Effects on the propagation of Ultra High Energy Cosmic rays

Anushka Menon

Supervisor : Prof. Dr. Günter Sigl Co-supervisor : Dr. Danelise Franco

Bethe Center for Theoretical Physics (BCTP), University of Bonn

> Institute for Theoretical Physics, University of Hamburg

Outline

- Cosmic rays
 - A brief history of Cosmic rays
 - Open questions
- 2 Energy Spectrum
- 3 Pierre Auger Observatory
- 4 Mass composition
- Energy loss length
- 6 Anisotropies
- 7 Aim of Thesis

Cosmic Rays

- Cosmic rays are highly energetic particles that propagate through the universe interacting with magnetic fields, gas and radiation
- \blacksquare At low energies, these ionized nuclei are mostly protons and $\alpha\text{-particles}$
- \blacksquare A fraction of them have ultra relativistic energies up to 10^{20}eV

Artistic reconstruction of Cosmic ray showers detected by Pierre Auger Observatory (A. Chantelauze et al., DOI: 10.1038/nature.2017.22655)

A brief history of Cosmic rays

Victor Hess's balloon flights experiment for measuring radiation in atmosphere

Carl Anderson discovers positrons in CR observations

1910 Theodor Wulf

investigated changes

in radiation

with height

1912

1927

1932

First cloud chamber photo by Dimitry Skobelzyn

ATTRACT Workshop, 2025

A brief history of Cosmic rays

COSSACC ALTS FADAL SUPER-ROYAE

TO W. SAME RODE T. SECRET

HOWEVER THE CONTROL TO THE CONTROL TH

Pierre Auger and collaborators discovered extensive air showers

Volcano ranch experiment detected the first CR with an energy of about 10²⁰ eV

19'34

W. Baade &
F. Zwicky
proposed
CR's originate

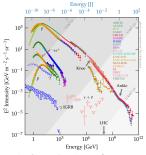
in Supernovae

1938

1949

Fermi proposed his theory of CR acceleration

1962

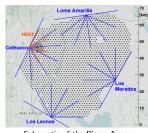

ATTRACT Workshop, 2025

Open questions

- The origin and the acceleration mechanisms of the production of UHECR's remain a mystery
- The key observables for addressing these questions are:
 - 1. Energy spectrum
 - 2. Mass composition
 - 3. Arrival directions

Energy Spectrum

- Energy spectrum ranges from 10⁹ eV to more than 10²⁰ eV
- It follows a power law spectrum as $F^{-\gamma}$
- Important features of the power law spectrum are:
 - **1.Knee:** Change of slope at 3×10^{15} eV
 - **2.** Ankle: Change of slope at 5×10^{18} eV



The Cosmic-Ray Energy Spectrum

(C. Evoli, DOI:

10.5281/zenodo.4396125)

- The largest UHECR Observatory in the world, located in Argentina
- The total exposure exceeds 100,000 km² sr yr
- The detectors covers an area of around 3.000 km²
- During Phase I, the observatory had two main detectors:
 - 1. Surface Detector (SD)
 - 2. Fluorescence Detector (FD)
- It underwent an upgrade called AugerPrime that includes new detectors

Schematic of the Pierre Auger Observatory array

(A. Aab et al., DOI:

10.1016/j. astropart phys. 2017.09.001)

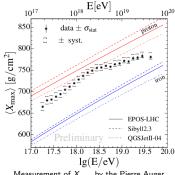
Hybrid Detection

Surface Detector (SD)

- Consists of 1,660 water-Chereknov detector tanks
- Each tank is spaced at 1.5 kilometers with respect to each other

Photograph of an SD station

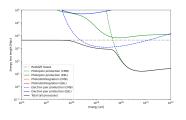
Fluorescence Detector (FD)


- Consists of 27 fluorescence telescopes
- These are distributed into four different stations with six at each location

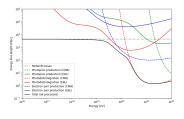
Photograph of the Los Morados FD station

Mass composition

- UHECR's consist of many atomic nuclei species, ranging from protons to iron nuclei
- For lower energies, lighter elements are more abundant in cosmic rays
- Pierre Auger Collaboration has found evidence that the composition becomes heavier for higher energies



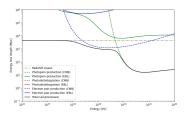
Measurement of X_{max} by the Pierre Auger Observatory


(A. Yushkov et al., DOI: 10.22323/1.358.0482)

Energy loss length

 During the extragalactic propagation, CR's interact with the photon background mainly the CMB and EBL

Energy loss lengths for proton



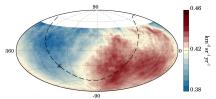
Energy loss lengths for Iron-56

 Pair production, photo-pion production and photodisintegration play an important role in the modification of the nuclear species of CR's

Energy loss length

 In case of a pure proton composition, photo-disintegration would not be possible

| 100 | 100


Energy loss lengths for proton

Energy loss lengths for Iron-56

■ In the case of Iron-56, pion production is shifted towards higher energies as compared to the case of protons

Anisotropies

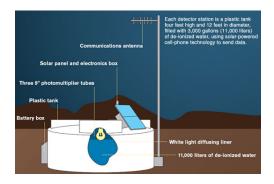
In 2017, first detection of large-scale anisotropy in UHECR arrival directions at 5.2σ significance was made

Sky map in equatorial coordinates showing the cosmic-ray flux above 8 $\ensuremath{\text{EeV}}$

(A. Aab et al., DOI: 10.1126/science.aan4338)

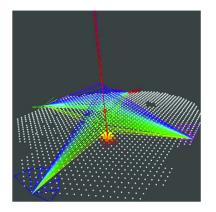
- 32,187 cosmic ray events above 8 EeV were analyzed
- Ultra-high-energy cosmic rays above 8 EeV show clear anisotropy
- It provides strong evidence for extragalactic origin

Aim of Thesis

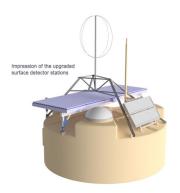

- We aim to use CRPropa¹ to simulate the propagation of CR's at energies above 8 EeV
- We plan to consider the effect of cosmic magnetic fields and take into account all relevant interactions
- We intend to simulate composition dependent anisotropies for a range of astrophysical scenarios using CRPropa
- Finally, we will compare such predictions with the data from the Pierre Auger experiment and explore what kind of constraints on astrophysical scenarios can potentially be derived

¹R. Alves Batista *et al.*, DOI: 10.22323/1.444.1471

THANK YOU!


Back-up slides

1. Surface Detector


Schematic of the surface detector

2. Fluorescence Detector

Representation of fluorescence detector

3. AugerPrime

Impression of the upgraded surface detector stations