

LLRF controller implementation

Wojciech Jalmuzna

Source code documentation

- Evaluated doxygen
- Prepared custom scripts for doc generation

- --! doxygen style comments used
- Special script for address space documentation

Block diagrams

Element name	Width	Count	Туре	Description
WORD_FIRMWARE	32	1	unsigned	Firmware Identification Register. It contains hexadecimal string "52454741", which converted to ASCII gives "REGA"
WORD_COMPILATION	32	1	unsigned	Compilation Identification Register, which is incremented every time firmware modification is done.
WORD_TIMING_FREQ	32	2	unsigned	Frequency vector for internal event generation. This register configures timing subsystem to generate internal events. Element 0 corresponds to PUSLE event. Element 1 is currently not used. Values are given in clock cycles.
WORD_TIMING_EXT_ENA	2	1	unsigned	Selection bits for internal/external events. Value '1' indiocates that external event should be used. '0' switches to internal event generation. As for FREQ registers, bit '0' corresponds to PULSE event etc.
WORD_IQ_COS	18	5	signed	Table of cosine values for IQ detectors. The same table is used for every channel.
WORD_IQ_SIN	18	5	signed	Table of cosine values for IQ detectors. The same table is used for every channel.
WORD_ROT_RE	18	10	signed	Real part of rotation matrix coefficients. Each element in a vector corresponds to single channel.
WORD_ROT_IM	18	10	signed	Imaginary part of rotation matrix coefficients. Each element in a vector corresponds to single channel.
WORD_VS_CHAN_ENA	10	1	unsigned	Enable bits for vector sum components
WORD_DAQ_MUX	8	6	signed	Multiplexer for DAQ channels (see DAQ TYPE 2 manual [1])
AREA_SP_I	18	8192	signed	Setpoint Table I. Array generated by control tables module. Each entry corresponds to single clock cycle after PULSE event. Table index 0.
AREA_SP_Q	18	8192	signed	Setpoint Table Q. Array generated by control tables module. Each entry corresponds to single clock cycle after PULSE event. Table index 1.
BIT_CTL_TABLES_BUF	2	1	unsigned	Double buffering vector is used while uploading new set of tables. Each bit switches buffers one corresponding table according to its position (bit $0 - index 0$, bit $1 - index 1$)

SIS8300 Resources

- More than 65 multipliers 48 available
- Up to 125 MHz operation
- DAQ limitations (200 MHz memory clock 128 bit bus)

Server changes (in respect to VME)

- Additional status registers (TRG, CLK)
- LLL status each broadcasts its id so we know interconnections
- Register "polarity" changes more intuitive way.

Server changes

- Flexible DAQ configuration
- Event select (each system has trigger on different line)
- DAQ test signal

Server cannot be limitation !

Additional modifications

- CORDIC iterations for AP calc. (currently 12)
- One Cordic module for all channels
 Discussion Items
- How to time-align daq on different boards
- Latency measurement
- How to decimate data to 9 MHz
- Do we want to stick to P.Gessler ideas ? (LLL packages, standard register set, etc.)

UTC resource estimation

Input Stage Resource Estimation

Name	Number of multipliers	Registers
Virtual probe calculation	4x16 channels = 64	16x36 = 576
Low latency rotation	4x32 channels = 128	32x36 = 1152
Partial vector sum rotation	4x1	36
Vector sum rotation	4x1	36
Cavity limit detection	4x1	36
Drift calibration	4x16 channels	576
Sum	263	2412

Feedback Stage Resource Estimation

Name	Number of multipliers	Registers
P-Controller	2	36
MIMO	20	360
BBF	16	72
Sum	38	468

Output Stage Resource Estimation

Name	Number of multipliers	Registers
Output rotation matrix	4	36
Linearization	8	36
Various corrections	16	72
Sum	28	144

Overall resource estimation

	Number of multipliers	Registers
Sum	329	3024
Intermediate stages		~5000
Input parameters		~5000
Available [occupied %]	640 [51%]	58800 [22%] (under est.)
Driver part	+0%	+10%
Total	51%	33%

Additionally almost 60% of Internal Block RAM is occupied by driver part. Control tables should be implemented in external DDR memory.

What is ready and what needs to be done ?

- Functionality as for ACC1 demo is implemented <u>Additional work</u>
- PCIe DMA transfer to memory
- MIMO integration
- DSP module integration
- Forward reflected connection
- Detuning calc ?
- What else ??

Thank you