Generalizations of Kazhdan-Lusztig R-polynomials

Lukas Stöckl

Attract. Workshop, November 25, 2025

Table of Contents

- 1. Basics of R-Polynomnials
- 2. R-Polynomials in Hecke Algebras
- 3. R-Polynomials in KLS-theory
- 4. R-Polynomials and Soergel Bimodules
- 5. R-Polynomials and Varities

Applications of R-Polynomials

Applications

R-polynomials arise in various areas of mathematics:

- Combinatorics:
 - Study of Bruhat order properties.
 - Kazhdan-Luzstig-Stanley-Theory for Matroids.
- Representation Theory:
 - Computing Kazhdan-Luzstig Basis.
 - Counting the multiplicity of certain morphisms in the Category of Soergel Bimodules.
- Algebraic Geometry:
 - Schubert calculus.
 - Study of flag varieties.

Some Notation

Coxeter group

A **Coxeter group** (W, S) is a group W with generating set S and relations:

$$(st)^{m(s,t)} = 1$$
 for $s, t \in S$,

where m(s,s)=1 and $m(s,t)=m(t,s)\geq 2$ for $s\neq t$.

Some Notation

Coxeter group

A **Coxeter group** (W, S) is a group W with generating set S and relations:

$$(st)^{m(s,t)}=1$$
 for $s,t\in S$,

where m(s,s)=1 and $m(s,t)=m(t,s)\geq 2$ for $s\neq t$.

Length Function

Let $x \in W$. We denote by $\ell(x)$ the minimal number of generators in any expression of x.

Some Notation

Coxeter group

A **Coxeter group** (W, S) is a group W with generating set S and relations:

$$(st)^{m(s,t)}=1$$
 for $s,t\in S$,

where m(s,s)=1 and $m(s,t)=m(t,s)\geq 2$ for $s\neq t$.

Length Function

Let $x \in W$. We denote by $\ell(x)$ the minimal number of generators in any expression of x.

Bruhat Order

Let $x, y \in W$ and fix a reduced word \underline{y} for y. We define a partial order by : $x \leq y$ if x has an expression that is a subexpression of \underline{y} .

R-Polynomials in Coxeter Groups

Definition

There is a unique family of Polynomials $\tilde{R}_{x,y}(v)_{x,y\in W}\subseteq \mathbb{Z}[v]$ such that

- 1. $\tilde{R}_{x,y}(v) = 0$, if $x \not\leq y$,
- 2. $\tilde{R}_{x,y}(v) = 1$, if x = y,
- 3. For s with $\ell(ys) < \ell(y)$,

$$\tilde{R}_{x,y}(v) = \begin{cases} \tilde{R}_{xs,ys}(v), & \text{if } \ell(xs) < \ell(x), \\ \tilde{R}_{xs,ys}(v) + v\tilde{R}_{x,ys}(v), & \text{if } \ell(xs) > \ell(x). \end{cases}$$

R-Polynomials in Coxeter Groups

Definition

There is a unique family of Polynomials $\tilde{R}_{x,y}(v)_{x,v\in W}\subseteq \mathbb{Z}[v]$ such that

- 1. $\tilde{R}_{x,y}(v) = 0$, if $x \not\leq y$,
- 2. $\tilde{R}_{x,y}(y) = 1$, if x = y,
- 3. For s with $\ell(ys) < \ell(y)$,

$$\tilde{R}_{x,y}(v) = \begin{cases} \tilde{R}_{xs,ys}(v), & \text{if } \ell(xs) < \ell(x), \\ \tilde{R}_{xs,ys}(v) + v\tilde{R}_{x,ys}(v), & \text{if } \ell(xs) > \ell(x). \end{cases}$$

Main Properties

- $ightharpoonup \tilde{R}_{x,v}(v)$ is a polynomial in v with non-negative integer coefficients.
- ▶ The degree of $\tilde{R}_{x,v}(v)$ is $\ell(y) \ell(x)$.
- $\blacktriangleright \text{ We have } \sum_{x \leq z \leq y} \tilde{R}_{x,z}(v)(-1)^{\ell(x)+\ell(z)} \tilde{R}_{z,y}(v) = \delta_{x,y}.$

Let $S_3 = \langle s, t | s^2 = t^2 = e, sts = tst \rangle$ and denote by $w_0 = sts$.

Figure: Hasse Diagram of S_3

- Let $S_3 = \langle s, t | s^2 = t^2 = e, sts = tst \rangle$ and denote by $w_0 = sts$.
- ▶ Then $\tilde{R}_{ts,w_o}(v) = \tilde{R}_{t,st}(v) = \tilde{R}_{e,s}(v) = v$

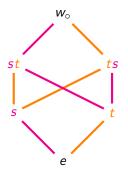


Figure: Hasse Diagram of S_3

- Let $S_3 = \langle s, t | s^2 = t^2 = e, sts = tst \rangle$ and denote by $w_0 = sts$.
- ▶ Then $\tilde{R}_{ts,w_o}(v) = \tilde{R}_{t,st}(v) = \tilde{R}_{e,s}(v) = v$

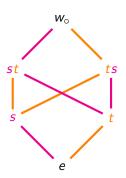


Figure:	Hasse	Diagram	of	S	
i iguic.	110330	Diagraiii	Oi	-3	

	е	S	t	st	ts	Wo
е	1	V	V	v ²	v ²	$v^3 + v$
S	0	1	0	V	v	v ²
t	0	0	1	V	v	v^2
st	0	0	0	1	0	V
ts	0	0	0	0	1	V
w _o	0	0	0	0	0	1

Table: \tilde{R} -Polynomials of S_3 .

R-Polynomials in Hecke Algebra of S_3

- ▶ Denote $v' = v v^{-1}$. Let \mathcal{H} be the $\mathbb{Z}[v, v^{-1}]$ -algebra generated by $\{H_{s'}\}_{s' \in S_3}$ and relations
 - 1. $H_{s^2=1+v'H_s}$ and $H_{t^2=1+v'H_t}$
 - 2. $H_sH_tH_s = H_tH_sH_t$
- From the relations one gets $H_{s'}^{-1} = H_{s'} + v'$ and $H_x := \prod H_{s_i}$, where $x = \prod s_i$ is a reduced word for x, is well defined.

R-Polynomials in Hecke Algebra of S_3

- ▶ Denote $v' = v v^{-1}$. Let \mathcal{H} be the $\mathbb{Z}[v, v^{-1}]$ -algebra generated by $\{H_{s'}\}_{s' \in S_3}$ and relations
 - 1. $H_{s^2=1+v'H_s}$ and $H_{t^2=1+v'H_t}$
 - $2. H_s H_t H_s = H_t H_s H_t$
- From the relations one gets $H_{s'}^{-1} = H_{s'} + v'$ and $H_x := \prod H_{s_i}$, where $x = \prod s_i$ is a reduced word for x, is well defined.
- ▶ Define an involution on \mathcal{H} via extending $\bar{\mathcal{H}}_{x} := (\mathcal{H}_{x^{-1}})^{-1}$, $\bar{v} = v^{-1}$ to a ring homomorphism.
- ► Then $\overline{H_s H_t} = (H_s + v')(H_t + v') = H_s H_t + v' H_s + v' H_t + v'^2$

R-Polynomials in Hecke Algebra of S_3

- ▶ Denote $v' = v v^{-1}$. Let \mathcal{H} be the $\mathbb{Z}[v, v^{-1}]$ -algebra generated by $\{H_{s'}\}_{s' \in S_3}$ and relations
 - 1. $H_{s^2=1+v'H_s}$ and $H_{t^2=1+v'H_t}$
 - 2. $H_sH_tH_s = H_tH_sH_t$
- From the relations one gets $H_{s'}^{-1} = H_{s'} + v'$ and $H_x := \prod H_{s_i}$, where $x = \prod s_i$ is a reduced word for x, is well defined.
- ▶ Define an involution on \mathcal{H} via extending $\bar{\mathcal{H}}_{x} := (\mathcal{H}_{x^{-1}})^{-1}$, $\bar{v} = v^{-1}$ to a ring homomorphism.
- ► Then $\overline{H_s H_t} = (H_s + v')(H_t + v') = H_s H_t + v' H_s + v' H_t + v'^2$
- ▶ In general for $y \in S_3$ we get $\overline{H_y} = \sum_{x \le y} \tilde{R}(v')H_x$

• One can view the \tilde{R} -polynomial as a function $f: \{(x,y) \in W \times W \mid x \leq y\} \to \mathbb{Z}[v],$

- ▶ One can view the \tilde{R} -polynomial as a function $f: \{(x,y) \in W \times W \mid x \leq y\} \to \mathbb{Z}[v],$
- Let P be a locally graded poset and denote by p(x, y) the maximal length of a chain in [x, y].
- ► Then one can define $I(P, K[v]) := \{f : \{(x, y) \in P \times P \mid x \leq y\} \rightarrow K[v]\}.$

- One can view the \tilde{R} -polynomial as a function $f: \{(x,y) \in W \times W \mid x \leq y\} \to \mathbb{Z}[v],$
- Let P be a locally graded poset and denote by p(x, y) the maximal length of a chain in [x, y].
- ► Then one can define $I(P, K[v]) := \{f : \{(x, y) \in P \times P \mid x \leq y\} \rightarrow K[v]\}.$
- ► The convolution $(f * g)_{x,y}(v) = \sum_{x \le z \le y} f_{x,z}(v) g_{z,y}$ and pointwise addition turn this into a K-algebra.

- One can view the \tilde{R} -polynomial as a function $f: \{(x,y) \in W \times W \mid x \leq y\} \to \mathbb{Z}[v],$
- Let P be a locally graded poset and denote by p(x, y) the maximal length of a chain in [x, y].
- Then one can define $I(P, K[v]) := \{f : \{(x, y) \in P \times P \mid x \leq y\} \rightarrow K[v]\}.$
- ► The convolution $(f * g)_{x,y}(v) = \sum_{x \le z \le y} f_{x,z}(v) g_{z,y}$ and pointwise addition turn this into a K-algebra.
- One can define an involution \hat{f} by $\hat{f}_{x,y}(v) = v^{p(x,y)} f(v^{-1})$. An element $\kappa \in I(P, K[v])$ is called a **P-Kernel** if $\hat{\kappa} = \kappa^{-1}$.

- One can view the \tilde{R} -polynomial as a function $f: \{(x,y) \in W \times W \mid x \leq y\} \to \mathbb{Z}[v],$
- Let P be a locally graded poset and denote by p(x, y) the maximal length of a chain in [x, y].
- ► Then one can define $I(P, K[v]) := \{f : \{(x, y) \in P \times P \mid x \leq y\} \rightarrow K[v]\}.$
- ► The convolution $(f * g)_{x,y}(v) = \sum_{x \le z \le y} f_{x,z}(v) g_{z,y}$ and pointwise addition turn this into a K-algebra.
- One can define an involution \hat{f} by $\hat{f}_{x,y}(v) = v^{p(x,y)} f(v^{-1})$. An element $\kappa \in I(P, K[v])$ is called a **P-Kernel** if $\hat{\kappa} = \kappa^{-1}$.
- ▶ This condition ensures that $\kappa * f = \hat{f}$ for some functions in I(P, K[v]).

- ▶ Let $I = I(S_3, \mathbb{Z}[v])$. We have $\delta_{x,y} \in I$.
- ▶ Define $\xi_{x,y}(v) := 1$, for $x \le y$.

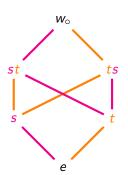
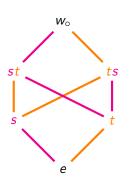


Figure:	Hasse	Diagram	of	S_3	
i iguic.	110330	Diagraiii	Oi	-3	

	е	S	t	st	ts	W _○
е	1	V	٧	v ²	v ²	$v^3 + v$
S	0	1	0	V	V	v ²
t	0	0	1	V	V	v ²
st	0	0	0	1	0	V
ts	0	0	0	0	1	V
Wo	0	0	0	0	0	1

Table: \tilde{R} -Polynomials of S_3 .

- ▶ Let $I = I(S_3, \mathbb{Z}[v])$. We have $\delta_{x,y} \in I$.
- ▶ Define $\xi_{x,y}(v) := 1$, for $x \le y$.
- ► Then ξ is invertible and $\chi * \xi = \hat{\xi}$.
- Here χ is the charcteristic polymomial of the poset S_3 .



	е	S	t	st	ts	Wo
е	1	V	٧	v ²	v ²	$v^3 + v$
S	0	1	0	V	V	v ²
t	0	0	1	V	v	v ²
st	0	0	0	1	0	v
ts	0	0	0	0	1	V
Wo	0	0	0	0	0	1

Figure: Hasse Diagram of S_3

Table: \tilde{R} -Polynomials of S_3 .

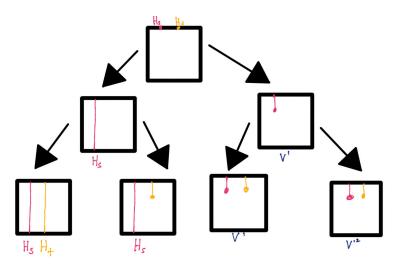
\tilde{R} -Polynomial as a W-Kernel

- ▶ From earlier we have $(\tilde{R}^{-1})_{x,y}(v) = (-1)^{\ell(y)-\ell(x)}\tilde{R}(v)$,
- lacksquare But $\hat{ ilde{R}}_{x,y}(v)=v^{\ell(y)-\ell(x)}\hat{ ilde{R}}_{x,y}(v^{-1}).$ So $ilde{R}$ is not a W-Kernel.

\tilde{R} -Polynomial as a W-Kernel

- ▶ From earlier we have $(\tilde{R}^{-1})_{x,y}(v) = (-1)^{\ell(y)-\ell(x)}\tilde{R}(v)$,
- ▶ But $\hat{\tilde{R}}_{x,y}(v) = v^{\ell(y)-\ell(x)}\hat{\tilde{R}}_{x,y}(v^{-1})$. So \tilde{R} is not a W-Kernel.
- ▶ We have however $v^{\ell(y)-\ell(x)}\tilde{R}_{x,y}(v-v^{-1})$ is a W-kernel.
- ightharpoonup Want to modify $ilde{R}$ or the hat map to respect the substitution.

R-Polynomials and Soergel Bimodules



Let each dot represent a factor of v' in the Product $(H_s + v')(H_t + v')$ we obtain the various $\tilde{R}_{x,st}$ for $x \leq y$.

R-Polynomials and Varities

- Related to Richardson Varities.
- ▶ Richardson Varities are indexed by a pair $x, y \in W$, such that $x \leq y$.
- ▶ These have dimension $\ell(y) \ell(x)$.

Bibliography

- [1] Anders Björner; Francesco Brenti. *Combinatorics of Coxeter Groups*. Springer Verlag, New York, 2005.
- [2] James E. Humphreys. *Reflection Groups and Coxeter Groups*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1990.
- [3] David Plaza. "Diagrammatics for Kazhdan-Lusztig R-polynomials". In: European Journal of Combinatorics 79 (2019), pp. 193-213. ISSN: 0195-6698. DOI: https://doi.org/10.1016/j.ejc.2019.03.002. URL: https://www.sciencedirect.com/science/article/pii/S0195669819300228.
- [4] David E Speyer. Richardson varieties, projected Richardson varieties and positroid varieties. 2024. arXiv: 2303.04831 [math.AG]. URL: https://arxiv.org/abs/2303.04831.
- [5] Richard P. Stanley. "Subdivisions and Local h-Vectors". In:

 Journal of the American Mathematical Society 5.4 (1992),

 pp. 805–851. ISSN: 08940347, 10886834. URL: