uTCA software structure -overview and vision-

"based on group discussions"

Christian Schmidt for the LLRF team LLRF collaboration meeting 2011 16.12.2011

>A brief timeline

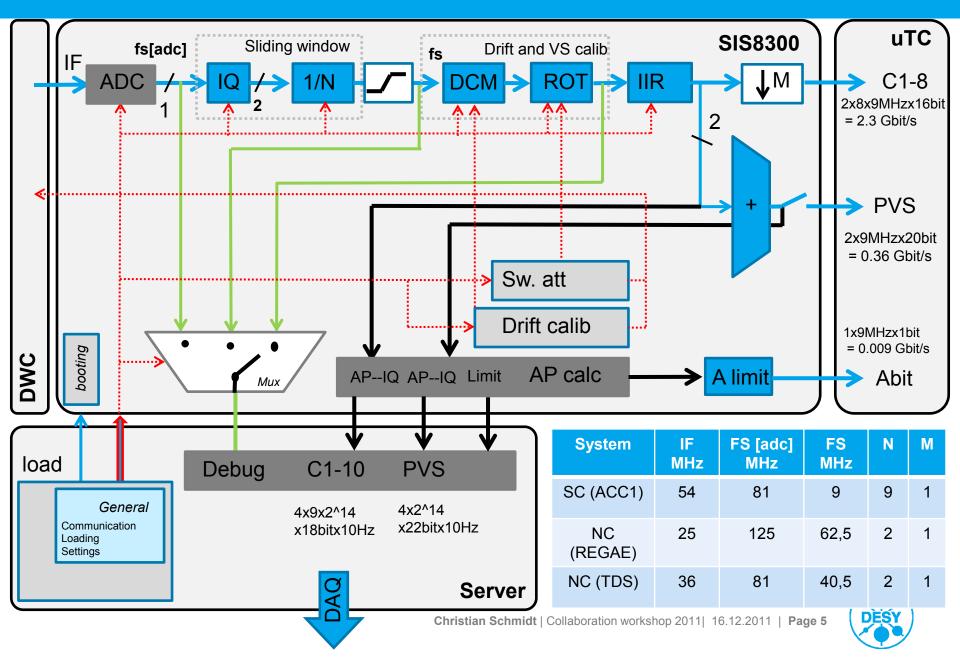
Software structuring

- General comments
- Block by block
- Tasks to be done
- Discussion points

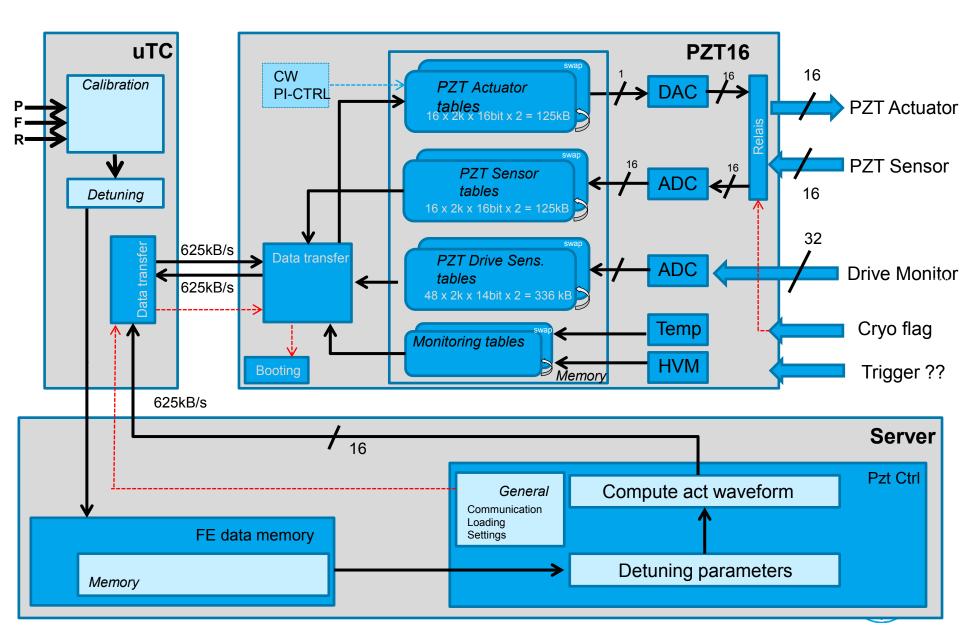
A brief (incomplete) timeline

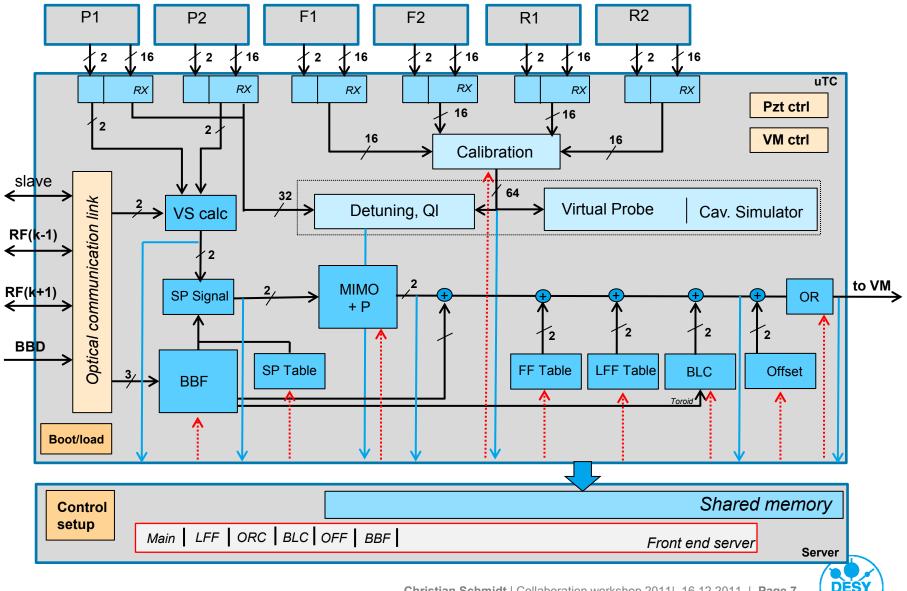
Started with DSP based digital controller

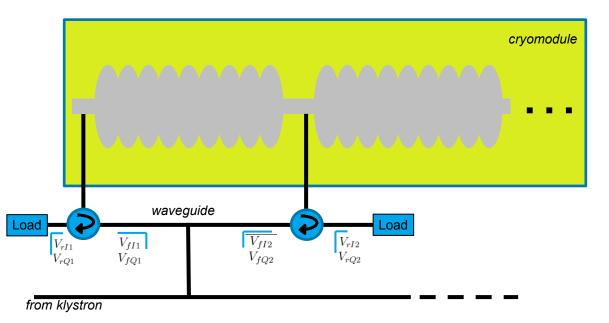
- Machine size and control system distribution changed during time
- > FPGA based SIMCON boards
 - Mixture of different systems along the machine
- > Unification in 2010
 - All RF stations equipped with Simcon DSP
 - Same server, firmware structure, couple of important upgrades
- > 2011 first uTCA test at ACC1
 - Conversion from vme based software to uTCA and linux compatible version
 - Goal keeping both Versions compatible for parallel development
- > And now ?
 - Compatibility not given anymore, structural design is optimized for SIMCON
 - What will be the strategy for next development steps?

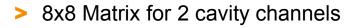


General comments to software design


- > Well documented inside the code as well as offline description
- Reliable and easy maintainable, performance should be reached
- Generic to use at different systems with different properties
 - Blocks are individual and can be modular plugged together depending on application needs
 - If possible use switches or dividers to adjust eg. for different frequencies
 - Must be extendable to XFEL main linac requirements (32 cavities, master/slave crate)
- Structuring must be extendable in future without major upgrade
 - Having margin in FPGA space, server CPU usage, communication bandwidth
 - Possible table doubling for FLASH2 and XFEL
- > Not clear if all proposals can be implemented as thought
 - There will be still iteration steps to be made
- Functionality tests, benchmarks, setup procedures
- Design concept essential
 - Interface definition and communication bandwidth estimation
 - Estimation of FPGA requirements and server layout and resource needs


ADC board functional block diagram (proposal)


Pzt function block diagram (proposal)


Controller (Master) functional block diagram (proposal)

Calibrated waveguide signals (online)

- Coupling of cavity pairs on a waveguide branch
- Directivity of the couplers
- Required for virtual probe and detuning computation
- Should be implemented on uTC signal entry level

- > 16 cavities for 1 uTC board, 9MHz
- Estimation: 256 DSP slices
 - One matrix for 4 channels
 - Optimization might further reduce size
 - 40% of FPGA size !!

 $\begin{pmatrix} V_{fI1c} \\ V_{fQ1c} \\ V_{rI1c} \\ \hline V_{rQ1c} \\ \hline V_{fI2c} \\ V_{fQ2c} \\ V_{rI2c} \\ \end{pmatrix} =$

 V_{rQ2c}

$$= \begin{pmatrix} 1 & 0 & c_{13} & c_{14} & c_{15} & c_{16} & c_{17} & c_{18} \\ 0 & 1 & c_{23} & c_{24} & c_{25} & c_{26} & c_{27} & c_{28} \\ c_{31} & c_{32} & 1 & 0 & c_{35} & c_{36} & c_{37} & c_{38} \\ c_{41} & c_{42} & 0 & 1 & c_{35} & c_{46} & c_{47} & c_{48} \\ \hline c_{51} & c_{52} & c_{53} & c_{54} & 1 & 0 & c_{57} & c_{58} \\ c_{61} & c_{62} & c_{63} & c_{64} & 0 & 1 & c_{67} & c_{68} \\ c_{71} & c_{72} & c_{73} & c_{74} & c_{75} & c_{76} & 1 & 0 \\ c_{81} & c_{82} & c_{83} & c_{84} & c_{85} & c_{86} & 0 & 1 \end{pmatrix} \begin{pmatrix} V_{fI1} \\ V_{fQ1} \\ V_{rI1} \\ V_{rQ1} \\ \hline V_{fI2} \\ V_{rQ2} \\ V_{rI2} \\ V_{rQ2} \end{pmatrix}$$

Extract of software projects

Important things to be done now:

- Full test of crate setup, measurements of possible transfer rates
- Quench detection server, later connection to online dw, QI detection ?
- VS calibration server, fast calibration procedure necessary for XFEL
- Piezo server and corresponding automation (first CMTB then ACC1)
- Full test of crate setup, estimation of transfer rate
- Beam based integration → shifts in July
- Finite state machine for uTCA operation (needed also for REGAE ?)
- Cavity / cryomodule info server including:
 - Cavity values (QI, roQ, ...), Quenching thresholds, model, general information
 - Displayed and accessed by DOOCS, interconnected to libraries
- Cavity status server, fast detection and information
 - Displaying on operator panel main parameters and combinations of alarm flags
- Panel renovation, also in focus of XFEL operability
 - Iarge scale, generic for individual structure, GUN, 1-4 cryomodules per RF station, …

To be discussed and decided

- Development only for uTCA, VME is only maintained
 - Allowing different server structure or even reconstruct for optimization
 - Long term project, demands definition of clear interface
- How should data be stored in DAQ system
 - 9MHz, 1MHz, ...; A/P or I/Q; usage bug fixing, failure detection, measurement support
- > Should we fix the firmware implementation, e.g. ADC board
 - Collecting upgrades to make later and new upgrade
 - Firmware modular design and documentation → goal that all programmers could easily access and modify code
- > Agreement to have same firmware and server structure for all applications
 - Additional features like REGAE laser control will be modular included?

