Quantization of symplectic singularities from vertex algebras

Dang Dang

November 25, 2025

Quantum Universe Attract. Workshop

Deformation quantization of symplectic manifolds

Setup (everything over \mathbb{C}):

- X: symplectic manifold.
- A: non-commutative, filtered associative algebra, grA: Poisson algebra induced from the commutator.
- A: quantization of X if $\mathbb{C}[X] \cong \operatorname{gr} A$ as Poisson algebras.

Deformation quantization of symplectic manifolds

Setup (everything over \mathbb{C}):

- X: symplectic manifold.
- A: non-commutative, filtered associative algebra, grA: Poisson algebra induced from the commutator.
- A: quantization of X if $\mathbb{C}[X] \cong \operatorname{gr} A$ as Poisson algebras.

Examples

• Algebra of differential operators $\mathcal{D}(\mathbb{C}^n) \stackrel{Vect}{=} \mathbb{C}[x_1, \cdots, x_n, \partial_1, \cdots, \partial_n]$ quantizes $T^*\mathbb{C}^n$.

Deformation quantization of symplectic manifolds

Setup (everything over \mathbb{C}):

- X: symplectic manifold.
- A: non-commutative, filtered associative algebra, grA: Poisson algebra induced from the commutator.
- A: quantization of X if $\mathbb{C}[X] \cong \operatorname{gr} A$ as Poisson algebras.

Examples

- Algebra of differential operators $\mathcal{D}(\mathbb{C}^n) \stackrel{Vect}{=} \mathbb{C}[x_1, \cdots, x_n, \partial_1, \cdots, \partial_n]$ quantizes $T^*\mathbb{C}^n$.
- $U(\mathfrak{g})/Z(\mathfrak{g})$ quantizes flag manifold $T^*(G/B)$ (this is the resolution of the nilpotent cone of \mathfrak{g}).

Can we do this at the sheaf level?

 A: sheaf of non-commutative, filtered associative algebras over X.

Can we do this at the sheaf level?

- A: sheaf of non-commutative, filtered associative algebras over X.
- A: quantization of X if $\mathcal{O}_X \cong \operatorname{gr} A$ as sheaves of Poisson algebras.

Can we do this at the sheaf level?

- A: sheaf of non-commutative, filtered associative algebras over X.
- A: quantization of X if $\mathcal{O}_X \cong \operatorname{gr} A$ as sheaves of Poisson algebras.

But the flag manifold example doesn't quite work! The correspond sheaf $\mathcal{D}_{G/B}$ is over G/B not $T^*(G/B)$. Fix: Microlocalization!

Can we do this at the sheaf level?

- A: sheaf of non-commutative, filtered associative algebras over X.
- A: quantization of X if $\mathcal{O}_X \cong \operatorname{gr} A$ as sheaves of Poisson algebras.

But the flag manifold example doesn't quite work! The correspond sheaf $\mathcal{D}_{G/B}$ is over G/B not $T^*(G/B)$. Fix: Microlocalization!

• \mathcal{A} : sheaf over $T^*(G/B)$ such that on $\{\xi_i \neq 0\} \subseteq T^*(G/B)$, \mathcal{A} has local section ∂_i^{-1} .

3

Can we do this at the sheaf level?

- A: sheaf of non-commutative, filtered associative algebras over X.
- A: quantization of X if $\mathcal{O}_X \cong \operatorname{gr} A$ as sheaves of Poisson algebras.

But the flag manifold example doesn't quite work! The correspond sheaf $\mathcal{D}_{G/B}$ is over G/B not $T^*(G/B)$. Fix: Microlocalization!

- \mathcal{A} : sheaf over $T^*(G/B)$ such that on $\{\xi_i \neq 0\} \subseteq T^*(G/B)$, \mathcal{A} has local section ∂_i^{-1} .
- ullet This makes ${\mathcal A}$ a sheaf of associative ${\mathbb C}[[\hbar]]$ -algebras.

Can we do this at the sheaf level?

- A: sheaf of non-commutative, filtered associative algebras over X.
- A: quantization of X if $\mathcal{O}_X \cong \operatorname{gr} A$ as sheaves of Poisson algebras.

But the flag manifold example doesn't quite work! The correspond sheaf $\mathcal{D}_{G/B}$ is over G/B not $T^*(G/B)$. Fix: Microlocalization!

- \mathcal{A} : sheaf over $T^*(G/B)$ such that on $\{\xi_i \neq 0\} \subseteq T^*(G/B)$, \mathcal{A} has local section ∂_i^{-1} .
- ullet This makes ${\mathcal A}$ a sheaf of associative ${\mathbb C}[[\hbar]]$ -algebras.
- Get back quantization by modding out $h: A/hA \cong \mathcal{O}_{T^*(G/B)}$.

Quantization of arc spaces

How do we generalize to infinite dimension?

X: finite-dimensional symplectic manifold, $J_{\infty}X$: ∞ -jet scheme of X, defined by

$$J_{\infty}X(R) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R,\, J_{\infty}X) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R[[t]],\, X) = X(R[[t]]).$$

Quantization of arc spaces

How do we generalize to infinite dimension?

X: finite-dimensional symplectic manifold, $J_{\infty}X$: ∞ -jet scheme of X, defined by

$$J_{\infty}X(R) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R,\,J_{\infty}X) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R[[t]],\,X) = X(R[[t]]).$$

This is special because $\mathcal{O}_{J_{\infty}X}$ is sheaf of Poisson vertex algebras.

4

Quantization of arc spaces

How do we generalize to infinite dimension?

X: finite-dimensional symplectic manifold, $J_{\infty}X$: ∞ -jet scheme of X, defined by

$$J_{\infty}X(R) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R,\, J_{\infty}X) = \operatorname{\mathsf{Hom}}(\operatorname{\mathsf{Spec}} R[[t]],\, X) = X(R[[t]]).$$

This is special because $\mathcal{O}_{J_{\infty}X}$ is sheaf of Poisson vertex algebras.

So we define **chiral quantization of** X (or **quantization of** $J_{\infty}X$) by a sheaf of \hbar -adic vertex algebras \mathcal{A}_X^{ch} such that $\mathcal{A}_X^{ch}/\hbar\mathcal{A}_X^{ch}\cong\mathcal{O}_{J_{\infty}X}$ as sheaves of Poisson vertex algebras.

4

We start with an analog example of cotangent type [Beilinson and Drinfeld, 2004; Gorbounov, Malikov, and Schechtman, 2000]

• $X = T^*M$, such that the second graded piece of the Chern character $\operatorname{ch}_2(TM)$ vanishes, there exists an algebra of chiral differential operators (CDO) \mathcal{D}_M^{ch} over M.

We start with an analog example of cotangent type [Beilinson and Drinfeld, 2004; Gorbounov, Malikov, and Schechtman, 2000]

- $X = T^*M$, such that the second graded piece of the Chern character $\operatorname{ch}_2(TM)$ vanishes, there exists an algebra of chiral differential operators (CDO) \mathcal{D}_M^{ch} over M.
- If $M = \mathbb{C}^n$, $\mathcal{D}^{ch}_M(M) = \beta \gamma$ -systems (*n*-copies).

We start with an analog example of cotangent type [Beilinson and Drinfeld, 2004; Gorbounov, Malikov, and Schechtman, 2000]

- $X = T^*M$, such that the second graded piece of the Chern character $\operatorname{ch}_2(TM)$ vanishes, there exists an algebra of chiral differential operators (CDO) \mathcal{D}_M^{ch} over M.
- If $M = \mathbb{C}^n$, $\mathcal{D}_M^{ch}(M) = \beta \gamma$ -systems (*n*-copies).
- If M = G/B, $\mathcal{D}_M^{ch}(M) = V^{-h^{\vee}}(\mathfrak{g})$.

We start with an analog example of cotangent type [Beilinson and Drinfeld, 2004; Gorbounov, Malikov, and Schechtman, 2000]

- $X = T^*M$, such that the second graded piece of the Chern character $\operatorname{ch}_2(TM)$ vanishes, there exists an algebra of chiral differential operators (CDO) \mathcal{D}_M^{ch} over M.
- If $M = \mathbb{C}^n$, $\mathcal{D}^{ch}_M(M) = \beta \gamma$ -systems (*n*-copies).
- If M = G/B, $\mathcal{D}_M^{ch}(M) = V^{-h^{\vee}}(\mathfrak{g})$.
- Performing (micro)localization gives a sheaf of \hbar -adic vertex algebras $\mathcal{A}_{X,\hbar}^{ch}$ on T^*M which acts as the chiral quantization of X.

Other recent examples include

- X obtained from Hamiltonian reduction of Lie group G, the vertex algebra of global sections gives affine W-algebra at critical level $W^{-h^{\vee}}(\mathfrak{g},f)$ [Arakawa, Kuwabara, and Malikov, 2014].
- X: Hypertoric variety [Kuwabara, 2017].
- X: Hilbert scheme of *n*-points on \mathbb{C}^2 Hilb $^n(\mathbb{C}^2)$ [Arakawa, Kuwabara, and Möller, 2023].

Recover finite-dimensional quantization

From a chiral quantization, one hopes to recover a quantization from the Zhu algebra (certain non-commutative algebra) of the quantizing vertex algebra.

Recover finite-dimensional quantization

From a chiral quantization, one hopes to recover a quantization from the Zhu algebra (certain non-commutative algebra) of the quantizing vertex algebra.

For example, the Zhu algebra of CDO \mathcal{D}_{M}^{ch} over M recover the algebra of differential operators \mathcal{D}_{M} [Arakawa, Chebotarov, and Malikov, 2009].

Theorem (D. 2025) The Zhu algebra of the simple $\mathcal{N}=4$ Virasoro superconformal vertex algebra of central charge c = -9 is

$$\mathbb{C} \times U(\mathfrak{su}(2))/\left\langle \Omega + \frac{1}{2} \right\rangle.$$

Theorem (D. 2025)

The Zhu algebra of the simple $\mathcal{N}=4$ Virasoro superconformal vertex algebra of central charge c=-9 is

$$\mathbb{C} \times U(\mathfrak{su}(2))/\left\langle \Omega + \frac{1}{2} \right\rangle$$
.

This vertex algebra comes from chiral quantization of $\mathrm{Hilb}^2(\mathbb{C}^2)\cong T^*\mathbb{P}^1$ and the Zhu algebra should recover the quantization of certain nilpotent thickening of $T^*\mathbb{P}^1$.

- Arakawa, T., Kuwabara, T., & Malikov, F. (2014). Localization of affine w-algebras. Communications in Mathematical Physics, 335(1), 143–182. https://doi.org/10.1007/s00220-014-2183-x
- Arakawa, T., Chebotarov, D., & Malikov, F. (2009). Algebras of twisted chiral differential operators and affine localization of g-modules. https://arxiv.org/abs/0810.4964
- Arakawa, T., Kuwabara, T., & Möller, S. (2023). Hilbert schemes of points in the plane and quasi-lisse vertex algebras with $\mathcal{N}=4$ symmetry. https://arxiv.org/abs/2309.17308
- Beilinson, A., & Drinfeld, V. (2004). Chiral algebras (Vol. 51).

 American Mathematical Society.
- Gorbounov, V., Malikov, F., & Schechtman, V. (2000). **Gerbes of**chiral differential operators. ii.
 https://arxiv.org/abs/math/0003170

Kuwabara, T. (2017). Vertex algebras associated with hypertoric varieties. https://arxiv.org/abs/1706.02203