Symmetric Poisson geometry, totally geodesic foliations and Jacobi-Jordan algebras

Filip Moučka (joint with Roberto Rubio)

Quantum Universe Attract. Workshop Hamburg November 25, 2025

In mechanics, we assign dynamics to a Hamiltonian function

In mechanics, we assign dynamics to a Hamiltonian function

$$\mathcal{C}^{\infty}(M) \to \mathfrak{X}(M)$$

In mechanics, we assign dynamics to a Hamiltonian function

$$(\star) \qquad \begin{array}{c} \mathcal{C}^{\infty}(M) \to \mathfrak{X}(M) \\ f \mapsto \pi(\mathrm{d}f), \end{array}$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$

In mechanics, we assign dynamics to a Hamiltonian function

$$\mathcal{C}^{\infty}(M) \to \mathfrak{X}(M)$$
$$f \mapsto \pi(\mathrm{d}f),$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$, which also gives the bracket on $\mathcal{C}^\infty(M)$:

$$\{f,\mathbf{g}\} \coloneqq \pi(\mathrm{d}f,\mathrm{d}\mathbf{g}).$$

In mechanics, we assign dynamics to a Hamiltonian function

$$\mathcal{C}^{\infty}(M) \to \mathfrak{X}(M)$$
$$f \mapsto \pi(\mathrm{d}f),$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$, which also gives the bracket on $\mathcal{C}^\infty(M)$:

$$\{f, g\} := \pi(df, dg).$$

Jacobi identity for $\{,\}$

In mechanics, we assign dynamics to a Hamiltonian function

$$(\star) \qquad \begin{array}{c} \mathcal{C}^{\infty}(M) \to \mathfrak{X}(M) \\ f \mapsto \pi(\mathrm{d}f), \end{array}$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$, which also gives the bracket on $\mathcal{C}^{\infty}(M)$:

$$\{f, g\} := \pi(df, dg).$$

Jacobi identity for { , } gives the definition:

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if
$$[\pi,\pi] = 0.$$

$$[\pi,\pi]=0.$$

In mechanics, we assign dynamics to a Hamiltonian function

$$(\star) \qquad \begin{array}{c} \mathcal{C}^{\infty}(M) \to \mathfrak{X}(M) \\ f \mapsto \pi(\mathrm{d}f), \end{array}$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$, which also gives the bracket on $\mathcal{C}^{\infty}(M)$:

$$\{f, g\} := \pi(df, dg).$$

Jacobi identity for { , } gives the definition:

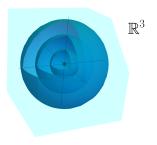
$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if
$$[\pi,\pi] = 0.$$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,])$.

Geometrically, a Poisson structure gives a singular partition with symplectic leaves.

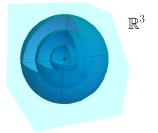
Geometrically, a Poisson structure gives a singular partition with symplectic leaves.

$$\pi = z \,\partial_x \wedge \partial_y + x \,\partial_y \wedge \partial_z + y \,\partial_z \wedge \partial_x$$



Geometrically, a Poisson structure gives a singular partition with symplectic leaves.

$$\pi = z \, \partial_x \wedge \partial_y + x \, \partial_y \wedge \partial_z + y \, \partial_z \wedge \partial_x$$



A non-degenerate 2-form $\omega \in \Omega^2(M)$ is symplectic if and only if $\pi \coloneqq \omega^{-1}$ is Poisson.

Geometrically, a Poisson structure gives a singular partition with symplectic leaves.

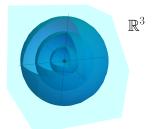
$$\pi = z \, \partial_x \wedge \partial_y + x \, \partial_y \wedge \partial_z + y \, \partial_z \wedge \partial_x$$

A non-degenerate 2-form $\omega \in \Omega^2(M)$ is symplectic if and only if $\pi \coloneqq \omega^{-1}$ is Poisson.

What geometry is encoded by symmetric bivector fields?

Geometrically, a Poisson structure gives a singular partition with symplectic leaves.

$$\pi = z \, \partial_x \wedge \partial_y + x \, \partial_y \wedge \partial_z + y \, \partial_z \wedge \partial_x$$



A non-degenerate 2-form $\omega \in \Omega^2(M)$ is symplectic if and only if $\pi \coloneqq \omega^{-1}$ is Poisson.

What geometry is encoded by symmetric bivector fields?

If a symmetric bivector field $\vartheta \in \mathfrak{X}^2_{\text{sym}}(M) \coloneqq \Gamma(\operatorname{Sym}^2 TM)$ is non-degenerate,

$$g \coloneqq \vartheta^{-1}$$

is a (pseudo-)Riemannian metric.

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(M)$ gives

$$\{f, g\} := \vartheta(df, dg),$$

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$ gives

$$\{f, g\} := \vartheta(df, dg),$$
 grad: $\mathcal{C}^{\infty}(M) \to \mathfrak{X}(M)$
 $f \mapsto \vartheta(df).$

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$ gives

$$\{f,\mathbf{g}\}\coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad}\colon \mathcal{C}^\infty(M)\to \mathfrak{X}(M)$$

$$f\mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{\,,\}$

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$ gives

$$\{f,\mathbf{g}\}\coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad}\colon \mathcal{C}^\infty(M)\to \mathfrak{X}(M)$$

$$f\mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{\,,\}$ gives that $\vartheta=0.$

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$ gives

$$\{f,\mathbf{g}\}\coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad}\colon \mathcal{C}^\infty(M)\to \mathfrak{X}(M)$$

$$f\mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{\,,\}$ gives that $\vartheta=0.$

Trying the other two:

Following the Poisson geometry approach, every $\vartheta\in\mathfrak{X}^2_{\mathrm{sym}}(M)$ gives

$$\{f,\mathbf{g}\}\coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad}\colon \mathcal{C}^\infty(M)\to \mathfrak{X}(M)$$

$$f\mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{\,,\}$ gives that $\vartheta=0.$

Trying the other two:

$$[\vartheta,\vartheta] = 0$$

is a void condition.

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(M)$ gives

$$\{f,\mathbf{g}\} \coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad} \colon \mathcal{C}^\infty(M) \to \mathfrak{X}(M)$$

$$f \mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{,\}$ gives that $\vartheta = 0$.

Trying the other two:

grad:
$$(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,])$$

is an algebra morphism.
 $\Leftrightarrow \vartheta = 0.$

 $[\vartheta,\vartheta]=0$ is a void condition.

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(M)$ gives

$$\{f,\mathbf{g}\} \coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad} \colon \mathcal{C}^\infty(M) \to \mathfrak{X}(M)$$

$$f \mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{,\}$ gives that $\vartheta = 0$.

Trying the other two:

$$\operatorname{grad}\colon (\mathcal{C}^\infty(M),\{\,,\})\to (\mathfrak{X}(M),[\,,\,])$$

$$[\vartheta,\vartheta]=0 \qquad \qquad \text{is an algebra morphism.}$$
 is a void condition.
$$\Leftrightarrow \ \vartheta=0.$$

Behind the integrability condition for a skew-symmetric bivector field π lies the exterior derivative, which is the generating object of the Cartan calculus on $\Omega^{\bullet}(M)$.

Following the Poisson geometry approach, every $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$ gives

$$\{f,\mathbf{g}\} \coloneqq \vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad} \colon \mathcal{C}^\infty(M) \to \mathfrak{X}(M)$$

$$f \mapsto \vartheta(\mathrm{d}f).$$

Jacobi identity for $\{,\}$ gives that $\vartheta = 0$.

Trying the other two:

$$\operatorname{grad}\colon (\mathcal{C}^\infty(M),\{\,,\})\to (\mathfrak{X}(M),[\,,\,])$$

$$[\vartheta,\vartheta]=0 \qquad \qquad \text{is an algebra morphism.}$$
 is a void condition.
$$\Leftrightarrow \ \vartheta=0.$$

Behind the integrability condition for a skew-symmetric bivector field π lies the exterior derivative, which is the generating object of the Cartan calculus on $\Omega^{\bullet}(M)$.

We resort to the symmetric Cartan calculus!

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{\bullet}(M)$	

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{\bullet}(M)$	
$d\psi = (r+1)\operatorname{skew}(\nabla\psi)$	
canonical	

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{ullet}(M)$	symmetric derivative $ abla^s$ on $\Gamma(\operatorname{Sym}^{ullet} T^*M)$
$d\psi = (r+1) \operatorname{skew} (\nabla \psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$
canonical	depending on the choice of $ abla$

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{\bullet}(M)$	symmetric derivative $ abla^s$ on $\Gamma(\operatorname{Sym}^{ullet} T^*M)$
$d\psi = (r+1) \operatorname{skew} (\nabla \psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$
canonical	depending on the choice of $ abla$

The symmetric bracket:

$$[X,Y]_s := \nabla_X Y + \nabla_Y X.$$

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{ullet}(M)$	symmetric derivative $ abla^s$ on $\Gamma(\operatorname{Sym}^{ullet} T^*M)$
$d\psi = (r+1) \operatorname{skew} (\nabla \psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$
canonical	depending on the choice of $ abla$

The symmetric bracket:

$$[X,Y]_s \coloneqq \nabla_X Y + \nabla_Y X.$$

It is actually determined by ∇^s :

$$\iota_{[X,Y]_s} = [[\iota_X, \nabla^s], \iota_Y].$$

M., Rubio.

Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442, 62 pages, January 2025.

exterior derivative d on $\Omega^{ullet}(M)$	symmetric derivative $ abla^s$ on $\Gamma(\operatorname{Sym}^{ullet} T^*M)$
$d\psi = (r+1)\operatorname{skew}(\nabla\psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$
canonical	depending on the choice of $ abla$

The symmetric bracket:

$$[X,Y]_s := \nabla_X Y + \nabla_Y X.$$

It is actually determined by $\nabla^s\colon$

$$\iota_{[X,Y]_s} = [[\iota_X, \nabla^s], \iota_Y].$$

 \rightsquigarrow A natural extension to $\mathfrak{X}^{\bullet}_{\text{sym}}(M)$ the symmetric Schouten bracket $[\ ,\]_s$.

$\pi \in \mathfrak{X}^2(M)$ is a Poisson structure if $[\pi, \pi] = 0$.

Integrability condition for a pair (ϑ, ∇)

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{\ ,\ \}) \to (\mathfrak{X}(M), [\ ,\]).$

 $\pi \in \mathfrak{X}^2(M)$ is a Poisson structure if $[\pi, \pi] = 0$.

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{\ ,\ \}) \to (\mathfrak{X}(M), [\ ,\]).$

grad: $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,]_s)$

$$[\vartheta,\vartheta]_s=0.$$

is an algebra morphism.

 $\pi \in \mathfrak{X}^2(M)$ is a Poisson structure if $[\pi, \pi] = 0$.

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\;,\;\}) \to (\mathfrak{X}(M),[\;,\;]).$

 (ϑ, ∇) is a symmetric Poisson structure if

 $[\vartheta,\vartheta]_s=0.$

 ${\rm grad}\colon (\mathcal{C}^\infty(M),\{\,,\})\to (\mathfrak{X}(M),[\,\,,\,]_s)$ is an algebra morphism.

 $\pi \in \mathfrak{X}^2(M)$ is a Poisson structure if $[\pi, \pi] = 0$.

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{\ ,\ \}) \to (\mathfrak{X}(M), [\ ,\]).$

Equivalently,

grad: $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [\,,\,]_s)$ is an algebra morphism.

 $\pi \in \mathfrak{X}^2(M)$ is a Poisson structure if $[\pi, \pi] = 0$.

Integrability condition for a pair (ϑ, ∇)

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\;,\;\}) \to (\mathfrak{X}(M),[\;,\;]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

L

is an algebra morphism.

 (ϑ,∇) is a strong symmetric Poisson structure if

grad: $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,]_s)$

$$\pi \in \mathfrak{X}^2(M) \text{ is a Poisson} \\ \text{structure if } [\pi,\pi] = 0.$$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\;,\;\}) \to (\mathfrak{X}(M),[\;,\;]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

 (ϑ, ∇) is a strong symmetric Poisson structure if $\operatorname{grad}\colon (\mathcal{C}^\infty(M), \{\,,\}) \to (\mathfrak{X}(M), [\,\,,\,]_s)$ is an algebra morphism.

For ϑ is non-degenerate and $g \coloneqq \vartheta^{-1}$ we have:

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if $[\pi,\pi]=0.$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\ ,\ \}) \to (\mathfrak{X}(M),[\ ,\]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

 (ϑ,∇) is a strong symmetric Poisson structure if

grad:
$$(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [\,,\,]_s)$$
 is an algebra morphism.

For ϑ is non-degenerate and $q := \vartheta^{-1}$ we have:

 (ϑ, ∇) is symmetric Poisson

 (ϑ, ∇) is strong symmetric Poisson

 \Rightarrow

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if $[\pi,\pi]=0.$

Equivalently, the map (*) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta,\vartheta]_s=0.$

 (ϑ, ∇) is a strong symmetric Poisson structure if

grad:
$$(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [\,,\,]_s)$$
 is an algebra morphism.

For ϑ is non-degenerate and $q := \vartheta^{-1}$ we have:

$$(\vartheta, \nabla)$$
 is symmetric Poisson

$$(\vartheta, \nabla)$$
 is strong symmetric Poisson

$$\Leftrightarrow$$

 ∇ is the Levi-Civita connection of q.

(the information is all contained in ϑ)

Integrability condition for a pair (ϑ,∇)

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if $[\pi,\pi]=0.$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\ ,\ \}) \to (\mathfrak{X}(M),[\ ,\]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

 (ϑ,∇) is a strong symmetric Poisson structure if

grad:
$$(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [\,,\,]_s)$$
 is an algebra morphism.

For ϑ is non-degenerate and $g := \vartheta^{-1}$ we have:

$$(\vartheta, \nabla)$$
 is symmetric Poisson

$$(\vartheta, \nabla)$$
 is strong symmetric Poisson

$$\rightarrow$$

$$\nabla^s g = 0,$$

 ∇ is the Levi-Civita connection of g.

that is, g is a Killing 2-tensor for ∇ .

(the information is all contained in ϑ)

The characteristic distribution

$$\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

The characteristic distribution

The characteristic module

$$\operatorname{im}\vartheta\coloneqq\{\vartheta(\zeta)\,|\,\zeta\in T^*M\}\subseteq TM$$

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \mid \alpha \in \Omega^{1}(M)\} \subseteq \mathfrak{X}(M)$$

The characteristic distribution

The characteristic module

$$\operatorname{im}\vartheta \coloneqq \{\vartheta(\zeta)\,|\,\zeta\in T^*M\}\subseteq TM$$

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $q_{\vartheta_m}(\vartheta(\zeta), \vartheta(\eta)) := \vartheta(\zeta, \eta).$

The characteristic distribution

The characteristic module

$$\operatorname{im} \vartheta \coloneqq \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \mid \alpha \in \Omega^{1}(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $g_{\vartheta_m}(\vartheta(\zeta),\vartheta(\eta)) \coloneqq \vartheta(\zeta,\eta).$

 (ϑ, ∇) is symmetric Poisson

 (ϑ, ∇) is strong symmetric Poisson

The characteristic distribution

The characteristic module

$$\operatorname{im} \vartheta \coloneqq \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $g_{\vartheta_m}(\vartheta(\zeta),\vartheta(\eta)) \coloneqq \vartheta(\zeta,\eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 (ϑ, ∇) is strong symmetric Poisson

 $\Rightarrow \mathcal{F}_{artheta}$ is not necessarily Lie involutive,

The characteristic distribution

 $\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$

The characteristic module

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $g_{\vartheta_m}(\vartheta(\zeta),\vartheta(\eta)) \coloneqq \vartheta(\zeta,\eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 $\Rightarrow \mathcal{F}_{artheta}$ is not necessarily Lie involutive,

but it is preserved by the symmetric bracket

$$[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}]_s \subseteq \mathcal{F}_{\vartheta}.$$

 (ϑ, ∇) is strong symmetric Poisson

The characteristic distribution

 $\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$

The characteristic module

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $g_{\vartheta_m}(\vartheta(\zeta),\vartheta(\eta)) \coloneqq \vartheta(\zeta,\eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is not necessarily Lie involutive, but it is preserved by the symmetric bracket

$$[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}]_s \subseteq \mathcal{F}_{\vartheta}.$$

$$(\vartheta, \nabla)$$
 is strong symmetric Poisson $\Rightarrow \mathcal{F}_{\vartheta}$ is Lie involutive $[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}] \subseteq \mathcal{F}_{\vartheta},$

The characteristic distribution

$$\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

The characteristic module

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $g_{\vartheta_m}(\vartheta(\zeta),\vartheta(\eta)) := \vartheta(\zeta,\eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is not necessarily Lie involutive, but it is preserved by the symmetric bracket

$$[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}]_s \subseteq \mathcal{F}_{\vartheta}.$$

 (ϑ, ∇) is strong symmetric Poisson

$$\Rightarrow \mathcal{F}_\vartheta$$
 is Lie involutive

$$[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}] \subseteq \mathcal{F}_{\vartheta},$$

 \Rightarrow it yields a singular partition.

The characteristic distribution

$$\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

The characteristic module

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \mid \alpha \in \Omega^{1}(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $q_{\vartheta} (\vartheta(\zeta), \vartheta(\eta)) := \vartheta(\zeta, \eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is not necessarily Lie involutive, but it is preserved by the symmetric bracket

$$[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}]_s \subseteq \mathcal{F}_{\vartheta}.$$

 (ϑ, ∇) is strong symmetric Poisson

$$\Rightarrow \mathcal{F}_{artheta}$$
 is Lie involutive

$$[\mathcal{F}_\vartheta,\mathcal{F}_\vartheta]\subseteq\mathcal{F}_\vartheta,$$

$$\Rightarrow$$
 it yields a singular partition.

This motivates an a priori intermediate class

$$\left\{ \begin{array}{l} \text{strong symmetric} \\ \text{Poisson structures} \end{array} \right\} \subseteq \left\{ \begin{array}{l} \text{involutive symmetric} \\ \text{Poisson structures} \\ [\mathcal{F}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}] \subset \mathcal{F}_{\mathcal{A}} \end{array} \right\} \subseteq \left\{ \begin{array}{l} \text{symmetric} \\ \text{Poisson structures} \\ [\mathcal{D}_{\mathcal{A}}, \mathcal{D}_{\mathcal{A}}] = 0 \end{array} \right\}.$$

The characteristic distribution

$$\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$$

The characteristic module

$$\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \mid \alpha \in \Omega^{1}(M)\} \subseteq \mathfrak{X}(M)$$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $q_{\vartheta} = (\vartheta(\zeta), \vartheta(\eta)) := \vartheta(\zeta, \eta).$

$$(\vartheta, \nabla)$$
 is symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is not necessarily Lie involutive, but it is preserved by the symmetric bracket

$$[\mathcal{F}_{\vartheta},\mathcal{F}_{\vartheta}]_s\subseteq\mathcal{F}_{\vartheta}.$$

 (ϑ, ∇) is strong symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is Lie involutive

 $[\mathcal{F}_{\vartheta}, \mathcal{F}_{\vartheta}] \subset \mathcal{F}_{\vartheta},$

⇒ it yields a singular partition.

This motivates an a priori intermediate class

$$\left\{ \begin{array}{l} \text{strong symmetric} \\ \text{Poisson structures} \\ \nabla_{\text{im},\vartheta}\vartheta = 0 \end{array} \right\} \subseteq \left\{ \begin{array}{l} \text{involutive symmetric} \\ \text{Poisson structures} \\ [\mathcal{F}_{\vartheta},\mathcal{F}_{\vartheta}] \subset \mathcal{F}_{\vartheta} \end{array} \right\} \subseteq \left\{ \begin{array}{l} \text{symmetric} \\ \text{Poisson structures} \\ [\vartheta,\vartheta]_s = 0 \end{array} \right\}.$$

$$\left\{ \begin{array}{l} \text{symmetric} \\ \text{Poisson structures} \\ [\vartheta,\vartheta]_s = 0 \end{array} \right.$$

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$,

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given $\vartheta\in\mathfrak{X}^2_{\mathrm{sym}}(M)$, we call a curve $\gamma\colon I\to M$ $\vartheta\text{-admissible}$

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given $\vartheta\in\mathfrak{X}^2_{\operatorname{sym}}(M)$, we call a curve $\gamma\colon I\to M$ ϑ -admissible if there is a curve $a\colon I\to T^*M$ such that $\vartheta(a(t))=\dot{\gamma}(t).$

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M)$, we call a curve $\gamma \colon I \to M$ ϑ -admissible if there is a curve $a \colon I \to T^*M$ such that $\vartheta(a(t)) = \dot{\gamma}(t).$

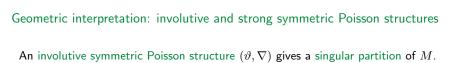
Theorem 1. The characteristic distribution of a symmetric Poisson structure (ϑ, ∇) is locally geodesically invariant.

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given $\vartheta\in\mathfrak{X}^2_{\operatorname{sym}}(M)$, we call a curve $\gamma\colon I\to M$ ϑ -admissible if there is a curve $a\colon I\to T^*M$ such that $\vartheta(a(t))=\dot{\gamma}(t).$

Theorem 1. The characteristic distribution of a symmetric Poisson structure (ϑ, ∇) is locally geodesically invariant.

Moreover, ϑ -admissible geodesics have constant square of the speed $g_{\vartheta}(\dot{\gamma},\dot{\gamma}).$



An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf ${\cal N}$ acquires:

• the leaf connection ∇^N given by the restriction of ∇ .

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- \bullet the leaf metric g_N given by the metrics $g_{\vartheta_m}.$

Given a connection on M, a submanifold $N\subseteq M$ is totally geodesic

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

Given a connection on M, a submanifold $N\subseteq M$ is **totally geodesic** if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in T_{\gamma(t_0)}N$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in T_{\gamma(t)}N$ for all $t\in I'$.

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

Given a connection on M, a submanifold $N\subseteq M$ is **totally geodesic** if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in T_{\gamma(t_0)}N$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in T_{\gamma(t)}N$ for all $t\in I'$.

Theorem 2. Leaves of the characteristic partition of an involutive symmetric Poisson structure (ϑ, ∇) are totally geodesic.

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

Given a connection on M, a submanifold $N\subseteq M$ is **totally geodesic** if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in T_{\gamma(t_0)}N$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in T_{\gamma(t)}N$ for all $t\in I'$.

Theorem 2. Leaves of the characteristic partition of an involutive symmetric Poisson structure (ϑ, ∇) are totally geodesic.

Moreover, on any leaf N, (g_N^{-1}, ∇^N) is non-degenerate symmetric Poisson.

An involutive symmetric Poisson structure (ϑ, ∇) gives a singular partition of M.

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

Given a connection on M, a submanifold $N\subseteq M$ is **totally geodesic** if for every geodesic $\gamma\colon I\to M$ satisfying $\dot{\gamma}(t_0)\in T_{\gamma(t_0)}N$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in T_{\gamma(t)}N$ for all $t\in I'$.

Theorem 2. Leaves of the characteristic partition of an involutive symmetric Poisson structure (ϑ, ∇) are totally geodesic.

Moreover, on any leaf N, (g_N^{-1},∇^N) is non-degenerate symmetric Poisson.

In addition, if (ϑ, ∇) is strong, ∇^N is the Levi-Civita connection of g_N .

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** $abla^{\mathsf{Euc}}$.

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** $abla^{\mathsf{Euc}}$.

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** $abla^{\mathsf{Euc}}$.

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\mathrm{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** ∇^{Euc} .

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\text{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

$$\left\{\begin{array}{l} \text{linear symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{l} \text{Jacobi-Jordan algebra} \\ \text{structures } \cdot \text{ on } V \end{array}\right\}.$$

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** $abla^{\mathsf{Euc}}$.

$$\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(V^*) \text{ is called } \underset{}{\operatorname{linear}} \text{ if } \quad \{\mathcal{C}^\infty_{\operatorname{lin}}(V^*), \mathcal{C}^\infty_{\operatorname{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\operatorname{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\mathrm{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

$$\left\{\begin{array}{c} \text{linear (strong) symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{c} \text{(associative) Jacobi-Jordan algebra} \\ \text{structures} \cdot \text{on } V \end{array}\right\}.$$

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** $\nabla^{\sf Euc}$.

$$\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\operatorname{lin}}(V^*), \mathcal{C}^\infty_{\operatorname{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\operatorname{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\mathrm{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

$$\left\{\begin{array}{c} \text{linear (strong) symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{c} \text{(associative) Jacobi-Jordan algebra} \\ \text{structures} \cdot \text{on } V \end{array}\right\}.$$

[Burde-Fialowski '14] A commutative algebra (\mathcal{J},\cdot) is called Jacobi-Jordan if

$$u \cdot (v \cdot w) + v \cdot (w \cdot u) + w \cdot (u \cdot v) = 0.$$

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

 V^* seen as a manifold is naturally equipped with the **Euclidean connection** ∇^{Euc} .

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called } \text{linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\mathrm{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

$$\left\{\begin{array}{c} \text{linear (strong) symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{c} \text{(associative) Jacobi-Jordan algebra} \\ \text{structures} \cdot \text{on } V \end{array}\right\}.$$

[Burde-Fialowski '14] A commutative algebra (\mathcal{J},\cdot) is called Jacobi-Jordan if

$$u \cdot (v \cdot w) + v \cdot (w \cdot u) + w \cdot (u \cdot v) = 0.$$

In particular, Jacobi-Jordan algebras are Jordan algebras.

[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4.$

[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4.$ \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \leq 4.$

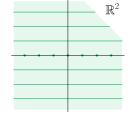
[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4$. \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \leq 4$.

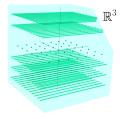
$\dim V$	ϑ	
2	$y\partial_x\otimes\partial_x$	
3	$z\partial_x\otimes\partial_x$	
	$z\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	
	$t\partial_x\otimes\partial_x$	
	$t\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	
4	$t\partial_x\otimes\partial_x+z\partial_y\otimes\partial_y$	
	$t\partial_x\otimes\partial_x+z\partial_x\odot\partial_y$	
	$t\left(\partial_x\otimes\partial_x+\partial_y\odot\partial_z\right)$	
		•

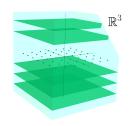
[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4.$

 \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \le 4$.

$\dim V$	ϑ	
2	$y\partial_x\otimes\partial_x$	
3	$z \partial_x \otimes \partial_x $ $z (\partial_x \otimes \partial_x + \partial_y \otimes \partial_y)$	
4	$t \partial_x \otimes \partial_x$ $t (\partial_x \otimes \partial_x + \partial_y \otimes \partial_y)$ $t \partial_x \otimes \partial_x + z \partial_y \otimes \partial_y$ $t \partial_x \otimes \partial_x + z \partial_x \odot \partial_y$ $t (\partial_x \otimes \partial_x + \partial_y \odot \partial_z)$	

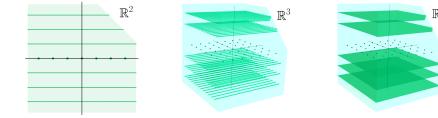






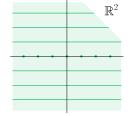
[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4$. \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \leq 4$.

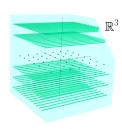
$\dim V$	ϑ	leaf dim.	
2	$y\partial_x\otimes\partial_x$	0,1	
3	$z\partial_x\otimes\partial_x$	0, 1	
J	$z\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	
	$t \partial_x \otimes \partial_x$	0, 1	
	$t\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	
4	$t\partial_x\otimes\partial_x+z\partial_y\otimes\partial_y$	0, 1, 2	
	$t\partial_x\otimes\partial_x+z\partial_x\odot\partial_y$	0, 1, 2	
	$t\left(\partial_x\otimes\partial_x+\partial_y\odot\partial_z\right)$	0, 3	

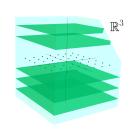


[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4$. \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \leq 4$.

$\dim V$	θ	leaf dim.	leaf metric signatures
2	$y\partial_x\otimes\partial_x$	0, 1	(1,0),(0,1)
3	$z\partial_x\otimes\partial_x$	0, 1	(1,0),(0,1)
	$z\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	(2,0),(0,2)
	$t\partial_x\otimes\partial_x$	0, 1	(1,0),(0,1)
	$t\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	(2,0),(0,2)
4	$t\partial_x\otimes\partial_x+z\partial_y\otimes\partial_y$	0, 1, 2	(1,0),(0,1),(2,0),(0,2),(1,1)
	$t\partial_x\otimes\partial_x+z\partial_x\odot\partial_y$	0, 1, 2	(1,0),(0,1),(1,1)
	$t\left(\partial_x\otimes\partial_x+\partial_y\odot\partial_z\right)$	0, 3	(2,1),(1,2)







[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V=5$.

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear non-strong symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module $\mathcal{F}_{artheta}$ is generated by

$$X_1 := x_2 \,\partial_{x_1} + x_5 \,\partial_{x_4} - \frac{1}{2}x_3 \,\partial_{x_5}, \qquad X_2 := x_3 \,\partial_{x_4},$$

$$X_3 := x_5 \,\partial_{x_1} + x_3 \,\partial_{x_2}, \qquad X_4 := x_3 \,\partial_{x_1}.$$

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 := x_2 \,\partial_{x_1} + x_5 \,\partial_{x_4} - \frac{1}{2}x_3 \,\partial_{x_5}, \qquad X_2 := x_3 \,\partial_{x_4},$$

$$X_3 := x_5 \,\partial_{x_1} + x_3 \,\partial_{x_2}, \qquad X_4 := x_3 \,\partial_{x_1}.$$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 := x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5}, \qquad X_2 := x_3 \, \partial_{x_4},$$

$$X_3 := x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2}, \qquad X_4 := x_3 \, \partial_{x_1}.$$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

Dimensions of the leaves are 0, 1, 2, 4

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 \coloneqq x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5}, \qquad X_2 \coloneqq x_3 \, \partial_{x_4},$$
$$X_3 \coloneqq x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2}, \qquad X_4 \coloneqq x_3 \, \partial_{x_1}.$$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

Dimensions of the leaves are 0, 1, 2, 4 with the signatures: (1, 0), (0, 1), (1, 1), (2, 2).

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V = 5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V = 5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 := x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5},$$
 $X_2 := x_3 \, \partial_{x_4},$ $X_3 := x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2},$ $X_4 := x_3 \, \partial_{x_1}.$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

Dimensions of the leaves are 0,1,2,4 with the signatures: (1,0),(0,1),(1,1),(2,2).

For every leaf, we obtain that $abla^N$ is the Euclidean connection on the leaf.

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V=5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V=5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 := x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5},$$
 $X_2 := x_3 \, \partial_{x_4},$ $X_3 := x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2},$ $X_4 := x_3 \, \partial_{x_1}.$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

Dimensions of the leaves are 0,1,2,4 with the signatures: (1,0),(0,1),(1,1),(2,2).

For every leaf, we obtain that ∇^N is the Euclidean connection on the leaf. Moreover, for all leaves except the 4-dimensional ones, ∇^N is the Levi-Civita connection of g_N .

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V=5$. \Rightarrow The normal form of a linear **non-strong** symmetric Poisson structure for $\dim V=5$:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 \coloneqq x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5}, \qquad X_2 \coloneqq x_3 \, \partial_{x_4},$$

$$X_3 \coloneqq x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2}, \qquad X_4 \coloneqq x_3 \, \partial_{x_1}.$$

The only non-trivial Lie bracket is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive**

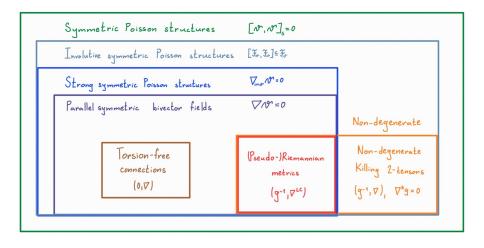
Dimensions of the leaves are 0,1,2,4 with the signatures: (1,0),(0,1),(1,1),(2,2).

For every leaf, we obtain that ∇^N is the Euclidean connection on the leaf. Moreover, for all leaves except the 4-dimensional ones, ∇^N is the Levi-Civita connection of g_N .

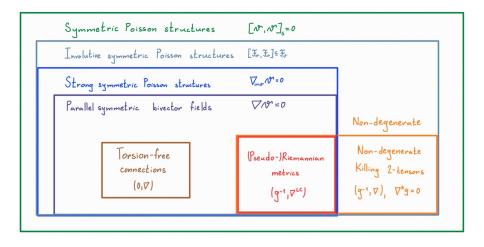
The leaf metric on a 4-dimensional leaf N_c given by $x_3=c$, $c\neq 0$:

$$g_{N_c} = -\frac{2}{c} dx_1 \odot dx_5 + \frac{1}{c} dx_2 \odot dx_4 + \frac{2x_5}{c^2} dx_2 \odot dx_5 - \frac{4x_2}{c^2} dx_5 \otimes dx_5.$$

[~, ~] _s = 0	
$[\mathcal{F}_{\sigma},\mathcal{F}_{\sigma}] \subseteq \mathcal{F}_{\sigma}$	
$\nabla_{im,g_{2}} \mathcal{N}^{g_{1}} = 0$	
√/3° = 0	Non-degenerate
(Pseudo-)Riemannian metrics (g-1,▽ ^{LC})	Non-degenerate Killing 2-tensons (g-1,∇), ∇ ⁸ g=0
	$[3,3] \in \mathbb{F}$ $\nabla_{mo} n = 0$ $\nabla n = 0$ $(Pseudo-)Riemannian metrics$



M., Rubio Symmetric Poisson geometry, totally geodesic foliations and Jacobi-Jordan algebras. arXiv:2508.15890, 52 pages, August 2025.



M., Rubio
Symmetric Poisson geometry, totally geodesic foliations and Jacobi-Jordan algebras. arXiv:2508.15890, 52 pages, August 2025.

Thank you for your attention!