GLOBAL SMEFT LIMITS ON FUTURE ACCELERATORS.

MASTER THESIS

ADRIÁN CAMACHO CORTÉS

PHYSICS MASTER: PARTICLES AND ASTROPHYSICS UNIVERSITY OF GRANADA

MOTIVATION

- Nowadays the Standart Model is in good agreement with experimental data, but we know there must be something else
 - ► Dark matter composition, matter-antimatter asymmetry origin, neutrino masses origin.
 - ► Hierarchy problem, the existence of 3 families.
- Furthermore, we have not seen any not predicted particle for decades. In this regard, Effective Field theory seems perfect for parametricing our ignorance.

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{n=0}^{\infty} \sum_{i=1}^{N_n} \sum_{l=0}^{\infty} \frac{\hbar^l c^{(n,i,l)}}{\Lambda^n} \mathcal{Q}_i(\phi)$$

Future circular collider (FCC) project

Clean environment for Higgstralung e⁺e⁻ → HZ

FRAMEWORK

 We have worked on the Standard Model Effective Field Theory (SMEFT)

$$SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_Q$$
 (1)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \dots, \qquad \mathcal{L}^{(d)} = \sum_{i=1}^{n_d} \frac{C_i^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_i^{(d)}$$

- Specifically we have worked at dimension 6 on the Warsaw basis, the first non redundant basis of the SMEFT.
- We chose to work on the $\{\alpha_{EW}, m_Z, G_F\}$ input scheme, from which we derived numeric expression for the EW coefficients $\{g_1, g_2, v\}$.

SMEFT PHENOMENOLOGY

I analytically computed corrections to Lagrangian couplings after EWSB and their corresponding Feynman rules (cross-checked with literature) for the following groups:

■ Precision observables on the Z pole

$$\{\Gamma_{Z},\;\sigma_{had},\;R_{e},\;R_{\mu},\;R_{\tau},\;R_{b},\;R_{c},\;A_{FB}^{e},\;A_{FB}^{\mu},\;A_{FB}^{\tau},\;A_{FB}^{b},\;A_{FB}^{c},\;A_{e},\;A_{\mu},\;A_{\tau},\;A_{b},\;A_{c}\}$$

■ Precision observables of the W

$$\{m_W, \; \Gamma_W, \; BR_W^{l_1}, \; BR_W^{l_2}, \; BR_W^{l_3}, \; BR_W^{had}\}$$

Higgs observables

$$\{\sigma_{\text{eeZh}},~\sigma_{\text{eeZh}}^{\text{bb}},~\sigma_{\text{eeZh}}^{\text{cc}},~\sigma_{\text{eeZh}}^{\tau\tau},~\sigma_{\text{eeZh}}^{\mu\mu},~\sigma_{\text{eeZh}}^{gg},~\sigma_{\text{eeZh}}^{\text{WW}},~\sigma_{\text{eeZh}}^{\text{ZZ}},~\sigma_{\text{eeZh}}^{\text{Z}\gamma},~\sigma_{\text{eeZh}}^{\gamma\gamma}\}$$

FENOMENOLOGÍA DE LA SMEFT

All Higgs observables studied began with the production of a Zh, trough $e^+e^- o Zh$

The Higgs boson will rapidly decay, and we will detect its decay products. But we had the conditions to apply the narrow width approximation, under which

$$\sigma_{tot} = \sigma_{eeZh} \times BR(h \rightarrow fianl state)$$

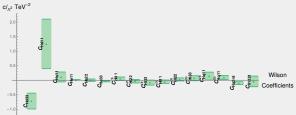
- Analitically: ff, WW, ZZ
- Using MG5 alongside SMEFTsim: $Z\gamma$ and ZZ
- Literature: $\gamma \gamma$ and qq

GLOBAL FITS TO DATA

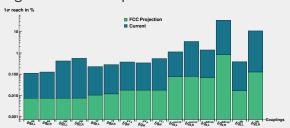
To perform the fit between theorital prediction and experimental observables we have used the least squares method. Where we minimized:

$$\chi^{2}(\theta) = \sum_{i,j=1}^{N} (y_{i} - \lambda_{i}(\theta)) (V^{-1})_{ij} (y_{j} - \lambda_{j}(\theta))$$

A n-dimensional confidence interval $[\boldsymbol{a}, \boldsymbol{b}]$ for n parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)$ its build so if we repeat N times the experimental measurements and the interval calculus, this will contain simultaneously $(1-\gamma)N$ times the true value for all θ_i parameters [?].

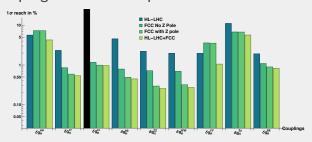

$$Q(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \chi^2(\boldsymbol{\theta}) - \chi^2_{min}$$

	$1-\gamma$	Q_{γ}				
		n = 1	n = 2	n = 3	n = 4	n = 5
	0.683	1.00	2.30	3.53	4.72	5.89
	0.90	2.71	4.61	6.25	7.78	9.24
	0.95	3.84	5.99	7.82	9.49	11.1
	0.99	6.63	9.21	11.3	13.3	15.1

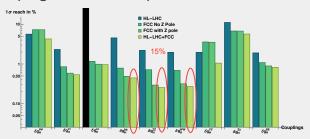

RESULTS

ELECTROWEAK ANALYSIS

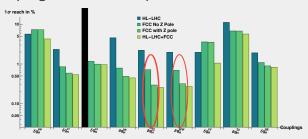
Actual data central value and uncertainties:


■ FCC-ee program relative improvement:

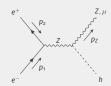
■ We also introduced diBoson data, $e^+e^- o W^+W^-$, highly complementary to Higgs data.


■ FCC-ee program relative improvement:

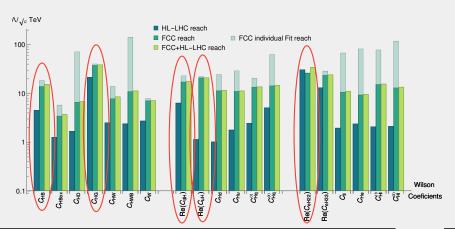
■ We also introduced diBoson data, $e^+e^- \rightarrow W^+W^-$, highly complementary to Higgs data.

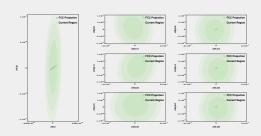

■ FCC-ee program relative improvement:

■ We also introduced diBoson data, $e^+e^- \rightarrow W^+W^-$, highly complementary to Higgs data.


■ FCC-ee program relative improvement:

■ We also introduced diBoson data, $e^+e^- \rightarrow W^+W^-$, highly complementary to Higgs data.


■ FCC-ee program relative improvement:


LIMITS ON NEW PHYSICS SCALE

In an analysis of effective theories we only have access to the interaction scale, c_i/Λ^2 . Even so, under the assumption of natural Wilson coefficients $c_i \approx 1$, we have been able to estimate the reach in the determination of the scale of new physics.

STUDY OF CORRELATIONS

Correlation between quarks and leptons sector of 93% for $C_{Hl}^{(3)}$ and $C_{Ha}^{(3)}$:

- Correlation of 80% between $C_{Hl}^{(3)}$ y C_{ll} , due to the great experimental precision in G_F .
- Significant correlations of C_{HWB} and C_{HD} with operators $C_{Hf}^{(1)}$ and $C_{Hf}^{(3)}$.

THANKS FOR YOUR TIME.

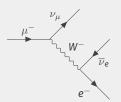
BACKUP SLIDE

Narrow width aproximation conditions:

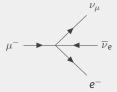
- A narrow resonance peak $\Gamma_H \ll m_H$,
- Higgs decay is kinematically allowed $m_{\text{final-state}} \ll m_H$,
- The process energy \sqrt{s} is enough to ignore border effects near the resonance pole $\sqrt{s} \gg m_H + m_Z + m_{\text{final-state}}$,
- Loop effects on the propagator are small, i.e., The resonance propagator can be split from the matrix element.
- There is not a huge interference with non-resonant processes.

BACKUP SLIDE

Expressions for the electroweak precision observables:


$$A_f = \frac{\overline{g}_{Lf}^2 - \overline{g}_{Rf}^2}{\overline{g}_{Lf}^2 + \overline{g}_{Rf}^2} \quad y \quad A_{FB}^f = \frac{3}{4} A_e A_f . \tag{2}$$

$$R_l \equiv \frac{\Gamma_{had}}{\Gamma_{ll}}$$
 y $R_q \equiv \frac{\Gamma_{qq}}{\Gamma_{had}}$ (3)


$$d\Gamma = \frac{1}{32\pi^2} |\mathcal{M}|^2 \frac{|\vec{p}_{final}|}{m_{inicial}^2} d\Omega. \tag{4}$$

CHOSE OF AN INPUT SET

$$\mathcal{L}_{\text{GF}} \, \supset \, -\frac{4\mathsf{G}_{\text{F}}}{\sqrt{2}} \left(\overline{\nu}_{\mu} \gamma^{\mu} \mathsf{P}_{\text{L}} \mu \right) \left(\overline{e} \gamma_{\mu} \mathsf{P}_{\text{L}} \nu_{e} \right).$$

Figure: Diagram of contributing to the β decay in the SM.

Figure: Diagram contributing to the β decay in the Fermi Theory.

BACKUP SLIDE

Not only the first diagram receives corrections in the SMEFT through the coupling of the W to the fermions, but also the second one is present.

 α_{EW} will also receive corrections, taking what in the SM is a set of 3 equations with 3 unknowns to 6 unknowns. [?].

$$\begin{aligned} \overline{g}_i &= \hat{g}_i + \delta g_i \\ \mathcal{O}_n &= F_n^{(0)}(g) + \frac{1}{\Lambda^2} F_n^{(2)}(g, C) & \hat{\mathcal{O}}_n &= F_n^{(0)}(g) \\ g_i &= K_i^{(0)}(\mathcal{O}) + \frac{1}{\Lambda^2} K_i^{(2)}(\mathcal{O}, C) & \hat{g}_i &= K_i^{(0)}(\mathcal{O}) \end{aligned}$$

$$\delta\mathcal{O}_{n}\equiv F_{n}^{(2)}\left(K^{(2)}\left(\mathcal{O}\right)\right)\quad\Longrightarrow\quad K_{i}^{(2)}=-\left(\mathcal{J}^{-1}\right)_{in}F_{n}^{(2)}$$

FITS

■ Electroweak fits: CurrentEWFitNoSMCV, CurrentEWFitSMCV, FCCEWFit

$$\begin{split} \{\hat{C}_{Hd11}, \; \hat{C}_{Hd33}, \; \hat{C}_{Hu11}, \; \hat{C}_{He11}, \; \hat{C}_{He22}, \; \hat{C}_{He33}, \; \hat{C}_{Hl11}^{(1)}, \; \hat{C}_{Hl22}^{(1)}, \\ \hat{C}_{Hl33}^{(1)}, \; \hat{C}_{Hl11}^{(3)}, \; \hat{C}_{Hl22}^{(3)}, \; \hat{C}_{Hl33}^{(3)}, \; \hat{C}_{Hq11}^{(1)}, \; \hat{C}_{Hq11}^{(3)}, \; \hat{C}_{Hq3rd}, C_{ll1221} \} \end{split}$$

- Higgs and Electroweak Fits:
 - ► FCCHiggsFitDiBoson or FCCHiggsFitNoDiBoson
 - ► FCCHiggsFitZPole or FCCHiggsFitNoZPole
 - ► FCCHiggsFitHLLHC or FCCHiggsFitNoHLLHC

BACKUP SLIDE

Working with the presented observables, and on the Warsaw basis, there are different flat directions.

■ Flat directions between the first and second family

$$C_{Hq22}^{(1)} = C_{Hq11}^{(1)}, \quad C_{Hq22}^{(3)} = C_{Hq11}^{(3)}, \quad C_{Hu22} = C_{Hu11}, \quad C_{Hd22} = C_{Hd11}$$

■ Flat directions of electroweak fit on the Warsaw basis [?, ?]

$$\begin{split} \hat{C}_{Hf}^{(1)} &= C_{Hf}^{(1)} - \frac{Y_f}{2} C_{HD}, \quad f = l, q, e, u, d, \\ \hat{C}_{Hf}^{(3)} &= C_{Hf}^{(3)} + \frac{C_W^2}{4 S_W^2} C_{HD} + \frac{C_W}{S_W} C_{HWB}, \quad f = l, q \end{split}$$

Flat directions of the third family

$$\hat{C}_{Hq3rd} = C_{Hq33}^{(1)} + C_{Hq33}^{(3)}, \qquad \hat{C}_{HG} = C_{HG} - \frac{2}{790} \text{Re} \left[C_{uH33} \right]$$