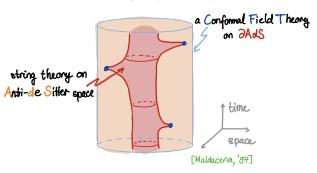
Beyond the tensionless limit

Beat Nairz 25 November 2025

based on 2312.13288 $^{\triangle}$, 2411.17612 $^{\square}$, 2412.02741 $^{\diamondsuit}$

with Matthias R. Gaberdiel $^{\triangle,\Box,\Diamond}$, Rajesh Gopakumar $^{\triangle}$, Dennis Kempel $^{\Diamond}$ and Felix Lichtner $^{\Box}$

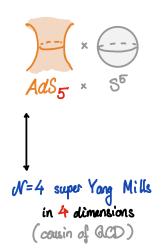
AdS/CFT

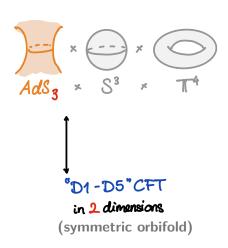


- ► Context: AdS₃/CFT₂
- ► Goal: understand perturbation of minimal tension point (exact duality!)

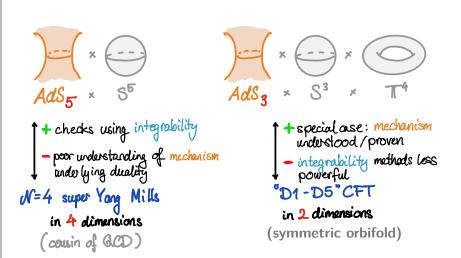
4□ > 4□ > 4 = > 4 = > = 900

Two examples of AdS/CFT

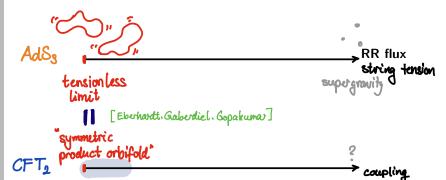




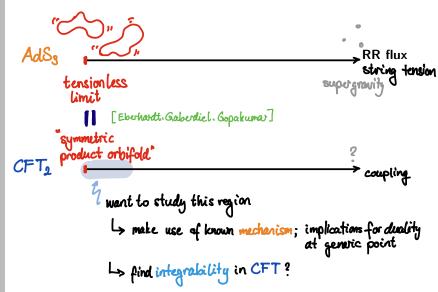
Two examples of AdS/CFT



Exact duality



Exact duality



Overview - Perturbation

Turning on **string tension** ←→ **perturbation** of orbifold CFT

One thing to understand: **spectrum** (anomalous dimensions) and **eigenvectors**

Overview - Perturbation

Turning on **string tension** ←→ **perturbation** of orbifold CFT

One thing to understand: **spectrum** (anomalous dimensions) and **eigenvectors**

We study the perturbation and find simplified description: **integrable off-shell algebra** in BMN limit

By looking at eigenstates, we can also identify **geometric directions** in the CFT

Analytic continuation

$$|\phi\rangle = X_1(p_1)\cdots X_n(p_n)|w\rangle, p_1+\cdots+p_n\in\mathbb{Z}$$

For large twist $w \to \infty$ (= **BMN limit**), there's an effective description:

can treat each $X_j(p_j)$ as individual building block (unphysical state!)

Analytic continuation

$$|\phi\rangle = X_1(p_1)\cdots X_n(p_n)|w\rangle, p_1+\cdots+p_n\in\mathbb{Z}$$

For large twist $w \to \infty$ (= **BMN limit**), there's an effective description:

can treat each $X_j(p_j)$ as individual building block (unphysical state!)

formally looks like (integrable) off-shell symmetry algebra from $\mathcal{N}=4$ SYM $_{\text{[Beisert, '05]}}$

Anomalous dimensions

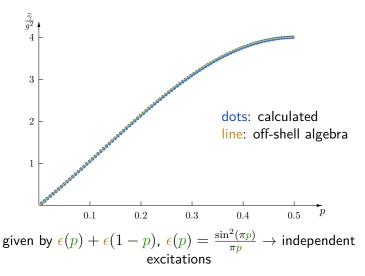
Calculate: unphysical state $X(p)|w\rangle$ has anomalous dimension

$$\epsilon(p) = g^2 \frac{\sin^2(\pi p)}{\pi p} + \mathcal{O}(g^4)$$

For $w \to \infty$, the anomalous dimension of $X_1(p_1) \cdots X_n(p_n) |w\rangle$ is sum of constituents

Anomalous dimensions

Anomalous dimension of physical state $|\phi\rangle = X(p)X(1-p)|w\rangle$



Higher order anomalous dimensions

Assuming integrable structure persists at higher orders fixes anomalous dimension $\tilde{\mathcal{C}}$

Dispersion relation of single \mathbb{T}^4 magnon cf. [Hoare, Stepanchuk, Tseytlin, '13]:

$$\tilde{\mathcal{C}}_{\alpha_{-p}} |w\rangle = \left(\sqrt{p^2 + 4g^2 \sin^2\left(\pi p\right)} - p\right) \alpha_{-p} |w\rangle$$

 \rightarrow masses of string excitations in mixed flux background [Berenstein, Maldacena, Nastase, '02]

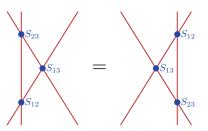
Beat Nairz, ETH Zürich

Integrable structure

The system has an S-matrix which satisfies the **Yang-Baxter equation**

→ hallmark of integrability

Can be related to results from worldsheet integrability approach to AdS_3 [Lloyd, Ohlsson Sax, Sfondrini, Stefański, Jr., '14]



$AdS_3 \times S^3$ directions

At large but finite w, can study following question:

 $\mathsf{AdS}_3 \times S^3 \times \mathbb{T}^4$ has **8** directions (in light-cone gauge). $\mathsf{Sym}^N(\mathbb{T}^4)$ has **4**.

$AdS_3 \times S^3$ directions

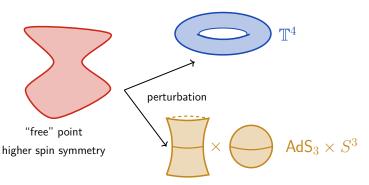
At large but finite w, can study following question:

 ${\rm AdS}_3 \times S^3 \times \mathbb{T}^4$ has **8** directions (in light-cone gauge). Sym $^N(\mathbb{T}^4)$ has **4**.

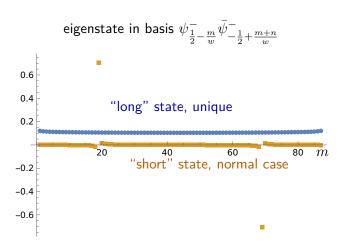
How are the $AdS_3 \times S^3$ directions contained in the CFT?

$AdS_3 \times S^3$ directions

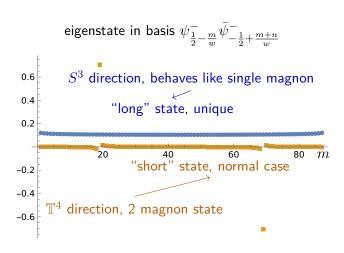
Perturbation breaks degeneracy, gives qualitatively different eigenstates.



Eigenstates



Eigenstates



Danke!