

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

QUANTUM UNIVERSE ATTRACT. WORKSHOP NOVEMBER 25TH 2025

OVERVIEW OF GW ACTIVITIES IN QUANTUM UNIVERSE

PROF. DR. OLIVER GERBERDING, UNIVERSITÄT HAMBURG

CLUSTER OF EXCELLENCE OUANTUM UNIVERSE

GRAVITATIONAL WAVES

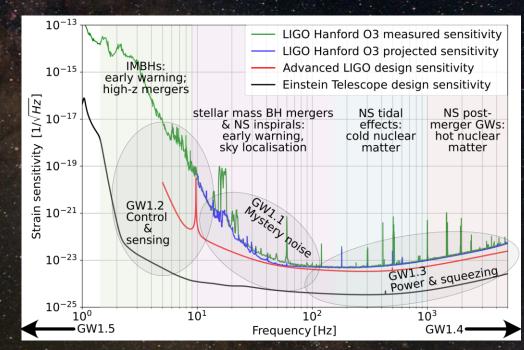
- Gravitational Waves is one of the five research areas of Quantum Universe
- The experimental research is summarized in sub-area
 1. Gravitational Wave Detection Techniques (reported on here)
- Sub Area 2. Multi-Messenger Signatures of Gravitational Wave Sources focuses on astronomy and source physics and modelling
- Sub Area 3. Gravitational Waves from the Early Universe focuses on theory and cosmology

Gravitational Waves

- Gravitational Wave Detection Techniques
- 2. Multi-Messenger Signatures of Gravitational Wave Sources
- **3.** Gravitational Waves from the Early Universe

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE



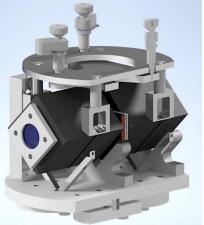
OUANTUM UNIVERSE

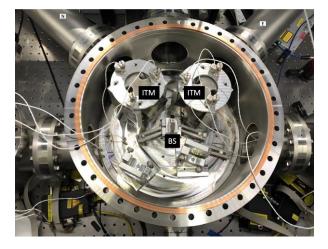
GRAVITATIONAL WAVE DETECTION TECHNIQUES

Focus of QU II (we do much more!):

- Improving current ground-based detectors
- Realizing and enabling 3rd generation detectors such as the Einstein Telescope
- Investigating detection concepts for highfrequency GWs (superconducting RF cavities, nano membranes)
- Investigating ground-based mHz detection using storage rings

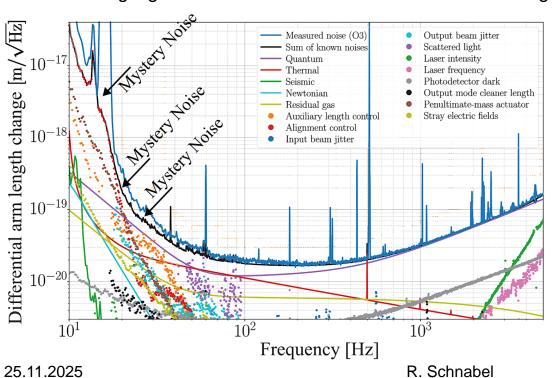
GW1 – Team Roman Schnabel (UHH) – Research for the Einstein Telescope and beyond

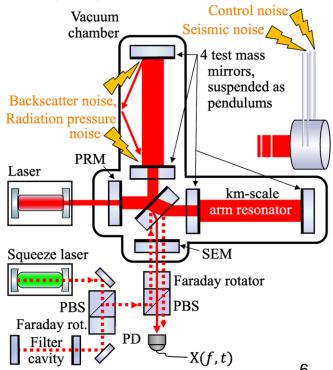

I) The Hamburg 1-m squeezed-light GW-detector prototype


Master students wanted!

Goals: - Combining 10 dB squeezing with 100 kW of light.

- Solving the back-scatter noise problem for improved GW signals below 30 Hz.
- Establishing the new laser wavelength of 2128 nm.
- Using machine learning (ML) for isolating against seismic motion and controlling GW detectors.




GW1 – Team Roman Schnabel / Ludwig Mathey (UHH) – Research for the Einstein Telescope and before

II) Solving the 'Mystery Noise' Problem in GW detectors with ML/AI

Master students wanted!

Goals: - Using big data from Witness channels to learn the emergence of 'Mystery Noise', starting with LIGO.

GRAVITATIONAL WAVE DETECTION GROUP LED BY O. GERBERDING

Research focus:

- Compact interferometric sensors
- Controls noise & suspensions
- Inertial sensing
- Scattered light supression
- FPGA-based phase readout and control
- Seismic networks (wavehamburg.eu)

CLUSTER OF EXCELLENCE OUANTUM UNIVERSE

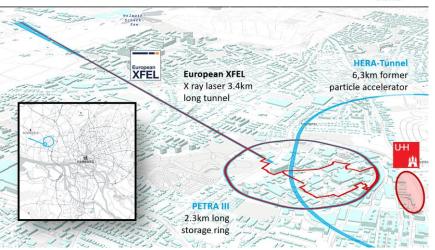
UPCOMING PROJECTS

Postdoc position on Multi DOF sensor
 experiments and modelling for low-frequency
 control noise reduction (advertisement about
 to be released)

PhD projects with funding pending:

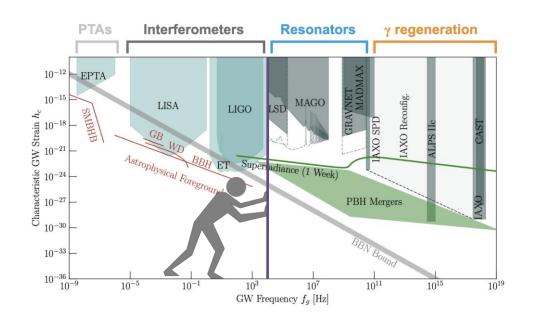
- Compact interferometric sensors for ET and ET Pathfinder
- Pre-experiments for a large-scale ET suspension and control prototype in Hamburg
- Readout, control and scattered light noise readuction in compact ring laser gyroscopes

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE


WAVE SEISMIC NETWORK INITIATIVE

Contacts: K.-S. Isleif, C. Hadziioannou (Geophysics), O. Gerberding

- Environmental noise sensing
- Predicting seismic noise
- Newtonian noise studies for ET
- On-site experiments at e.g. LIGO
- Outreach with livestreams and more

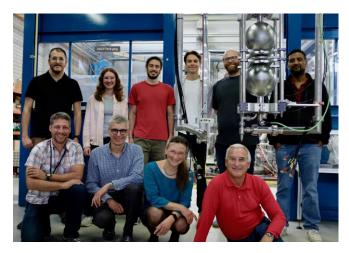

Check it out at www.wave-hamburg.eu

Opportunity to push the boundary on GWs

Gravitational Waves at Higher Frequencies

Universe expected to be populated by GWs over many decades in frequency (cf. to EM radiation)

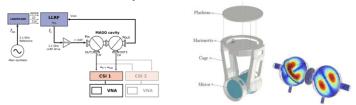
- Extend to high frequency, complementary to LIGO/ET
- No known astrophysical objects over O(kHz): if detected, points to BSM physics
- High risk, high return!
- Ongoing R&D projects at DESY/UHH to establish technologies and assess feasibility


With the necessary expertise and infrastructure (e.g. cryoplatform) on-site, DESY would be an ideal place to develop and host some of these experiments

SRF cavities

Revival of the MAGO proposal

Cavities de-tuned by GW, an effect that could be detected with appropriate instrumentation


R&D at DESY/UHH in collaboration with Fermilab with the MAGO cavity (on loan from INFN)

Short term goal: proof-of-principle measurement

Goals for the coming years:

- Improve further cavity control & readout
- Mitigate environmental noise with a dedicated suspension system

 Physics runs in an existing DESY cryostat with new, optimized cavities

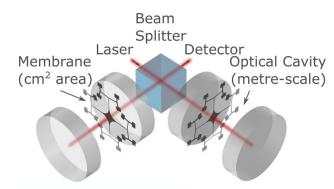
Current experimental job openings on:

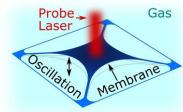
- Detailed study of the impact of superfluid helium (PhD)
- Signal readout, data acquisition and data analysis (Postdoc)

NEST (Nano-membrane Experiment for Space-time Tremors)

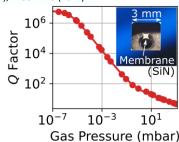
Goal: Detect ripples in space-time with chip-scale devices

Fabricate cm²-scale crystalline membranes & optically trap them inside Fabry-Perot cavities to search for **high-frequency gravitational waves** & **vector dark matter**, with a membrane-limited frequency range of 0.5 - 300 kHz

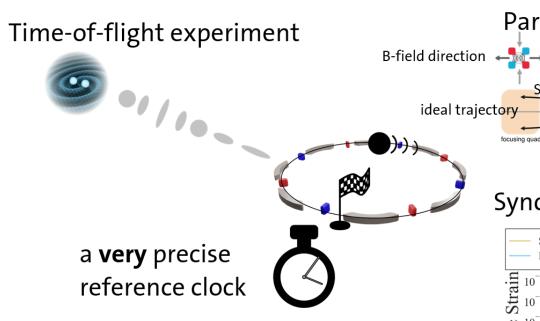

Opportunities for new team members


Contribute to membrane design and fabrication, optomechanical prototype development, data taking and analysis

Background


- Chip-scale mechanical oscillators with ultra-low loss provide a powerful platform for precision sensing and emerging quantum technologies
- We also work on a disruptive nanomechanical gas-pressure sensor

Contact:	Axel Lindner axel.lindner@desy.de +49-40-8998-3525	Christoph Reinhardt christoph.reinhardt@desy.de +49-40-8998-5055
	T43-40-0330-3323	T43-40-0330-3033

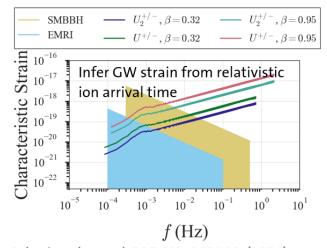


ACS Photonics, 11(4), 1438-1446 (2024)

GW Detection with Storage Rings

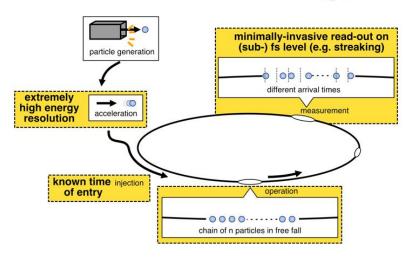
•Particles in storage ring can circulate for minutes up to hours: milliHertz GW With time-of-flight signal

•Combine photon statistics with particle tracking simulation: **Synchrotron emission power noise**

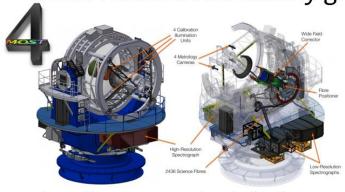

.How to quantify other noise sources?

Synchrotron Radiation noise

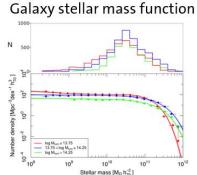
Simulation trajectory


drift/ bending

Particle Tracking Simulation


Schmirander et al. PRD **110**, 082002 (2024)

QU2 Activities



- Design and simulate experimental setup for storage ring operation and arrival time measurement with high temporal resolution
- •Conduct experiment on ion **generation**, **acceleration**, **injection** and possibly read-out using attosecond streaking methods

Observational Astronomy group (J. Liske)

https://www.4most.eu/cms/gallery/

- Study galaxy evolution using spectroscopic surveys
- Instrumentation development, e.g. 4MOST
- Develop & explore alternative concepts of mHz GW detection

Sbaffoni et al. A&A, 696, A89 (2025)