

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

DSP development for uTC

Paweł Prędki pawel.predki@desy.de

Department of Microelectronics and Computer Science Technical University of Lodz

LLRF Collaboration Workshop 2011 Warsaw, 14-16 December 2011

Motivation: DSP in LLRF

overview

Motivation: DSP in LLRF

TigerSharc DSP overview 2

Project status

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

2 TigerSharc DSP overview

Project history

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

- Development started on Simcon DSP years ago
- I resumed the project using Simcon DSP (fall 2010), ATCA Carrier Board and ultimately uTC
- Initial plans to use it as an aid to the controller on Simcon
- Evolved into a DSP development framework to test DSP usefulness for LLRF applications

Potential use

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

- General idea aid the uTC controller in algorithm calculations
- Better precision thanks to floating-point capabilities
- Potential algorithms to perform in the DSP:
 - Cavity detuning
 - Learning feed-forward
 - IQ calculation

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

2 TigerSharc DSP overview

Project status

Basic specs of ADSP TS201

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

- Floating-point unit
- Clock frequency up to 600 MHz currently clocked with 100 MHz - with an instruction cycle of 1.67 ns
- 24 Mbits of internal DRAM memory
- Up to four ASM instructions per clock cycle but quite restrictive
- Four full-duplex LVDS link ports

Fast serial link ports

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

- Differential clock and four differential data lines
- Data transmitted on BOTH clock edges
- Basic unit of transmission 1 quad = 128 bits
- Maximum theoretical throughput @100 MHz 800 Mbps; obtained 630 Mbps (raw data loopback)
- Used for DSP booting
- Three links connected to uTC

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

Motivation: DSP in LLRF

2 TigerSharc DSP overview

Project status

VHDL DSP communication module

- Motivation: DSP in LLRF
- TigerSharc DSP overview

Project status

- Fully integrable with a larger VHDL project, e.g. controller
- Takes care of everything only requires connection to a data input feed and a data output sink
- Two modes of operation:
 - Raw data mode no data verification, no overhead
 - Communication protocol mode uses a protocol defined for DSP ↔ FPGA communication. Checksum verification, transmission reliability, overhead

Communication protocol

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

Fig. 1. Communication protocol frame

127	120	119	112	96	89	88	73	39	32	31	0	
Algorithm ID		Algorithm		Word	Words in		Words per		Debug		Checksum	
		subty	Je	ITallic		aigon	uuu	Chara	CICI			

Fig. 2. Frame header

DSP development framework

- Motivation: DSP in LLRF
- TigerSharc DSP overview

Project status

- Supports the communication protocol
- Easily expandable with additional algorithms with minimum programmer effort
- Low-level 'drivers' already prepared
- Available reference designs VHDL for uTC and C for DSP
- Data transmission via PCIe
- Data generation and readout in Matlab
- Console debug output from the DSP

Resource estimation - communication module

- Motivation: DSP in LLRF
- TigerSharc DSP overview

Project status

Challenges and future work

• Current uTC controller resource usage - 20%? 50%?

Resource estimation - reference project

- Motivation: DSP in LLRF
- TigerSharc DSP overview

Project status

Resource utilization - reference project

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

15/19

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

Challenges and future work

2 TigerSharc DSP overview

Motivation: DSP in LLRF

Project status

Timing issues

- Motivation: DSP in LLRF
- TigerSharc DSP overview
- Project status
- Challenges and future work

- Current DSP data clock = 100 MHz; works fine
- Attempt to go up to 200 MHz, but...
- ... DCM component switching issues had to use PLL_ADV
- ... logic timing issues requires careful floorplanning
- Tried for a couple of days but gave up will make more sense after integration with LLRF controller

Further system development

- Motivation: DSP in LLRF
- TigerSharc DSP overview
- Project status
- Challenges and future work

- Integration with uTC LLRF controller data format conversion: fixed → floating-point
- Introduction of 2nd or even 3rd transmission link will result in 2x or 3x speed-up
- Implementation of useful algorithms in the DSP to aid the FPGA controller
- Resolution of timing issues (150 MHz, 200 MHz?) even more throughput increase

Thank you for your attention

Motivation: DSP in LLRF

TigerSharc DSP overview

Project status

- Questions?
- Comments?

