Generalized Freed-Witten Anomalies

Enoch Leung

Based on arXiv:2510.19935 with F. B. Christensen and I. García Etxebarria

Quantum Universe Attract Workshop Nov. 25, 2025

Revisiting the ABJ anomaly

• Consider a 4d Dirac fermion on a closed spin 4-manifold X^4 :

$$S = \int d^4x \, i\bar{\psi} \not\!\!D \psi$$

• Vector and axial U(1) symmetries:

$$\mathsf{U}(1)_V: \psi \mapsto e^{2\pi i \alpha} \psi \,, \qquad \mathsf{U}(1)_A: \psi \mapsto e^{2\pi i \beta \gamma_5} \psi$$

• Partition function vanishes if there are zero modes:

$$\mathcal{Z}[A_V] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \, e^{-\mathcal{S}} = \det(i\not D) = \prod_i \lambda_i$$

Revisiting the ABJ anomaly

• Consider a 4d Dirac fermion on a closed spin 4-manifold X^4 :

$$S = \int d^4x \, i\bar{\psi} \not\!\!D \psi$$

Vector and axial U(1) symmetries:

$$\mathsf{U}(1)_V: \psi \mapsto e^{2\pi i \alpha} \psi \,, \qquad \mathsf{U}(1)_A: \psi \mapsto e^{2\pi i \beta \gamma_5} \psi$$

• Partition function vanishes if there are zero modes:

$$\mathcal{Z}[A_V] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \, e^{-\mathcal{S}} = \det(i\not D) = \prod_i \lambda_i$$

Atiyah-Singer index theorem:

$$\operatorname{ind}(i \not D) := n_{+} - n_{-} = \int_{X^{4}} \left(\frac{1}{2} F_{V}^{2} - \frac{1}{48} \operatorname{Tr}(R^{2}) \right)$$

- If the *RHS* is nontrivial, then the index is nonzero
 - \exists some zero modes $\Longrightarrow \mathcal{Z}[A_V]$ vanishes

• There's a mixed anomaly between $U(1)_V$ and $U(1)_A$:

$$\mathcal{A}[\underline{A}_V,\underline{A}_A] = \int_{Y^5} \left(\frac{1}{2} \underline{F}_V^2 - \frac{1}{48} \operatorname{Tr}(\underline{R}^2) \right) \wedge \underline{A}_A$$

It's an anomaly in the sense that

$$\mathcal{Z}[A_V + d\alpha, A_A + d\beta] = e^{2\pi i \mathcal{A}[\underline{A}_V, \underline{A}_A]} \mathcal{Z}[A_V, A_A]$$

- ullet Place the 5d anomaly theory on the mapping cylinder $X^4 imes [0,1]$:
 - $\iota_0^*(\underline{A}_V) = A_V$, $\iota_1^*(\underline{A}_V) = A_V + d\alpha$, similarly for \underline{A}_A

• There's a mixed anomaly between $U(1)_V$ and $U(1)_A$:

$$\mathcal{A}[\underline{A}_V,\underline{A}_A] = \int_{Y^5} \left(\frac{1}{2} \, \underline{F}_V^2 - \frac{1}{48} \, \text{Tr}(\underline{R}^2) \right) \wedge \underline{A}_A$$

It's an anomaly in the sense that

$$\mathcal{Z}[A_V + d\alpha, A_A + d\beta] = e^{2\pi i \mathcal{A}[\underline{A}_V, \underline{A}_A]} \mathcal{Z}[A_V, A_A]$$

- Place the 5d anomaly theory on the *mapping cylinder* $X^4 \times [0,1]$:
 - $\iota_0^*(\underline{A}_V) = A_V$, $\iota_1^*(\underline{A}_V) = A_V + d\alpha$, similarly for \underline{A}_A
 - Let's set $\alpha = 0$ and $A_A = 0$, but allow β to be a nonzero *constant*, s.t.

$$\mathcal{Z}[A_V,0] = e^{2\pi i \mathcal{A}[\underline{A}_V,\underline{A}_A]} \mathcal{Z}[A_V,0]$$

• Bulk ansatz: $\underline{A}_V = A_V$, $\underline{A}_A = \beta dt$

• There's a mixed anomaly between $U(1)_V$ and $U(1)_A$:

$$\mathcal{A}[\underline{A}_V,\underline{A}_A] = \int_{Y^5} \left(\frac{1}{2} \, \underline{F}_V^2 - \frac{1}{48} \, \text{Tr}(\underline{R}^2) \right) \wedge \underline{A}_A$$

It's an anomaly in the sense that

$$\mathcal{Z}[A_V + d\alpha, A_A + d\beta] = e^{2\pi i \mathcal{A}[\underline{A}_V, \underline{A}_A]} \mathcal{Z}[A_V, A_A]$$

- Place the 5d anomaly theory on the *mapping cylinder* $X^4 \times [0,1]$:
 - $\iota_0^*(\underline{A}_V) = A_V$, $\iota_1^*(\underline{A}_V) = A_V + d\alpha$, similarly for \underline{A}_A
 - Let's set $\alpha = 0$ and $A_A = 0$, but allow β to be a nonzero *constant*, s.t.

$$\mathcal{Z}[A_V,0] = e^{2\pi i \mathcal{A}[\underline{A}_V,\underline{A}_A]} \mathcal{Z}[A_V,0]$$

- Bulk ansatz: $\underline{A}_V = A_V$, $\underline{A}_A = \beta dt$
- In general, $\mathcal{A}[\underline{\underline{A}}_V,\underline{A}_A] = \beta \int_{X^4} \left[\frac{1}{2}\underline{F}_V^2 \frac{1}{48} \mathrm{Tr}(\underline{R}^2) \right] \notin \mathbb{Z}$

• There's a mixed anomaly between $U(1)_V$ and $U(1)_A$:

$$\mathcal{A}[\underline{A}_V,\underline{A}_A] = \int_{Y^5} \left(\frac{1}{2} \, \underline{F}_V^2 - \frac{1}{48} \, \mathrm{Tr}(\underline{R}^2) \right) \wedge \underline{A}_A$$

It's an anomaly in the sense that

$$\mathcal{Z}[A_V + d\alpha, A_A + d\beta] = e^{2\pi i \mathcal{A}[\underline{A}_V, \underline{A}_A]} \mathcal{Z}[A_V, A_A]$$

- Place the 5d anomaly theory on the mapping cylinder $X^4 \times [0,1]$:
 - $\iota_0^*(\underline{A}_V) = A_V$, $\iota_1^*(\underline{A}_V) = A_V + d\alpha$, similarly for \underline{A}_A
 - Let's set $\alpha = 0$ and $A_A = 0$, but allow β to be a nonzero *constant*, s.t.

$$\mathcal{Z}[A_V, 0] = e^{2\pi i \mathcal{A}[\underline{A}_V, \underline{A}_A]} \mathcal{Z}[A_V, 0]$$

- Bulk ansatz: $\underline{A}_V = A_V$, $\underline{A}_A = \beta dt$
- In general, $\mathcal{A}[\underline{A}_V,\underline{A}_A] = \beta \int_{X^4} \left[\frac{1}{2} \underline{F}_V^2 \frac{1}{48} \mathrm{Tr}(\underline{R}^2) \right] \notin \mathbb{Z}$
- $\mathcal{Z}[A_V, 0]$ must vanish if $\left[\frac{1}{2}\underline{F}_V^2 \frac{1}{48}\mathrm{Tr}(\underline{R}^2)\right] \neq 0 \in H^4_{dR}(X^4)$

Anomaly-induced vanishing of partition functions

- A straightforward evaluation of the anomaly theory on the mapping cylinder gives the same conclusion from the highly nontrivial AS index theorem!
- Similar story with the vanishing of the RR partition function of a 2d
 Dirac fermion using the mod 2 index theorem
- Somewhat circular, but index theorems are not always easily accessible, whereas the anomaly theory is straightforward to determine for many QFTs

Anomaly-induced vanishing of partition functions

- A straightforward evaluation of the anomaly theory on the mapping cylinder gives the <u>same conclusion</u> from the highly nontrivial AS index theorem!
- Similar story with the vanishing of the RR partition function of a 2d
 Dirac fermion using the mod 2 index theorem
- Somewhat circular, but index theorems are not always easily accessible, whereas the anomaly theory is straightforward to determine for many QFTs
- In our paper, we developed the second perspective in greater detail, and also in the language of differential cohomology

Anomaly-induced vanishing of partition functions

- A straightforward evaluation of the anomaly theory on the mapping cylinder gives the <u>same conclusion</u> from the highly nontrivial AS index theorem!
- Similar story with the vanishing of the RR partition function of a 2d
 Dirac fermion using the mod 2 index theorem
- Somewhat circular, but index theorems are not always easily accessible, whereas the anomaly theory is straightforward to determine for many QFTs
- In our paper, we developed the second perspective in greater detail, and also in the language of differential cohomology
 - Examples: (Generalized) Maxwell theory, Dijkgraaf-Witten theory, 4d $\mathfrak{u}(N)$ Yang-Mills theory, 2d chiral boson etc.
 - The formalism can be applied even to strongly coupled QFTs without Lagrangian descriptions

Moduli space description

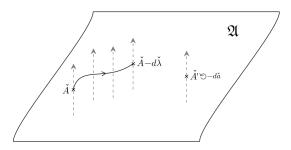


Figure 2: The partition function $\mathcal{Z}[\check{A}]$ is a section of a line bundle \mathcal{L} over the space of gauge fields, $\mathfrak{A} \simeq \check{Z}^{p+2}(X^d)$. A 't Hooft anomaly is a phase $e^{2\pi i A[\check{A},\check{\lambda},0]}$ acquired by $\mathcal{Z}[\check{A}]$ as we move along a non-trivial path $\check{A} \to \check{A} - d\check{\lambda}$ for some $\check{\lambda} \in \check{C}^{p+1}_{\mathrm{flat}}(X^d)$. If the phase is trivial, then \mathcal{L} can be lifted to a line bundle over $\mathfrak{A}/\mathfrak{G} \simeq \check{H}^{p+2}(X^d)$, where points along a given gauge orbit on $\mathfrak A$ are identified. On the other hand, a basepoint anomaly is a phase $e^{2\pi i \mathcal{A}[\check{A}',0,\check{a}]}$ acquired by $\mathcal{Z}[\check{A}']$ as we act on a fixed \check{A}' with an automorphism $\check{A}' \to \check{A}' - d\check{a} = \check{A}'$ for some $\check{a} \in \check{Z}_{\text{flat}}^{p+1}(X^d)$. If such a phase is non-trivial, then $\mathcal{Z}[\check{A}']$ must vanish at this point on \mathfrak{A} .

Generalized Freed-Witten Anomalies

Application to branes

- Worldvolume theory of D3-brane in Type IIB string theory:
 - Partition function is non-vanishing only if

$$[H_3] + [W_3] = 0,$$
 $[G_3] + [W_3] = 0$

- $H_3 \sim dB_2$ is the 3-form NSNS flux, $G_3 \sim dC_2$ is the 3-form RR flux, and $W_3 = \beta(w_2)$ is the third integral Stiefel-Whitney class
- Precisely the Freed-Witten anomaly cancellation condition!

Application to branes

- Worldvolume theory of D3-brane in Type IIB string theory:
 - Partition function is non-vanishing only if

$$[H_3] + [W_3] = 0,$$
 $[G_3] + [W_3] = 0$

- $H_3 \sim dB_2$ is the 3-form NSNS flux, $G_3 \sim dC_2$ is the 3-form RR flux, and $W_3 = \beta(w_2)$ is the third integral Stiefel-Whitney class
- Precisely the Freed-Witten anomaly cancellation condition!
- Worldvolume theory of M5-brane:
 - Partition function on spin 6-manifolds is non-vanishing only if

$$[G_4] - \frac{1}{4}[p_1] = 0$$

- Consistent with Witten's *M-theory 4-form flux quantization*!
- We derived the analogues for more general tangential structures

Further applications

- D3-brane can be obtained by reducing M5-brane over T^2 :
 - 6d worldvolume of M5-brane: $T^2 \hookrightarrow X^6 \to X^4$
 - For trivial fibrations, reduction of the M-theory 4-form flux quantization condition reproduces the FW anomaly cancellation condition

Further applications

- D3-brane can be obtained by reducing M5-brane over T^2 :
 - 6d worldvolume of M5-brane: $T^2 \hookrightarrow X^6 \to X^4$
 - For trivial fibrations, reduction of the M-theory 4-form flux quantization condition reproduces the FW anomaly cancellation condition
- We can also study D3-branes in generic F-theory backgrounds:
 - ullet Make X^6 a nontrivial fibration, possibly with a nontrivial local system
 - Case study: 4d $\mathcal{N}=3$ S-folds
 - Non-perturbative generalizations of orientifolds
- Similar considerations for Class ${\cal S}$ theories:
 - ullet Take $\Sigma_g^2\hookrightarrow X^6 o X^4$