A new framework for massive neutrino perturbations using moment hierarchies

Sebastian Dahl Negendahl

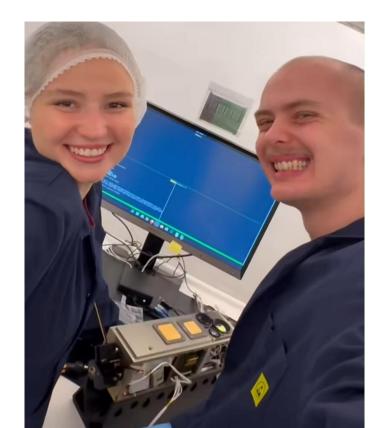
Supervisors: Thomas Tram, Steen Hannestad

About me

Interest in cosmology, particle physics and interplay between the two

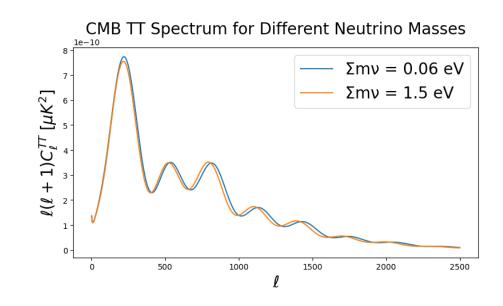
DESY Summer school

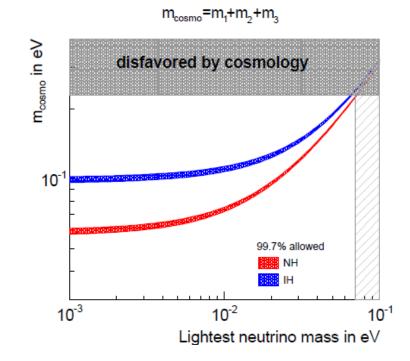
Building a satellite in a student project



Importance of neutrinos in cosmology

- Neutrino masses affect structure formation
- Affect the CMB acoustic peaks
- Can be used to probe neutrino physics and BSM physics





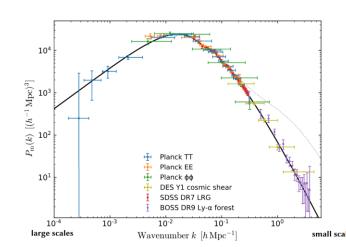
Massive neutrino perturbations

- Current framework based on Ma & Bertschinger [3]
 - Boltzmann equation expanded in Legendre modes
 - Linear perturbation framework
- Boltzmann-Einstein codes compute observables
- Boltzmann hierarchy of equations in momentum space
 - Momentum dependence cannot be integrated out

Massive neutrino perturbations in Boltzmann codes

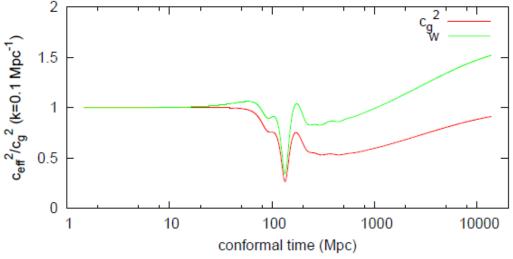
- First, perturbations Ψ_{ℓ} , are computed
 - Coupled Hierarchy. Truncate at some ℓ_{\max}
 - Momentum dependent. Dimension $N_q(\ell_{\max} + 1)$
- Momentum integrals performed using Ψ_{ℓ}
 - Another momentum dependent calculation

$$\begin{split} \dot{\Psi}_{0} &= -\frac{qk}{\epsilon} \underline{\Psi}_{1} + \frac{1}{6} \dot{h} \frac{d \ln f_{0}}{d \ln q} \,, \\ \dot{\Psi}_{1} &= \frac{qk}{3\epsilon} \underbrace{(\Psi_{0} - 2\Psi_{2})}_{5\epsilon} \,, \\ \dot{\Psi}_{2} &= \frac{qk}{5\epsilon} \underbrace{(2\Psi_{1} - 3\Psi_{3})}_{5\epsilon} - \left(\frac{1}{15} \dot{h} + \frac{2}{5} \dot{\eta}\right) \frac{d \ln f_{0}}{d \ln q} \,, \\ \dot{\Psi}_{l} &= \frac{qk}{(2l+1)\epsilon} [l \underline{\Psi}_{l-1} - (l+1)\Psi_{l+1}] \,, \quad l \geq 3 \,. \end{split} \qquad \begin{split} \delta\rho_{h} &= 4\pi a^{-4} \int q^{2} dq \, \epsilon f_{0}(q) \Psi_{0} \,, \\ \delta P_{h} &= \frac{4\pi}{3} a^{-4} \int q^{2} dq \, \frac{q^{2}}{\epsilon} f_{0}(q) \Psi_{0} \,, \\ (\bar{\rho}_{h} + \bar{P}_{h})\theta_{h} &= 4\pi k a^{-4} \int q^{2} dq \, q f_{0}(q) \Psi_{1} \,, \\ (\bar{\rho}_{h} + \bar{P}_{h})\theta_{h} &= \frac{8\pi}{3} a^{-4} \int q^{2} dq \, \frac{q^{2}}{\epsilon} f_{0}(q) \Psi_{2} \,. \end{split}$$



Approximations in current approach

- Fluid approximations
 - UR-Fluid approximation
 - Reduce ℓ_{max} to 2
 - NRA: Pressureless fluid approximation
 - $\ell > 1$ moments decay. Larger error
- Less reliable at semi-relativistic scales



Deviations at semi relativistic scales[1]

Issues with the standard momentumdependent hierarchy

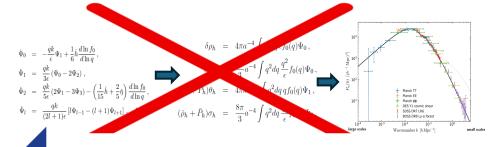
- Must evolve $\Psi_{\ell}(k,q)$ across many momentum bins
- Must compute repeated momentum integrals for δ , θ , σ , ...
- Cost grows quickly for semi-relativistic species
- NCDM species dominate runtime in Boltzmann codes

Purpose of the moment hierarchy

- Replace q-dependent hierarchy with equivalent hierarchy of moments
- Obtain fully closed hierarchy
- Reduce dimensionality of differential equation system
- Direct computation of fluid properties

Introducing the moment hierarchy

- $\Psi_{\ell}(\vec{k},\hat{n},q,\tau)$ (q-dependent) replaced by moments:
 - δ_n , θ_n , σ_n , $f_{l,n}$ (q-independent)
- Momentum dependence exactly integrated out
- Fully closed coupled hierarchy in ℓ , n
 - New velocity weight parameter $n: \left(\frac{q}{\epsilon}\right)^{2n}$



Direct computation of perturbative fluid properties

$f_{0,0}$	$f_{0,1}$	•••	$f_{0,n_{\max}}$	$f_{0,0}$	$1/3\delta\rho$
$f_{1,0}$	$f_{1,1}$	•••	$f_{1,n_{\max}}$	$f_{0,1}$	δP
				$f_{1,0}$	θ
f_{ℓ} 0	f_{ℓ} 1	•••	$f_{\ell_{max},n_{max}}$	$f_{2,0}$	σ
J ^t max,0	J ^t max,1				9

Define higher velocity weight background

$$P_n = \rho \omega_n := \frac{4\pi}{3} a^{-4} \int_0^\infty dq q^2 f_0(q) \epsilon \left(\frac{q}{\epsilon}\right)^{2n}$$

Velocity moment	Corresponding quantity
P_0	$1/3 \rho$ (density)
P_1	P (pressure)
P_{n+2}	Higher velocity weight pressures

- Define higher velocity weight background
- Hierarchy for evolution of equation of state

$$\omega'_{n} = -(2n+3)\mathcal{H}\omega_{n} + (2n-1)\mathcal{H}\omega_{n+1}$$
$$-\frac{\rho'}{\rho}\omega_{n} \ \forall n \ge 0$$

- Define higher velocity weight background
- Hierarchy for evolution of equation of state
- Define moment integrals

$$\delta P_{n} = \delta_{n} \rho = \frac{4\pi}{3} a^{-4} \int_{0}^{\infty} dq q^{2} f_{0}(q) \epsilon \left(\frac{q}{\epsilon}\right)^{2n} \Psi_{0}$$

$$(\rho + P) \theta_{n} = 4\pi k a^{-4} \int_{0}^{\infty} dq q^{2} f_{0}(q) \epsilon \left(\frac{q}{\epsilon}\right)^{2n+1} \Psi_{1}$$

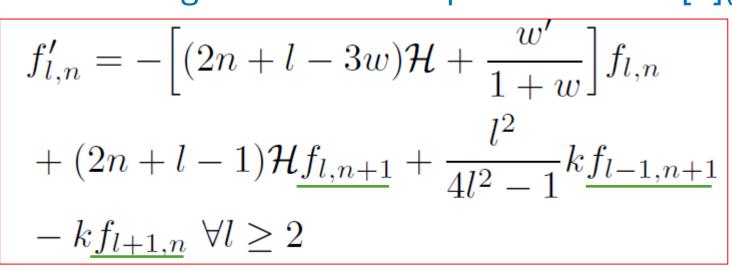
$$(\rho + P) f_{l,n} = 4\pi \frac{l!}{(2l-1)!!} a^{-4} \int_{0}^{\infty} dq q^{2} f_{0}(q) \epsilon \left(\frac{q}{\epsilon}\right)^{2n+l} \Psi_{l}$$

- Define higher velocity weight background
- Hierarchy for evolution of equation of state
- Define moment integrals
- Derivative of moment integrals & use multipole evolution [3](Ma &

Bertschinger)

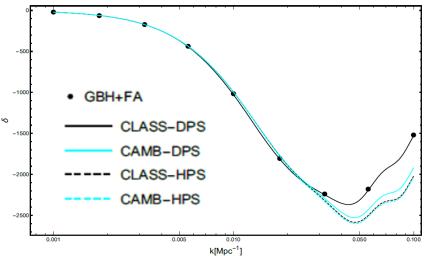
$$\begin{split} \dot{\Psi}_0 &= -\frac{qk}{\epsilon} \Psi_1 + \frac{1}{6} \dot{h} \frac{d \ln f_0}{d \ln q} \,, \\ \dot{\Psi}_1 &= \frac{qk}{3\epsilon} \left(\Psi_0 - 2\Psi_2 \right) \,, \\ \dot{\Psi}_2 &= \frac{qk}{5\epsilon} \left(2\Psi_1 - 3\Psi_3 \right) - \left(\frac{1}{15} \dot{h} + \frac{2}{5} \dot{\eta} \right) \frac{d \ln f_0}{d \ln q} \,, \\ \dot{\Psi}_l &= \frac{qk}{(2l+1)\epsilon} \left[l\Psi_{l-1} - (l+1)\Psi_{l+1} \right] \,, \quad l \geq 3 \,. \end{split}$$

Multipole evolution eqs.



Advantages & comparison

- Reduction in equation count
 - From $(l_{\text{max}} + 1) \times N_q$ to $(l_{\text{max}} + 1) \times (n_{\text{max}} + 1)$
- Direct calculation of perturbed quantities
 - From $\Psi_l(\vec{k}, \hat{n}, q, \tau) \rightarrow \delta, \theta, \sigma$
 - To $f_{l,n} \to f_{0,0} = \delta$, $f_{1,0} = \theta$, ...
- Captures semi-relativistic regime accurately
- Nice behavior in UR, NR regimes
 - $\left(\frac{q}{\epsilon}\right) \to 1, \ \left(\frac{q}{\epsilon}\right) \to 0$
- Difficulties at small scales



Differences between moment hierarchy and standard Boltzmann codes [2]

Current status

- Accuracy has been tested with toy code[2]
 - Agreement with CLASS within $\lessapprox 0.5\%$
 - Worse at smaller scales
- Implement in CLASS
- Improvement of approximation + truncation schemes

Outlook

- Accelerate neutrino calculations
 - Neutrino mass scale and hierarchy
- Potential for inverse decays (neutrino lasing)
 - Extended neutrino/dark sector models
- Applications for neutrino cosmology & beyond ΛCDM
 - Slν, SIDM, ...

Thank you:)

Questions?

Sources

[1] CLASS IV: Efficient implementation of non-cold relics.

arXiv:1104.2935

[2] Generalized Boltzmann hierarchy for massive neutrinos in cosmology. arXiv:2104.00703

[3] Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges. arXiv:astro-ph/9506072

