = \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - t_i \right)$$

std dev =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (f(x_i) - t_i)^2 - (bias)^2}$$

Relative Bias =
$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{f(x_i) - t_i}{t_i} \right)$$

Resolution =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{f(x_i) - t_i}{t_i} \right)^2 - (relative bias)^2}$$

Results with SM training

Results with SM training

Emanuele's DM studies

- tt+DM is particularly interesting as an extension as DM adds third source of MET
- Problem is under-constrained
- However some variables can discriminate, e.g.:

$$M_{T2}^{ll} = \min_{p_{\nu} + p_{\bar{\nu}} = p_T^{miss}} [\max(m_T(p_{l^+}, p_{\nu}), m_T(p_{l^-}, p_{\bar{\nu}}))]$$

A good NN should be able to do equally well

Mediator mass 50 GeV: t quark p_T

Results with DM training CMS

Mediator mass training 50 GeV, valid 500 GeV: DM p_T

Mediator mass training 50 GeV, valid 500 GeV: DM p_T

Results with DM training CMS

Mediator mass training 50 GeV, valid 500 GeV:

DM p_T

Mediator mass training 50 GeV, valid 500 GeV: DM p_T

Conclusions

- Jonas' NN is available, and easy to interface to pepper
- Offers improved resolution, at the cost of higher bias and model dependency
- Two part NN: b-jet assignment and actual reco
 - Would be good to test improvement from Sonnenschein with b-jet assignment NN
- tt+DM is interesting extension case to test model independence

Thanks for your attention

First presentation: 07.08.24 Emanuele Coradin

Mediator mass 50 GeV: t quark p_T

Results with DM training CMS

Results with DM training CMS

Results with DM training CMS

Mediator mass training 50 GeV, valid SM, 500 GeV: DM p_T

