

Me

Crow TAO

Shanghai

[Something fun]

Edinburgh

[Cobordism hypothesis]

[Quantum Information& Typicality]

Amsterdam

[Something fun]

Gravity, Chaos, Matrix Model

Symmetry Breaking

Crow TAO

Supervisor: Diego M. Hofman

University of Amsterdam

Based on the paper by

Tarek Anous & Diego M. Hofman

Michael Winer & Brian Swingle

And many more...

Minimal introduction of Quantum chaos

› “Quantum Chaos” is a name for a collection of different but related phenomena of non-integrable quantum mechanical systems

›

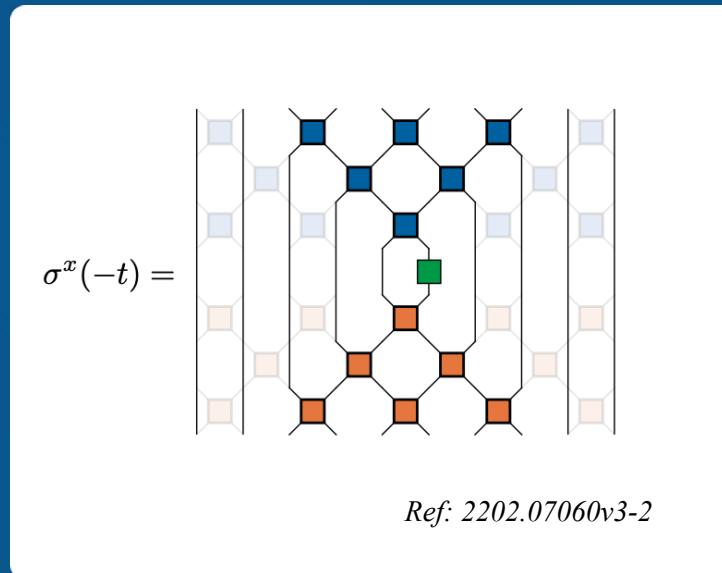
›

Minimal introduction of Quantum chaos

- “Quantum Chaos” is a name for a collection of different but related phenomena of non-integrable quantum mechanical systems
- “Early time” Scrambling: exponential growth of OTOC

$$\mathcal{C}(r, t) \sim \frac{1}{N} \exp(\lambda t)$$

>



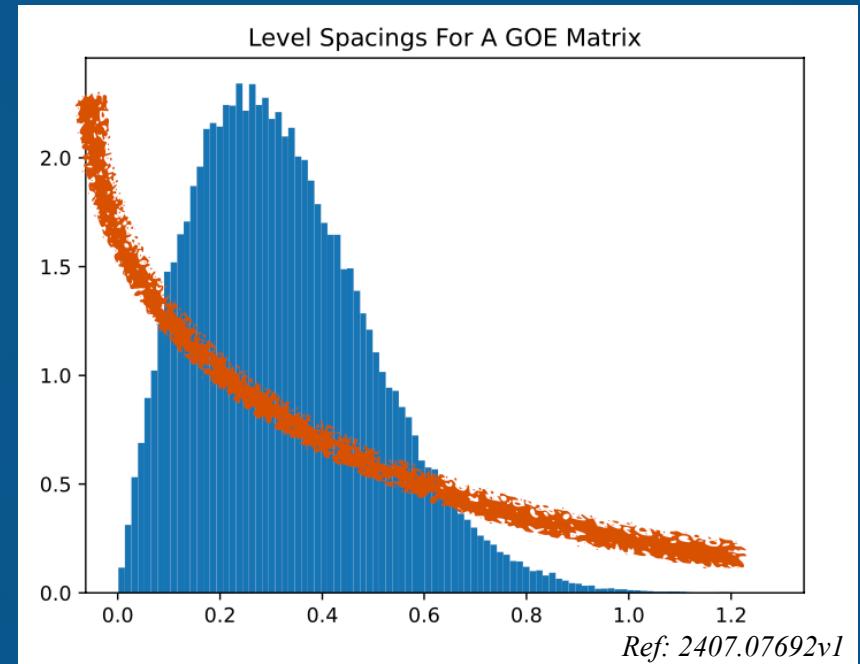
Minimal introduction of Quantum chaos

- › “**Quantum Chaos**” is a name for a collection of different but related phenomena of **non-integrable** quantum mechanical systems

- › “**Early time**” Scrambling: exponential growth of OTOC

$$\mathcal{C}(r, t) \sim \frac{1}{N} \exp(\lambda t)$$

- › “**Late time**” spectral statistics: random matrix theory



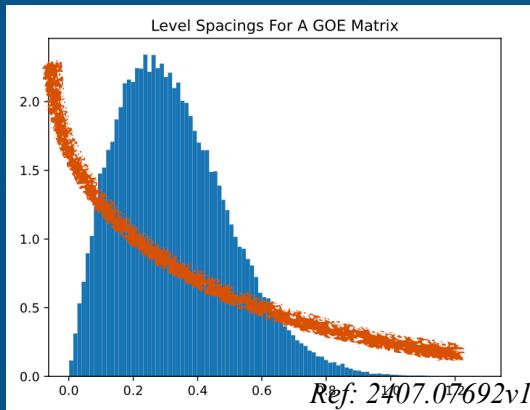
Minimal introduction of Quantum chaos

- › “Quantum Chaos” is a name for a collection of different but related phenomena of non-integrable quantum mechanical systems

- › “**Early time**” Scrambling: exponential growth of OTOC

$$\mathcal{C}(r, t) \sim \frac{1}{N} \exp(\lambda t)$$

- › “**Late time**” spectral statistics: random matrix theory



Eigenvalue thermalization hypothesis
ergodicity hierarchy
unitary design
complexity
entanglement dynamics

...

Gravity

Two “Slogens”

› **Black hole** is a maximally chaotic system

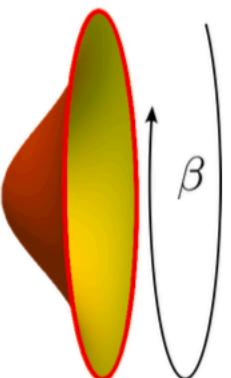
›

Gravity

Two “Slogens”

- › **Black hole** is a maximally chaotic system

›

$$\langle Z(\beta) \rangle_{\text{MM}} = \left(\text{elliptical region} \right) \equiv Z_{\text{grav}}(\beta)$$


Ref:2506.20542v2

Spectral Form Factor

Given hamiltonian H , can define density of states $\rho(E) = \sum_{\lambda} \delta(E - \lambda)$

The “loop operator” is defined through Fourier transform $Z(iT) \equiv \int_{-\infty}^{\infty} e^{-iET} \rho(E) dE = \sum_{\lambda} e^{-i\lambda T} = \text{tr } e^{-iHT}$

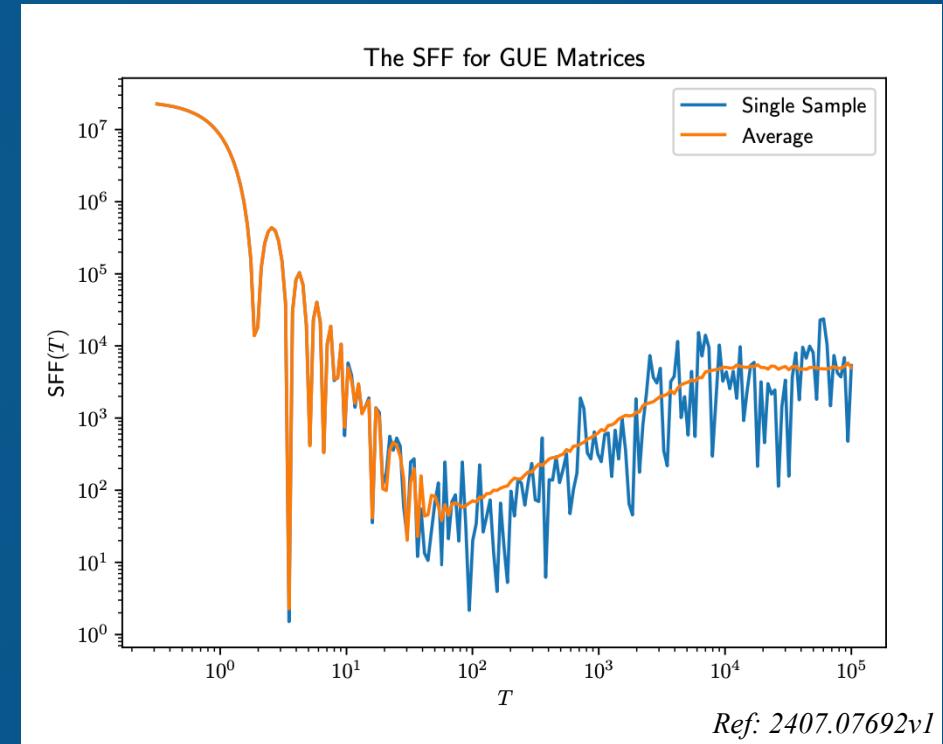
The SFF is defined through as the square of loop operator $\text{SFF}(T) = Z(iT)Z(-iT) = \text{tr } e^{-iHT} \text{tr } e^{iHT} = \sum_{\lambda_1, \lambda_2} e^{-i(\lambda_1 - \lambda_2)T}$

“Wiggliness” at resolution $1/T$

Spectral Form Factor

$$\text{SFF}(T) = Z(iT)Z(-iT) = \text{tr } e^{-iT} \text{tr } e^{iT} = \sum_{\lambda_1, \lambda_2} e^{-i(\lambda_1 - \lambda_2)T}$$

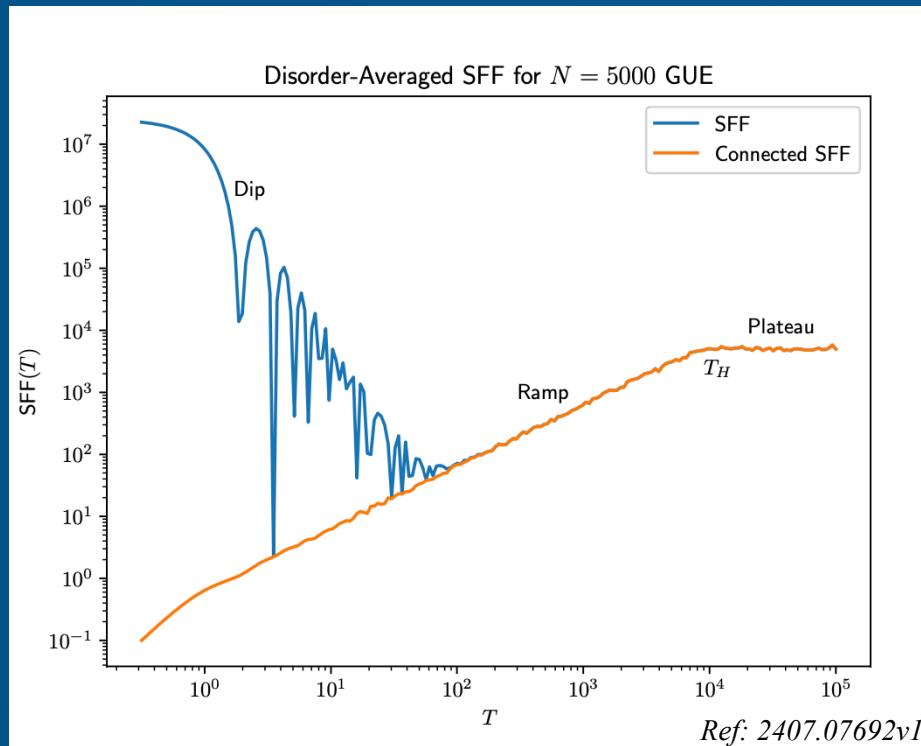
$$\langle \cdot \rangle_{\text{MM}} = \frac{1}{\mathcal{N}} \int dH(\cdot) e^{-\text{Tr } V(H)}$$



Spectral Form Factor

$$\text{SFF}(T) = Z(iT)Z(-iT) = \text{tr } e^{-iT\hat{H}} \text{tr } e^{iT\hat{H}} = \sum_{\lambda_1, \lambda_2} e^{-i(\lambda_1 - \lambda_2)T}$$

Three regions: Slope, Ramp, Plateau



Slope: Controlled by disconnected part, not universal, lack of constructive interference

Ramp: Linear in time, reflection of level repulsion

Plateau: Finiteness, discreteness

Two point function that saturates to a constant value at late time!

WHYY?

$$\langle Z(\beta) \rangle = 0$$

GUE matrix model corresponds to an effective theory that describes the symmetry broken phase

Sum Rule for one point function

$$\langle Z(it) \rangle_{\text{MM}} = \langle \text{Tr } e^{-iHt} \rangle$$

Potential independent, relies only on the finiteness of the model

At $t = 0$ $\langle Z(0) \rangle_{\text{MM}} = \langle \text{Tr } \mathbb{I} \rangle_{\text{MM}} = L$

At $t \sim L$ $\langle Z(it) \rangle_{\text{MM}} = \int_{-\infty}^{\infty} dE e^{-L(iE\bar{t} + v(E))} \times (\text{polynomial in } E)$

Saddle point $\langle Z(iL\tilde{t}) \rangle_{\text{MM}} \propto e^{-L(iE^*\tilde{t} + v(E^*))} = e^{-L(v(E^*) - E^*v'(E^*))}$

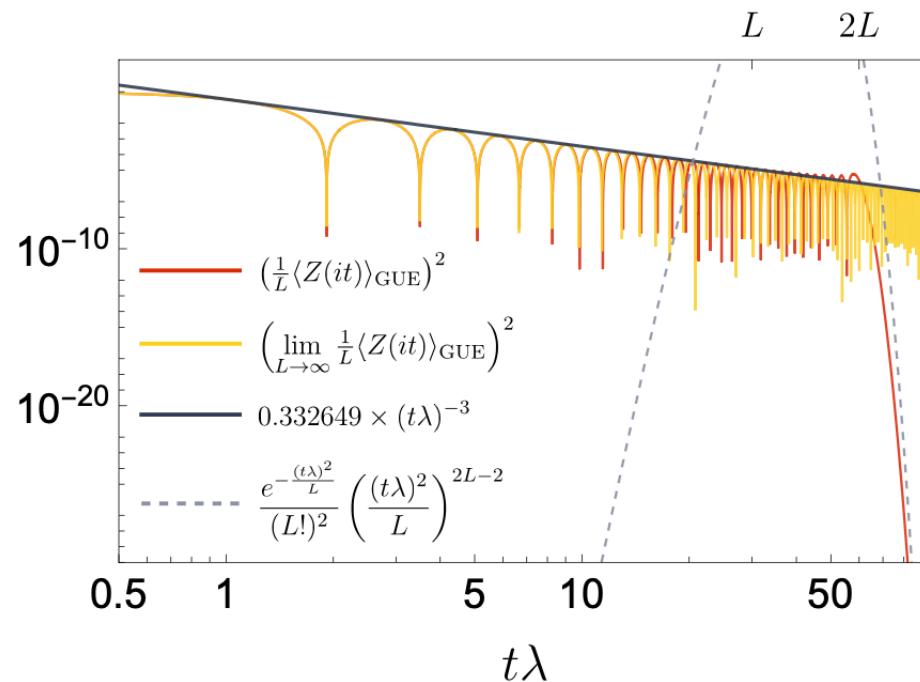
GUE potential $\langle Z(it) \rangle_{\text{MM}} \underset{t \sim L}{\propto} e^{-\frac{(t\lambda)^2}{2L}} + \text{subleading} \dots$

$$\langle Z(it) \rangle_{\text{MM}} \underset{t \sim L}{\propto} e^{-t\Lambda_{IR}(t)}$$

Sum Rule for one point function

$$\langle Z(it) \rangle_{\text{MM}} = \langle \text{Tr } e^{-iHt} \rangle$$

$$L = 30$$



Coincide at early time

Start to perform differently at volume scale

At late time exponential decay

Ref:2506.20542v2

$$\langle Z(\beta) \rangle_{\text{GUE}} = \frac{1}{\mathcal{N}_{\text{GUE}}} \int [dH] [\text{Tr } e^{-\beta H}] e^{-\frac{L}{2\lambda^2} \text{Tr } H^2}$$

Sum Rule for two point function

$$S(t) \equiv \langle Z(it)Z(-it) \rangle_{MM}$$

At $t = 0$ $S^c(0) = \langle Z(0)Z(0) \rangle_{MM}^c = -L$

At $t \sim L$ $S^c(t) \underset{t \sim L}{\propto} -e^{-2(V(E^*) - E^*V'(E^*))}$

GUE potential $S^c(t) \propto -e^{-\frac{(t\lambda)^2}{L}} + \text{subleading} \dots$

$$S^c(t) \underset{t \sim L}{\propto} -e^{-2t\Lambda_{IR}(t)}$$

Questions?

Thank you for your attention.