Dark photon and dark Z mediated B meson decays

Ahmed Rashed

Shippensburg University of Pennsylvania

Quantum Universe Attract Workshop, DESY 2025

Received: October 31, 2022

Revised: March 1, 2023

ACCEPTED: March 1, 2023

Published: March 16, 2023

Dark photon and dark $oldsymbol{Z}$ mediated $oldsymbol{B}$ meson decays

Alakabha Datta, a A. Hammad, b Danny Marfatia, c Lopamudra Mukherjee a and Ahmed Rashed d

Introduction

• Flavor-Changing Neutral Currents (FCNCs) such as $f \to \hat{f}N$ are strongly suppressed in the Standard Model for any neutral state N.

Source of suppression	Effect
No tree-level FCNCs	eliminates large contributions
Loop suppression	loop factor
GIM mechanism	destructive cancellations between quark generations
Small CKM factors	small mixing angles reduce amplitude

- Therefore, FCNC processes are rare and provide strong probes of new physics.
- The goal of our work is to utilize FCNC processes in setting constraints on the parameter space of a new physics model.

Models

Model: Dark $U(1)_D$ model, with the dark photon/dark Z mass between 10MeV and 2 GeV.

We study three different cases of the light Z_D model as specified below.

Case A: This is the dark photon and dark Z model described by

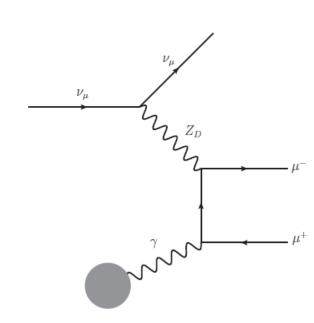
$$\mathcal{L}_{D}^{\text{em}} \supset e\varepsilon Z_{D}^{\mu} J_{\mu}^{\text{em}} - ie\varepsilon \left[\left[Z_{D} W^{+} W^{-} \right] \right] \qquad \qquad \mathcal{L}_{D}^{Z} \supset \frac{g}{\cos \theta_{W}} \varepsilon_{Z} Z_{D}^{\mu} J_{\mu}^{Z} - ig\cos \theta_{W} \varepsilon_{Z} \left[\left[Z_{D} W^{+} W^{-} \right] \right]$$

with the kinetic (ε) and mass (ε_Z) mixing parameters.

 Case B: A muonphilic Z_D in which Case A is extended with an additional direct interaction of the dark Z with muons

$$\mathcal{L}_D^Z \supset g_D^\mu \bar{\mu} \gamma_\alpha \mu Z_D^\alpha$$

 Case C: Case A is extended with additional direct interactions of the dark Z with both electrons and muons


$$\mathcal{L}_D^Z \supset g_D^e \bar{e} \gamma_\alpha e Z_D^\alpha + g_D^\mu \bar{\mu} \gamma_\alpha \mu Z_D^\alpha$$

Model Parameters

- We studied a light vector mediator Z_D with mass 0.01 < M_{ZD} < 2 GeV and allowed for on-shell as well as off-shell effects in Z_D decay.
- We calculated the width of the Z_D boson including decays to leptonic, hadronic and invisible states.
- We also allowed for an additional invisible decay of Z_D which could arise from Z_D couplings to dark sector particles.

FCNC Processes

- 1. B_s mixing
- 2. $B_s \rightarrow \mu^+\mu^-$
- 3. $B \rightarrow K^{(*)} \upsilon \overline{\upsilon}$
- 4. Kaon decay and mixing
- 5. Radiative $K^+ \to \mu^+ \upsilon_\mu Z_D$ decays
- 6. Radiative $\pi^+ \to \mu^+ \upsilon_{\mu} Z_D$ decays
- 7. Atomic Parity Violation (APV)
- 8. Neutrino trident and CEvNS
- 9. Collider and other bounds (Belle II, W Decay Width, LHCb)

List of Decays for Parameter Fits

Decay	Ref.	$q^2 bin (GeV^2)$	Measurement	SM expectation
$\frac{d\mathcal{B}}{dq^2}(B^0 \to K^{*0}\mu^+\mu^-) \times 10^8$	[72]	0.1 - 0.98	$11.06^{+0.67}_{-0.73} \pm 0.29 \pm 0.69$	10.60 ± 1.54
		1.1 - 2.5	$3.26^{+0.32}_{-0.31} \pm 0.10 \pm 0.22$	4.66 ± 0.74
		2.5 - 4.0	$3.34^{+0.31}_{-0.33} \pm 0.09 \pm 0.23$	4.49 ± 0.70
		4.0 - 6.0	$3.54^{+0.27}_{-0.26} \pm 0.09 \pm 0.24$	5.02 ± 0.75
$\frac{d\mathcal{B}}{dq^2}(B^+ \to K^{*+}\mu^+\mu^-) \times 10^8$	[73]	0.1 - 2.0	$5.92^{+1.44}_{-1.30} \pm 0.40$	7.97 ± 1.15
		2.0 - 4.0	$5.59^{+1.59}_{-1.44} \pm 0.38$	4.87 ± 0.76
		4.0 - 6.0	$2.49^{+1.10}_{-0.96} \pm 0.17$	5.43 ± 0.74
$\frac{d\mathcal{B}}{dq^2}(B^+ \to K^+ \mu^+ \mu^-) \times 10^8$	[73]	0.1 - 0.98	$3.32 \pm 0.18 \pm 0.17$	3.53 ± 0.64
		1.1 - 2.0	$2.33 \pm 0.15 \pm 0.12$	3.53 ± 0.58
		2.0 - 3.0	$2.82 \pm 0.16 \pm 0.14$	3.51 ± 0.52
		3.0 - 4.0	$2.54 \pm 0.15 \pm 0.13$	3.50 ± 0.63
		4.0 - 5.0	$2.21 \pm 0.14 \pm 0.11$	3.47 ± 0.60
		5.0 - 6.0	$2.31 \pm 0.14 \pm 0.12$	3.45 ± 0.53
$\frac{d\mathcal{B}}{dq^2}(B^0 \to K^0 \mu^+ \mu^-) \times 10^8$	[73]	0.1 - 2.0	$1.22^{+0.59}_{-0.52} \pm 0.06$	3.28 ± 0.52
		2.0 - 4.0	$1.87^{+0.55}_{-0.49} \pm 0.09$	3.25 ± 0.56
		4.0 - 6.0	$1.73^{+0.53}_{-0.48} \pm 0.09$	3.21 ± 0.54
$\frac{d\mathcal{B}}{dq^2}(B_s^0 \to \phi \mu^+ \mu^-) \times 10^8$	[74]	0.1 - 0.98	$7.74 \pm 0.53 \pm 0.12 \pm 0.37$	11.31 ± 1.34
		1.1 - 2.5	$3.15 \pm 0.29 \pm 0.07 \pm 0.15$	5.44 ± 0.61
		2.5 - 4.0	$2.34 \pm 0.26 \pm 0.05 \pm 0.11$	5.14 ± 0.73
		4.0 - 6.0	$3.11 \pm 0.24 \pm 0.06 \pm 0.15$	5.50 ± 0.69
$\mathcal{B}(B^+ \to K^+ e^+ e^-) \times 10^8$	[75]	0.1 - 4.0	$18.0^{+3.3}_{-3.0} \pm 0.5$	13.73 ± 1.88
		4.0 - 8.12	$9.6^{+2.4}_{-2.2} \pm 0.3$	14.11 ± 1.88
$\mathcal{B}(B^0 \to K^{*0}e^+e^-) \times 10^7$	[76]	$0.03^2 - 1.0^2$	$3.1^{+0.9+0.2}_{-0.8-0.3} \pm 0.2$	2.56 ± 0.44
$\mathcal{B}(B \to X_s \mu^+ \mu^-) \times 10^6$	[77]	1.0 - 6.0	$0.66^{+0.82+0.30}_{-0.76-0.24} \pm 0.07$	1.67 ± 0.15
$\mathcal{B}(B \to X_s e^+ e^-) \times 10^6$	[77]	1.0 - 6.0	$1.93^{+0.47+0.21}_{-0.45-0.16} \pm 0.18$	1.74 ± 0.16
$\frac{d\mathcal{B}}{dq^2}(B^+ \to K^+ e^+ e^-) \times 10^9$	[78]	1.1 - 6.0	$25.5^{+1.3}_{-1.2} \pm 1.1$	34.9 ± 6.2
$\frac{d\mathcal{B}}{dq^2}(B^0 \to K^{*0}e^+e^-) \times 10^9$	[78]	1.1 - 6.0	$33.3^{+2.7}_{-2.6} \pm 2.2$	47.7 ± 7.5

Best Fit Parameter Values

• Case A: $M_{Z_D} = 10.07 \text{ MeV}, \quad \varepsilon = 1.6 \times 10^{-5}, \quad \varepsilon_Z = 0.002$

• Case B: $M_{Z_D}=10.3~{
m MeV}\,,~~g_D^\mu=0.28~{
m at~fixed}~\varepsilon=10^{-4}~{
m and}~\varepsilon_Z=10^{-4}$

• Case C: $M_{Z_D}=30.2~{
m MeV}\,,~~g_D^\mu=0.033~{
m at~fixed}~\varepsilon=10^{-4}~{
m and}~\varepsilon_Z=10^{-4}$

Results

- Dark photon and dark Z from $U(1)_D$ contribution are studied in $b \rightarrow s l^+ l^-$ observables.
- Constraints on the model parameters were set in different cases:
- 1. Case A: For the base Z_D model,
- (a) The parameter space $M_{\rm ZD}$ < 30 MeV is excluded primarily by measurements of the proton and cesium weak charges in atomic parity violation experiments.
- (b) For $M_{ZD} > 30$ MeV, the mixing parameters are severely constrained by FCNC measurements to which Z_D contributes as a sharp resonance.

2. Case B:

- (a) The base Z_D model is extended with a direct coupling of Z_D with muons.
- (b) The parameter space is restricted to $M_{ZD} < 30$ MeV. The entire parameter space is ruled out because of enhancements to $K \to \mu\nu X$ and to the W boson width.

3. Case C:

- (a) In addition to a direct muon coupling, Z_D has a direct coupling to electrons.
- (b) This avoids constraints from different sources such as APV. A fit to the $b \to s\mu^+\mu^-$ observables gives a best fit

$$M_{Z_D} = 30.2 \text{ MeV}$$
 and $g_D^{\mu} = 0.033 \text{ for } \varepsilon = \varepsilon_Z = 10^{-4}$

- (c) Bounds from neutrino trident production at CCFR, LHCb dark photon searches, W width measurements and $K \to \mu \nu X$ rule out much of the allowed parameter space.
- (d) A 2σ region around $100 \le M_{Z_D} \le 200~MeV$ and $0.015 \le g_D^\mu \le 0.03$ remains viable.