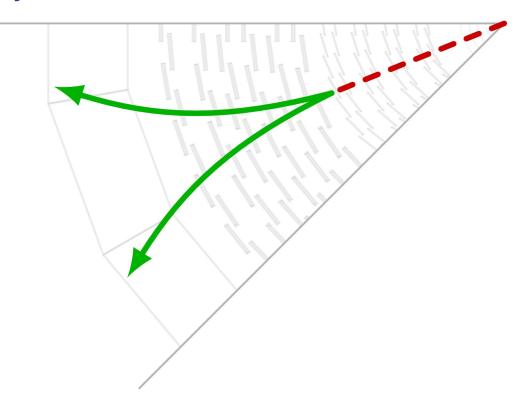
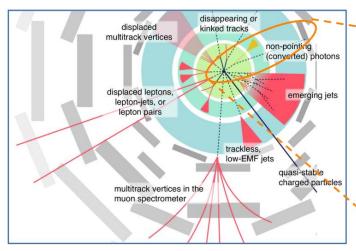
Impact of Non-Pointing Photon Searches at ATLAS for Dark Matter Models

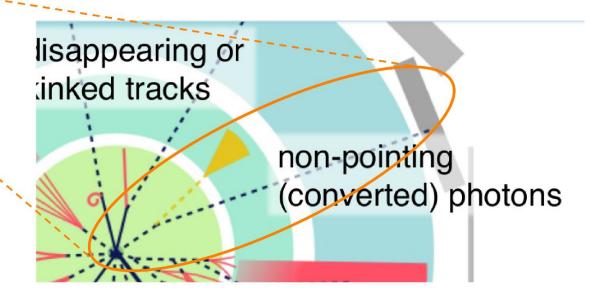
Walter Rodríguez walter.rodriguez@pucp.edu.pe


P. Arias, B. Díaz, L. Duarte, J. Jones-Perez, WR, D. Zegarra (2507.15930)

 Dark matter remains unexplained → suggests <u>hidden</u> sectors.

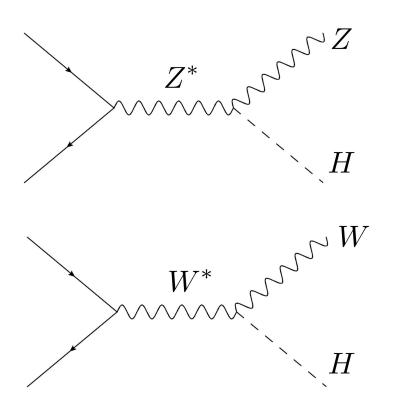


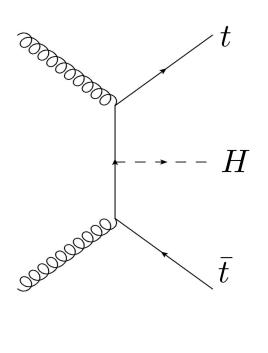
- Dark matter remains unexplained → suggests hidden sectors.
- Many models predict long-lived particles (LLPs), including in Higgs decays.



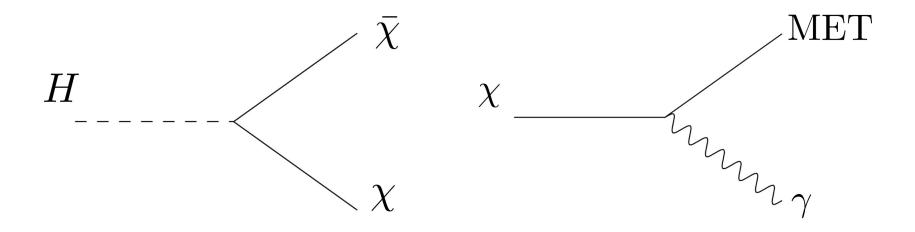
- Dark matter remains unexplained → suggests hidden sectors.
- Many models predict long-lived particles (LLPs), including in Higgs decays.
- LLPs can give displaced photons, a clean and striking LHC signature.

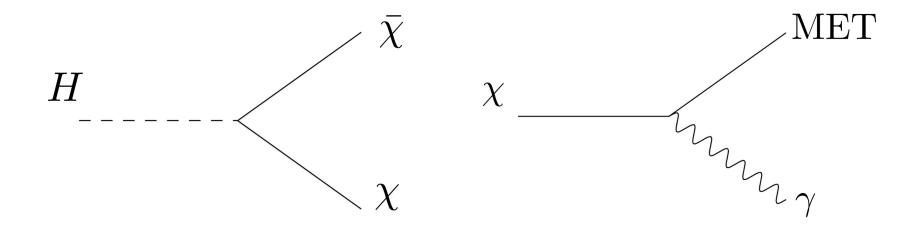
Design by H. Russel





- Dark matter remains unexplained → suggests hidden sectors.
- Many models predict long-lived particles (LLPs), including in Higgs decays.
- LLPs can give displaced photons, a clean and striking LHC signature.
- This work recasts ATLAS displaced-photon searches to probe these scenarios using refined collider searches.


Trigger: isolated lepton with p_T > 27 GeV.



- Trigger: isolated lepton with p_T > 27 GeV.
- LLP comes from Higgs decay. The LLP later decays into photon (at least one with $p_T>10$) and MET.

- Trigger: isolated lepton with $p_T > 27$ GeV.
- LLP comes from Higgs decay. The LLP later decays into photon (at least one with $p_T>10$) and MET.
- Define signal region depending on MET > 50 GeV.

- Trigger: isolated lepton with p_T > 27 GeV.
- LLP comes from Higgs decay. The LLP later decays into photon (at least one with $p_T>10$) and MET.
- Define signal region depending on MET > 50 GeV.
- Place cuts on t_{γ} and $|\Delta z_{\gamma}|$. Distinguish single and multi-photon samples.

(1)
$$1.5 \,\mathrm{ns} < t_{\gamma} < 12 \,\mathrm{ns}$$
 $1 \,\mathrm{ns} < t_{\gamma} < 12 \,\mathrm{ns}$ (2+)

$$|\Delta z_{\gamma}| > 300 \,\mathrm{mm}$$

- Trigger: isolated lepton with p_T > 27 GeV.
- LLP comes from Higgs decay. The LLP later decays into photon (at least one with $p_T>10$) and MET.
- Define signal region depending on MET > 50 GeV.
- Place cuts on t_{γ} and $|\Delta z_{\gamma}|$. Distinguish single and multi-photon samples.
- Results obtained for SUSY:

	1	2+	1+
Expected	3.8 ± 1.6	0.28 ± 0.04	4.1 ± 1.7
Observed	4	0	4

Dark Sector includes

• A new real pseudo-scalar field ϕ

Dark Sector includes

- ullet A new real pseudo-scalar field ϕ
- A dark boson A'_{μ} from local symmetry U'(1) symmetry.

Dark Sector includes

- ullet A new real pseudo-scalar field ϕ
- A dark boson A'_{μ} from local symmetry U'(1) symmetry.
- The model is endowed with \mathbb{Z}_2 symmetry:
 - \circ Dark fields A'_{μ} and ϕ are odd under \mathbb{Z}_2
 - \circ Standard Model (SM) fields are even under \mathbb{Z}_2

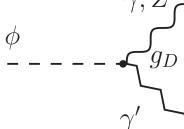
$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F^{'\mu\nu} + \frac{1}{2} m_{\gamma'}^2 A_{\mu}^{'2} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} \tilde{m}_{\phi}^2 \phi^2 - \lambda_{\phi} \phi^4 - \lambda_{HS} \phi^2 |H|^2$$

Dark Sector includes

- ullet A new real pseudo-scalar field ϕ
- A dark boson A'_{μ} from local symmetry U'(1) symmetry.
- The model is endowed with \mathbb{Z}_2 symmetry:
 - \circ Dark fields A'_{μ} and ϕ are odd under \mathbb{Z}_2
 - \circ Standard Model (SM) fields are even under \mathbb{Z}_2
- A 5-dimension EFT operator involving A'_{μ} and preserving \mathbb{Z}_2 and U'(1) symmetries is used to include the decoupled sector.

$$\mathcal{L}_5 = \frac{g_D}{2} \phi \, F'_{\mu\nu} \tilde{B}^{\mu\nu}$$

 We want to reinterpret the collider search results to apply them to our new theoretical scenario.


- We want to reinterpret the collider search results to apply them to our new theoretical scenario.
- In the lagrangian we identify the LLP to reproduce the results in this term:

- We want to reinterpret the collider search results to apply them to our new theoretical scenario.
- In the lagrangian we identify the LLP to reproduce the results in this term:

 Meanwhile, the displaced photon and the MET will be generated via the effective coupling.

$$\mathcal{L}_5 = \frac{g_D}{2} \phi \, F'_{\mu\nu} \tilde{B}^{\mu\nu}$$

- With this in mind, we take the following hierarchy:
 - $om_{\gamma'} < m_{\phi} < (m_h)/2$ with γ' stable DM candidate.

- With this in mind, we take the following hierarchy:
 - o $m_{\gamma'} < m_{\phi} < (m_h)/2$ with γ' stable DM candidate.
- The collider signal of interest, will therefore be:
 - $pp \rightarrow h \rightarrow \phi \phi$, with each $\phi \rightarrow \gamma \gamma$ '

- With this in mind, we take the following hierarchy:
 - o $m_{\gamma'} < m_{\phi} < (m_h)/2$ with γ' stable DM candidate.
- The collider signal of interest, will therefore be:
 - ∘ $pp \rightarrow h \rightarrow \phi \phi$, with each $\phi \rightarrow \gamma \gamma$
- Sensitivity requires 1 $cm < c\tau_{\phi} < 100$ cm to make it decay in the Inner Detector.

$$\Gamma_{\phi}(\phi \to \gamma \gamma') = \frac{g_D^2 c_W^2}{32\pi} m_{\phi}^3 \left(1 - \frac{m_{\gamma'}^2}{m_{\phi}^2} \right)^3$$

- With this in mind, we take the following hierarchy:
 - o $m_{\gamma'} < m_{\phi} < (m_h)/2$ with γ' stable DM candidate.
- The collider signal of interest, will therefore be:
 - $pp \rightarrow h \rightarrow \phi \phi$, with each $\phi \rightarrow \gamma \gamma$
- Sensitivity requires 1 $cm < c\tau_{\phi} < 100$ cm to make it decay in the Inner Detector.
- We focus on light DM candidates γ' ($m_{\gamma'} \lesssim 5$ GeV).

- With this in mind, we take the following hierarchy:
 - o $m_{\gamma'} < m_{\phi} < (m_h)/2$ with γ' stable DM candidate.
- The collider signal of interest, will therefore be:
 - ∘ $pp \rightarrow h \rightarrow \phi \phi$, with each $\phi \rightarrow \gamma \gamma$
- Sensitivity requires 1 $cm < c\tau_{\phi} < 100$ cm to make it decay in the Inner Detector.
- We focus on light DM candidates γ' ($m_{\gamma'} \leq 5$ GeV).
- We require a sufficient number of scalars produced from the Higgs.

$$\Gamma(h \to \phi\phi) = \frac{\lambda_{HS}^2 v^2}{8\pi m_h} \sqrt{1 - 4\frac{m_\phi^2}{m_h^2}}$$

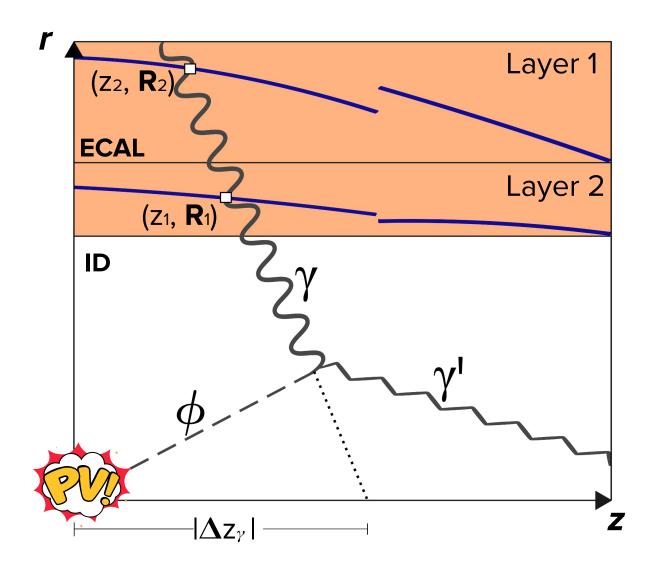
this calls for $\mathcal{O}(10^{-5}) \lesssim \lambda_{HS} \lesssim \mathcal{O}(1)$

We end up with the following parameter space:

$$m_{\gamma'} \sim 1 \text{ GeV} \ll m_{\phi} \lesssim m_h/2$$

$$10^{-11} \text{ GeV}^{-1} \le q_D \le 10^{-9} \text{ GeV}^{-1}$$

$$10^{-5} \lesssim \lambda_{HS} \lesssim 10^{-1}$$


We end up with the following parameter space:

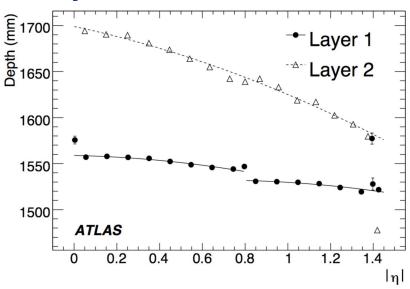
$$m_{\gamma'} \sim 1 \text{ GeV} \ll m_{\phi} \lesssim m_h/2$$

 $10^{-11} \text{ GeV}^{-1} \leq g_D \leq 10^{-9} \text{ GeV}^{-1}$
 $10^{-5} \lesssim \lambda_{HS} \lesssim 10^{-1}$

 This dark matter scenario also reproduces the correct DM relic abundance and satisfies cosmological constraints.

Non Pointing Variable: ATLAS

Non Pointing Variables: Δz_{γ}


 With this, at first instance, one would use the following expression to find the non pointing parameter:

$$\Delta z_{\gamma} = \frac{z_1 R_2 - z_2 R_1}{R_2 - R_1}$$

Non Pointing Variable: Δz_{γ}

- With this, at first instance, one would use the following expression to find the non pointing parameter:
- ATLAS neglects the information on the azimuthal angle. R_i , however are functions on pseudorapidity: γ trace needs to be reconstructed and its η has to be determined when it enters the ECAL layers.

Non Pointing Variable: Δz_{γ}

- With this, at first instance, one would use the following expression to find the non pointing parameter:
- ATLAS neglects the information on the azimuthal angle. R_i , however are functions on pseudorapidity: γ trace needs to be reconstructed and its η has to be determined when it enters the ECAL layers.

$$\Delta z_{\gamma} = r_{\phi z} - \frac{p_{\gamma z}}{p_{\gamma T}^{2}} (r_{\phi x} p_{\gamma x} + r_{\phi y} p_{\gamma y})$$

$$+ \frac{p_{\gamma z}}{p_{\gamma T}} \left(\frac{R_{1} R_{2}}{R_{2} - R_{1}} \right) \left\{ \left(1 - \frac{d_{0}^{2}}{R_{1}^{2}} \right)^{1/2} - \left(1 - \frac{d_{0}^{2}}{R_{2}^{2}} \right)^{1/2} \right\}$$

with do: photon impact parameter

$$d_0 = (r_{\phi x} p_{\gamma y} - r_{\phi y} p_{\gamma x})/p_{\gamma T}$$

Non Pointing Variable: $t\gamma$

• On the other hand, to calculate the delayed time one only needs $t_{\gamma}=t'-t_0$

Non Pointing Variable: $t\gamma$

- On the other hand, to calculate the delayed time one only needs t_γ=t'-t₀
- Note that for these calculations, the truth level of Pythia is used.

Simulation Refinement

 ATLAS Delphes Card was modified to adapt them to match the performance more accurately.

Higgs Decay to Invisible & Undetected

• Invisible decays: Long-lived scalars ϕ that decay outside detector contribute to the Higgs invisible BR, limited by ATLAS $B_{inv} < 0.107$

$$B_{\text{inv}} = \text{BR}(h \to \phi \phi) \exp \left[-\frac{2L_{\text{det}}}{\gamma_{\text{rel}} \beta_{\text{rel}} c \tau_{\phi}} \right] < 0.107$$

Higgs Decay to Invisible & Undetected

- Invisible decays: Long-lived scalars ϕ that decay outside detector contribute to the Higgs invisible BR, limited by ATLAS $B_{inv} < 0.107$
- Assuming a **spherical detector** of $L_{det} = 1.97 \, m$ radius, the probability of ϕ decaying beyond the detector is known

$$P(L_{\rm det}, \infty) = \exp\left[-\frac{L_{\rm det}}{\gamma_{\rm rel} \, \beta_{\rm rel} \, c \, \tau_{\phi}}\right]$$

Higgs Decay to Invisible & Undetected

- Invisible decays: Long-lived scalars ϕ that decay outside detector contribute to the Higgs invisible BR, limited by ATLAS $B_{inv} < 0.107$
- Assuming a spherical detector of L_{det} = 1.97 m radius, the probability of ϕ decaying beyond the detector is known.
- Undetected signals: Global fits to Higgs data (ATLAS/CMS)
 constrain additional exotic decays not covered by direct
 searches, yielding Bund < 0.12

Search Bounds & Cutflow

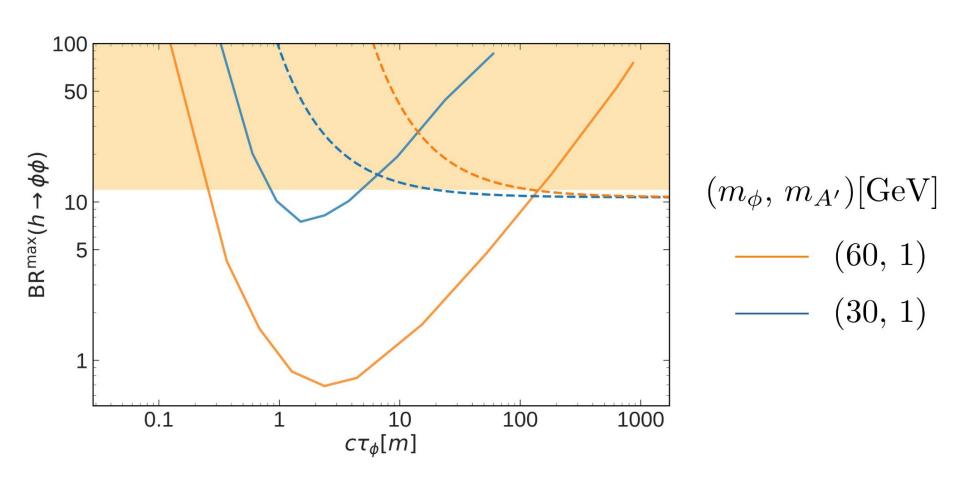
 We target delayed, non-pointing photons from Higgs exotic decays into LLPs.

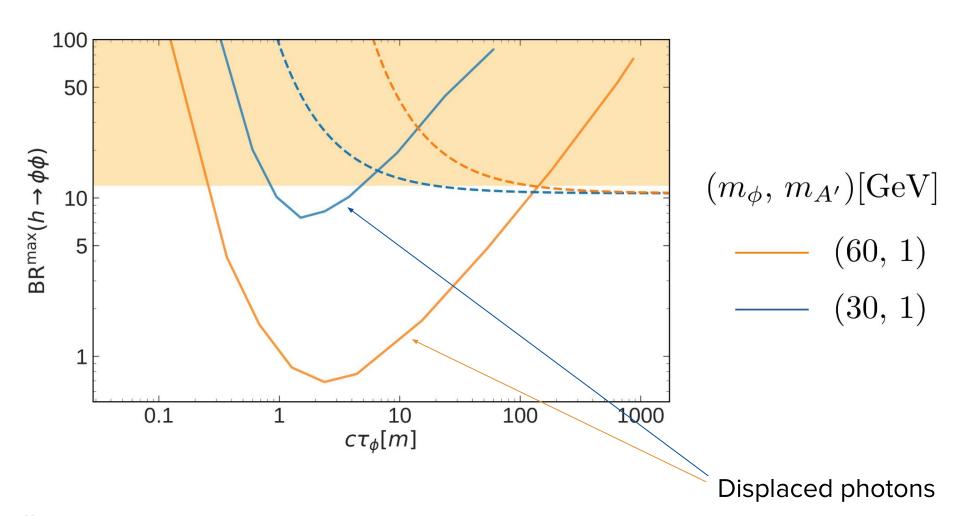
Search Bounds & Cutflow

- We target delayed, non-pointing photons from Higgs exotic decays into LLPs.
- Photon displacement: $|\Delta z_{\gamma}| > 300 \, mm$.

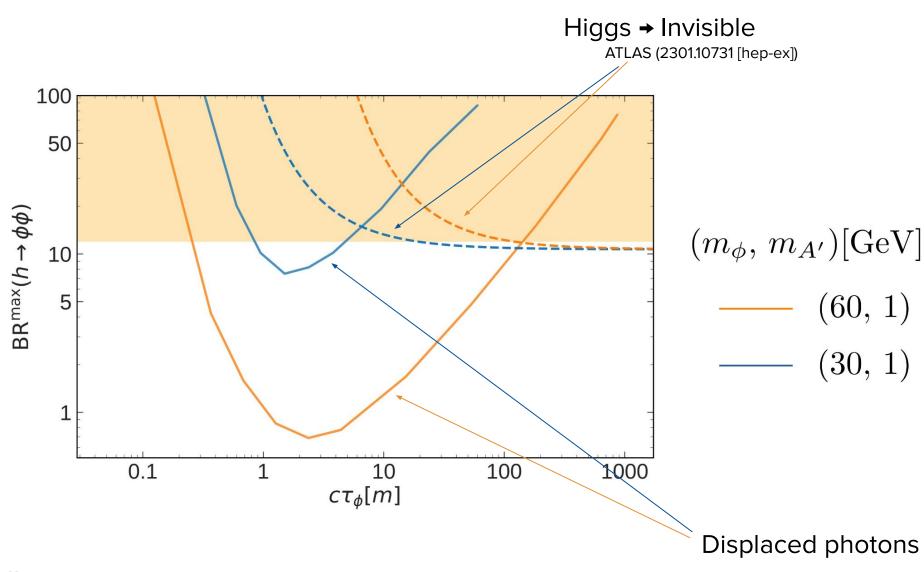
- We target delayed, non-pointing photons from Higgs exotic decays into LLPs.
- Photon displacement: $|\Delta z_{\gamma}| > 300 \, mm$.
- Time-delay window:
 - Single-photon channel (1): $1.5 < t_{\gamma} < 12$ ns
 - Multi-photon channel **(2+)**: $1 < t_{\gamma} < 12$ ns

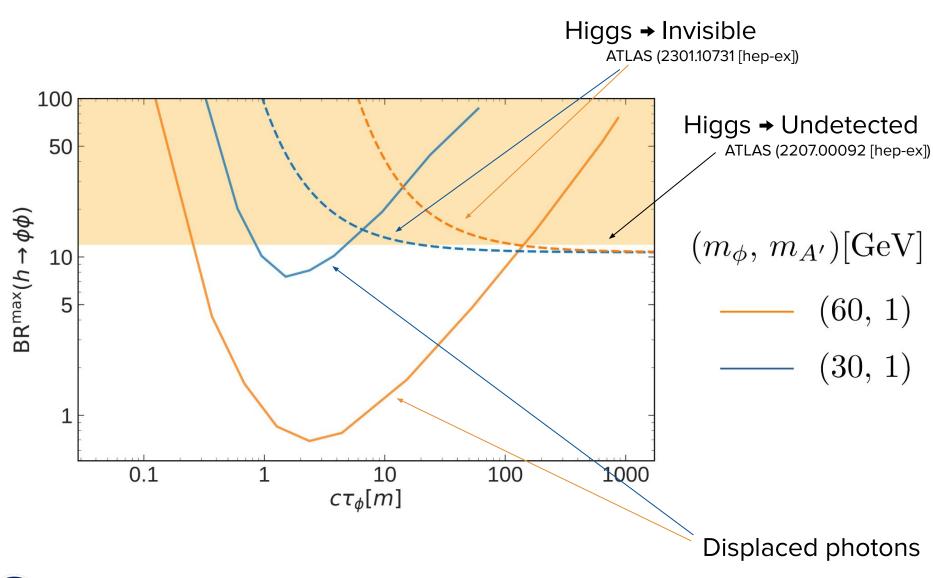
- We target delayed, non-pointing photons from Higgs exotic decays into LLPs.
- Photon displacement: $|\Delta z_{\gamma}| > 300 \, mm$.
- Time-delay window:
 - Single-photon channel (1): $1.5 < t_{\gamma} < 12$ ns
 - Multi-photon channel (2+): $1 < t_{\gamma} < 12$ ns
- Events also require MET > 50 GeV

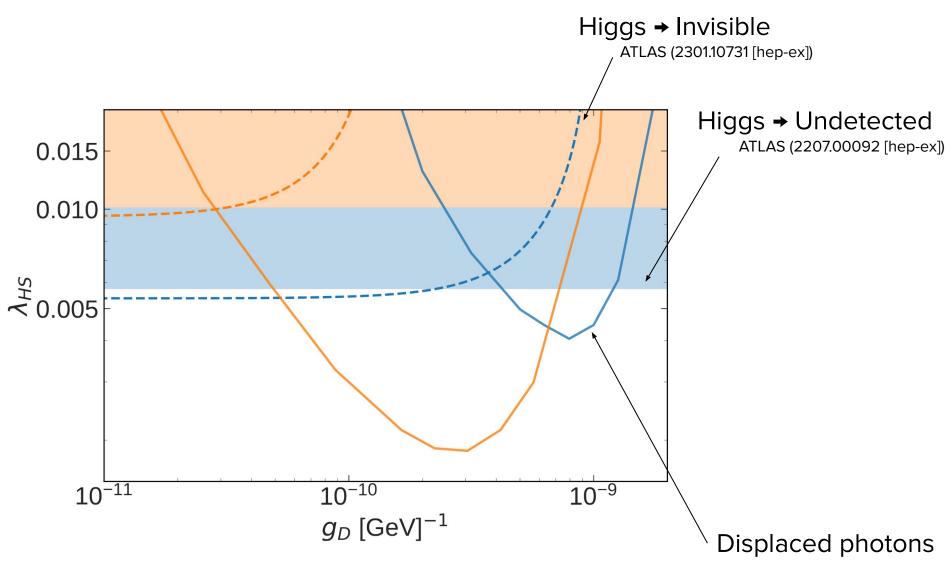

- We target delayed, non-pointing photons from Higgs exotic decays into LLPs.
- Photon displacement: $|\Delta z_{\gamma}| > 300 \, mm$.
- Time-delay window:
 - Single-photon channel (1): $1.5 < t_{\gamma} < 12$ ns
 - Multi-photon channel (2+): $1 < t_{\gamma} < 12$ ns
- Events also require MET > 50 GeV
- No excess observed \rightarrow bounds on BR(h $\rightarrow \phi \phi$) and LLP parameter space.

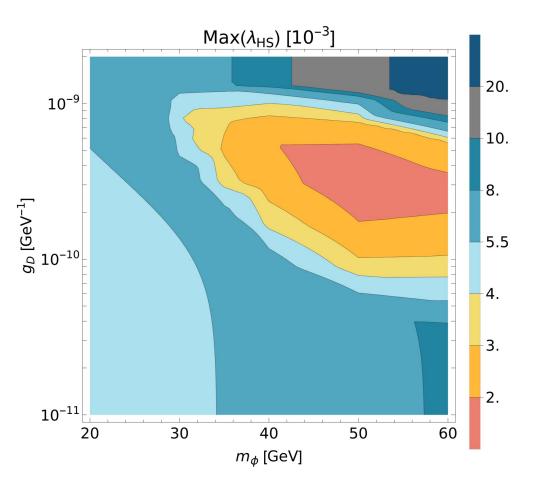

• Efficiency (in %) for m_{ϕ} = 60 GeV, $m_{\gamma'}$ = 1 GeV. We combine the three production processes. Results shown for gD = 5.7 × 10^(-10) and 1.6 × 10^(-10) GeV^-1, which respectively imply decay lengths c τ_{ϕ} = 0.69 and 4.4 m.

Cut	$c \tau_{\phi} = 0.69 \text{ m}$		$c \tau_{\phi} = 4.4 \text{ m}$	
Trigger, $p_{\gamma T} > 10$ GeV, Acceptance	71		44	
Isolation, Efficiencies, Z-veto	39		18	
	Channel			
	1	2+	1	2+
$E_{\rm cell} > 10 \; {\rm GeV}$	15	20	11	3.2
MET > 50 GeV	6.2	8.3	5.4	1.3
$ \Delta z_{\gamma} > 300 \text{ mm}$	2.2	1.8	2.6	0.46
$t_{\gamma} > 1 (1.5) \text{ns}$	0.20	0.45	0.89	0.27









Results: Combined bounds

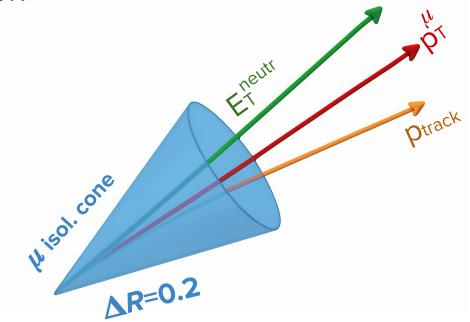
- Large coupling implies ϕ decays promptly.
- Heavier masses for ϕ are favoured: ϕ moves slowly so t_{γ} is larger.
- For large gD, constraints from fit are strongest. For small gD, constraints from invisible decays are strongest.
- Small couplings implies ϕ decays outside detector.

• $m_{\gamma'} = 1 \text{ GeV}.$

Conclusions

- Searches for displaced photons can place bounds on models with LLPs decaying into photons and MET.
- ullet These searches have largest sensitivity for $c\, au\sim\mathcal{O}(1\,\mathrm{m})$
- For lower (higher) lifetimes, Higgs → undetected (invisible) searches present better bounds.
- Recast of search in the context of dark photon with scalar portal places bounds $\lambda_{HS} \sim \mathcal{O}(10^{-3})$

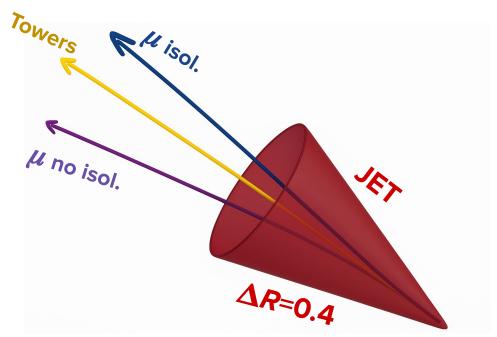
Gracias



Backup Slides

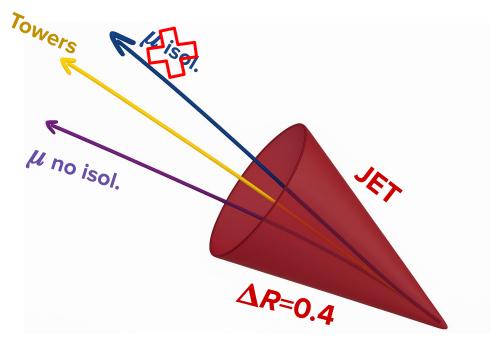
Simulation Refinement

- ATLAS Delphes Card was modified to adapt them to match the performance more accurately.
- Muon Isolation


$$\Delta R \equiv \sqrt{\left(\Delta \eta
ight)^2 + \left(\Delta \phi
ight)^2}$$

$$(p_{\rm trk} + 0.4E_T^{\rm neut}) < 0.16 \, p_T^{\mu}$$

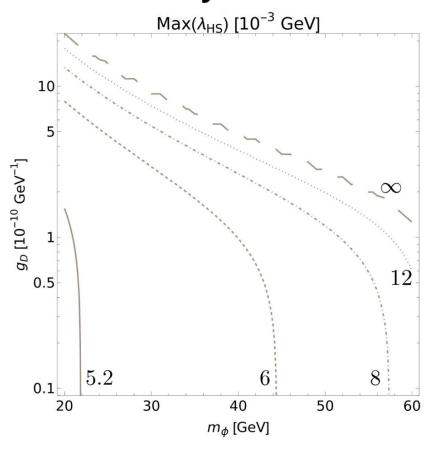
Simulation Refinement

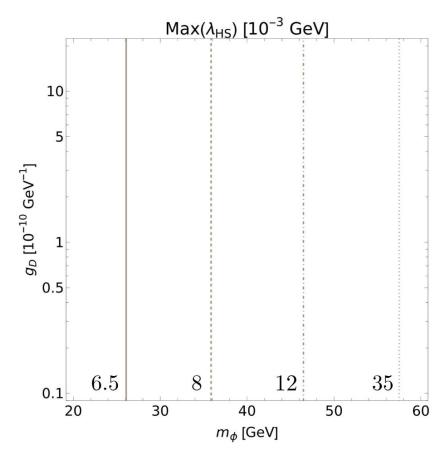

- ATLAS Delphes Card was modified to adapt them to match the performance more accurately.
- Muon Isolation
- Overlap Removal

Simulation Refinement

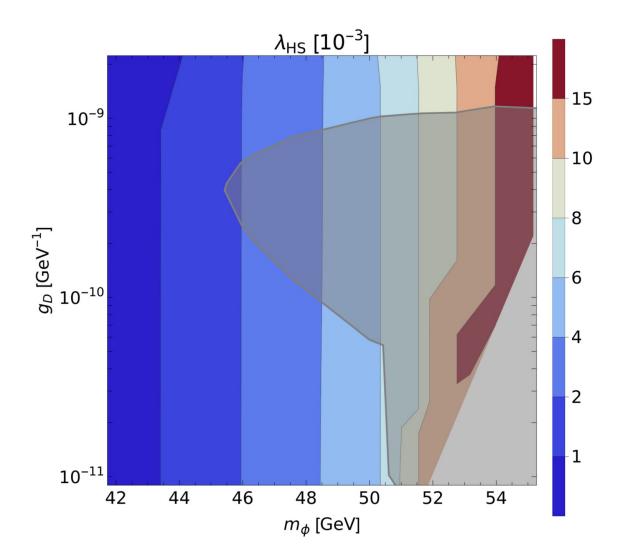
- ATLAS Delphes Card was modified to adapt them to match the performance more accurately.
- Muon Isolation
- Overlap Removal

Delphes


- Adapted to read HepMC with non-pointing Monte Carlo information.
- The photon and electron efficiencies are applied after Delphes.
- Muon isolation uses track and calorimeter information.
- Jets only include non-isolated muons, which later helps overlap removal to favour jets over muons.


Post-Delphes cuts

- Apply gaussian smear on delta Z (Ister apply on t gamma)
- Apply momentum and eta cuts on photons and separate (later apply these on electrons, muons and jets)
- Apply electron efficiencies and ID
- Implement overlap removal for photons, electrons, jets and muons.
- Assign signal region if MET > 50 GeV



Higgs → invisible

Higgs → undetected

