Update / Reminder on Track p_T Resolution Studies

Mark Larson

University of Chicago

07/01/2025

Background on p_T res. Issues

- First observed issues with p_T resolution with prompt & displaced tracks in our LLP track study
 - Large number of tracks reconstructed with very low p_T, dependent in part on timing windows
 - Not significantly worsened with BIB

• Poor track p_T resolution \rightarrow poor LLP mass resolution

Details of Studies

- To investigate, generated particle gun (μ^- , π^+) particle gun samples with momenta 50, 500, 3000 GeV in $|\eta| < 1.5$, without BIB overlay
- Using 3 TeV detector design (MuColl_v1), software v2.9
- Use tracking configuration available in mucoll-benchmarks master reco_steer.py + track truth matching (few differences w/ displaced config.)
 Only track cleaning requires ≥ 3.5 hits, p_T ≥ 0.5 GeV
- Findings similar to Gregory's on track fit uncertainties for pion tracks
- More detailed <u>talk on our findings from December 2024</u>, will show some updated (made with ~5x more events) and new plots today

Reminder: Overall Results

Momentum	Particle	$\mathrm{Avg.}\ \Delta p_T/p_T$	Efficiency
$50~{ m GeV}$	μ^-	5.5%	94.6%
	π^+	3.9%	95.5%
$500~{ m GeV}$	μ^-	21.1%	87.3%
	π^+	17.1%	91.5%
3000 GeV	μ^-	41.4%	83.8%
	π^+	36.8%	89.7%

• Found correlation between poor p_T res., low N_{Hits} , momenta of tracking particle

• Overall minimal differences between muons and pions

Note: around 25x more events for pions than muons

• Found that improving spatial resolution of VXD, IT, OT by 2x led to improved p_T resolution, worsened tracking efficiency

Previously Shown Plots, Remade with More Events

(note: also have scatter plot versions of some plots included in backup)

Track pT Res. (|Truth - Track| / Truth) ² 0 ² ² ²

Increasing π^+ momentum

N_{Hits} Distribution

More and more tracks with low N_{Hits} as momentum increases

As momentum increases, see poor curvature resolution for tracks with fewer hits

Track p_T vs. N_{hits}

Worst effects on resolution comes from overestimating p_T at low momenta, a mix at moderate momenta, and underestimating p_T at high momenta

New Plots / Updates

$\frac{|\Delta p_T|}{\text{Truth } p_T}$ vs. N_{Hits} (by sub-detector) 50 GeV

VXD

Only see poor resolution when track is without IT, OT hits

N_{Hits} (by sub-detector) 50 GeV

VXD

$\frac{|\Delta p_T|}{\text{Truth } p_T}$ vs. N_{Hits} (by sub-detector) 500 GeV

VXD

Only see poor resolution when track is without IT, OT hits

N_{Hits} (by sub-detector) 500 GeV

VXD

$\frac{|\Delta p_T|}{\text{Truth } p_T}$ vs. N_{Hits} (by sub-detector) 3000 GeV

VXD

N_{Hits} (by sub-detector) 3000 GeV

OT VXD IT Distribution of Hits per Track [pgun_pion_3000GeV] Distribution of Hits per Track [pgun_pion_3000GeV] Distribution of Hits per Track [pgun_pion_3000GeV] 0.5 0.5 0.5 0.4 Normalized Count 0.3 Normalized Count Normalized Count 0.3 0.1 0.1 0.1 0.0 0.0 0.0 10 12 0 2 3 5 Number of Hits per Track Number of Hits per Track Number of Hits per Track

> As momentum increases, have more and more trouble associating hits in IT, and especially OT

Debugging of Potential ACTS Issues

- Noted in <u>MuonColliderSoft ACTSTracking Github issue</u> anyone know of any updates to this?
- Checked out ACTS, added print statements to acts source code & MuCol ACTSTracking, rebuilt mucoll software with custom ACTS
- Found that for 3 TeV $\tilde{\tau}$ tracks, over/underestimation of p_T occurred already when estimating track params from seed (acts source)
 - Recently (May 6th) <u>merged acts PR</u> changes $\sigma\left(\frac{q}{p}\right)$ estimation, but meant to fix problems at high η worth reaching out to ACTS experts?
- Verified that expected spatial resolution is being used, at least at seeding stage, by ACTS for VXD, IT, OT
- Tested enabling 'IsStrip = True' for OT in digi steering file, this worsened p_T resolution

Conclusions

- Observe correlation between poor track p_T res., low N_{Hits} , high momentum
 - Seems very similar to what Gregory has observed!
- Seems in part due to hits in IT, OT considered as outliers, due to incorrect spatial uncertainties in IT, OT used by ACTS
 - Potentially also effects of bremm not included in χ^2 calculation of fit (per Simone)
- Found one point in ACTS where over/underestimation of p_T occurring (estimating track params from seed)

Backup

For $|\eta| < 1.0$, minimal correlation between pt res., η

20

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \operatorname{vs.} \chi^2_{red}$

 $50~{
m GeV}$

500 GeV

Some correlation between pt res, χ^2_{red}

21

3000 GeV

 $50~{
m GeV}$

Many outliers!!

$\frac{\Delta p_T}{\text{Truth } p_T} \text{ vs. } N_{Hits} \text{ (excluding outliers)}$

50 GeV

1.0

Track pT Res. (|Truth - Track| / Truth) 70 80 80 80

0.0

8

10

12

3000 GeV

Track p_T vs. N_{hits} (scatter)

Track pT

•

•

3000 GeV

