

Symplectic duality and quiver algorithms

Higgs mechanisms in supersymmetric quivers

Chiara-Renata Horak

Department of Physics, University of Vienna

QuantumUniverse Attract.Workshop
November 25, 2025

Supersymmetric quantum field theories

Quantum field theory (QFT) = mathematical framework for diverse physics phenomena

- experimentally verified
- intractable for strong coupling

Supersymmetric quantum field theories

Quantum field theory (QFT) = mathematical framework for diverse physics phenomena

- experimentally verified
- intractable for strong coupling

⇒ Introduce **supersymmetry**

~ more control over quantum corrections

Review of 3d $\mathcal{N} = 4$ theories

Large, highly symmetric moduli space of vacua
~ has two maximal branches:

Higgs branch

- classical
- Hyper-Kähler quotient

Coulomb branch

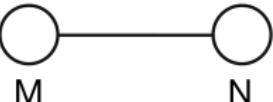
- quantum
- general symplectic singularity

Review of 3d $\mathcal{N} = 4$ theories

- Both are singular spaces: singularities where gauge symmetry partially restored
 \leadsto new massless states
- Both admit stratification into symplectic leaves \mathcal{L}
 \leadsto partial order in **Hasse diagram**

Quivers in supersymmetric QFTs

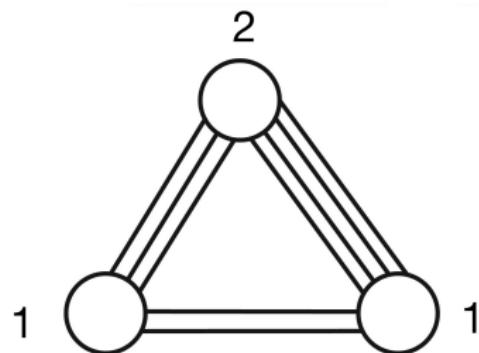
- graphical depiction of 3d $\mathcal{N} = 4$ field content

Quiver component	Field interpretation
	$\mathcal{N} = 4$ vector multiplet
	$\mathcal{N} = 4$ hypermultiplet

Higgs mechanism on the Higgs branch

- parametrized by scalar fields
 \leadsto Higgsed in multiple ways
- 2 algorithms :
 - Quiver subtraction [arXiv:2409.16356]
 - Ext-quivers [Crawley-Boevey '01], [Nakajima '94]

From now on: Example



$$A = \begin{pmatrix} -2 & 3 & 2 \\ 3 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$

$$K = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Real roots:

$$R_R = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

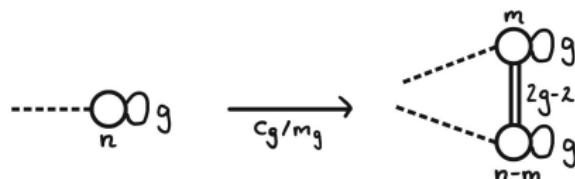
Imaginary roots:

$$I_R = \{(0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 1)\}$$

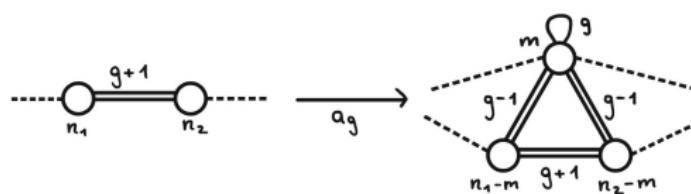
Hasse diagram via quiver subtraction [2409.16356]

Rules of quiver subtraction:

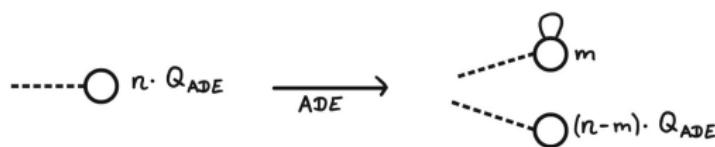
- Rule 1:



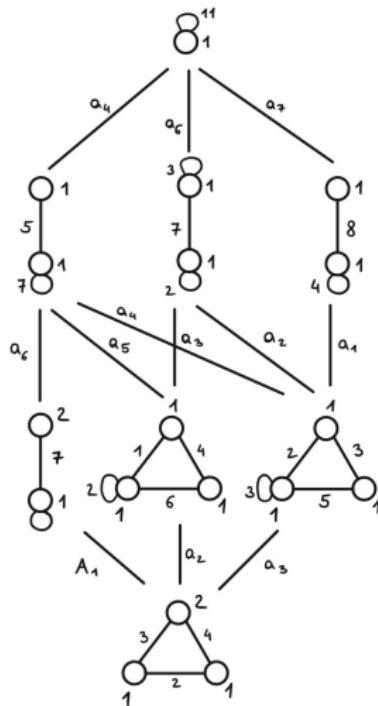
- Rule 2:



- Rule 3:



Hasse diagram via quiver subtraction [2409.16356]



Building the Ext-quiver [Crawley-Boevey '01]

Representation type of \mathcal{L} : $\tau = (n_1, \beta^{(1)}; \dots; n_k, \beta^{(k)})$

n_i = multiplicity

$\beta^{(i)}$ = dimension vector

so that $K = \sum_{i=1}^k n_i \beta^{(i)}$

- symplectic leaves labelled by τ of K
- construct local quiver on a leaf = **Ext-quiver**

Building the Ext-quiver

Representation types of K :

$$1 \cdot (1, 0, 0) + 2 \cdot (0, 1, 0) + 1 \cdot (0, 0, 1)$$

$$1 \cdot (1, 2, 1)$$

$$1 \cdot (1, 1, 1) + 1 \cdot (0, 1, 0)$$

$$1 \cdot (1, 1, 0) + 1 \cdot (0, 1, 0) + 1 \cdot (0, 0, 1)$$

$$1 \cdot (1, 0, 1) + 2 \cdot (0, 1, 0)$$

$$1 \cdot (0, 2, 1) + 1 \cdot (1, 0, 0)$$

$$1 \cdot (0, 1, 1) + 1 \cdot (1, 0, 0) + 1 \cdot (0, 1, 0)$$

$$1 \cdot (0, 1, 1) + 1 \cdot (1, 1, 0)$$

~ Each quiver is the same as in quiver subtraction Hasse diagram

Hasse diagram via Ext-quiver

Goal:

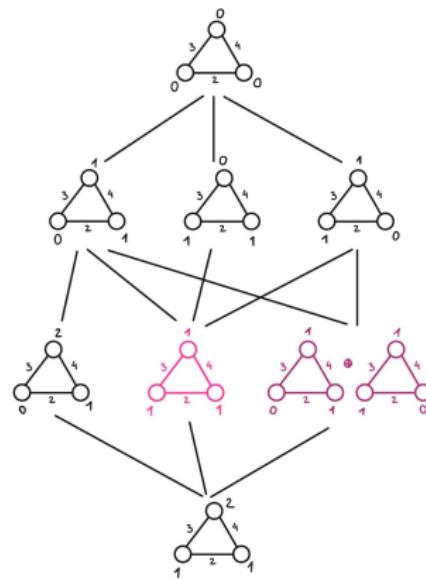
- partial order on I_R to obtain Hasse diagram
 \leadsto same as for quiver subtraction
- Relation between quiver subtraction rules and change of decompositions

Higgs mechanism on the Coulomb branch

Obtain Hasse diagram by Decay & Fission algorithm
[arXiv:2401.08757]

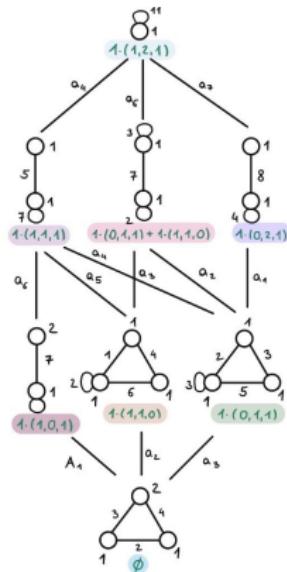
Decay: smaller rank

Fission: splits into two parts but total rank preserved

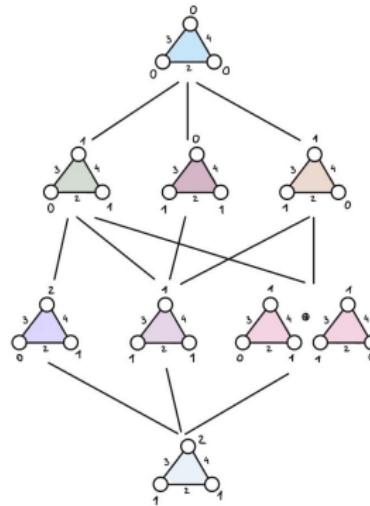


Comparison of both branches

Higgs branch (HB)



Coulomb branch (CB)



Comparison of both branches

Goal:

- map between partial order on Higgs branch and Coulomb branch
- Symplectic duality?:
 - Same amount of leaves on HB and CB
 - isometries of HB describe resolutions of CB and vice versa

Thank you!