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1 Objectives

1.1 Overall goal of the project

The goal of this project is to substantially improve the simulations of physical systems con-
cerning accuracy while reducing their computational cost. We aim to develop extremely fast,
parametrized simulations and systematically investigate discrepancies in model descriptions using
various state-of-the-art Al methods.

Predictive simulations of physical processes are at the core of state-of-the-art achievements
in the natural sciences and engineering. In particle and astro-particle physics, the computational
first-principles modeling of physical processes is essential for designing experiments and estab-
lishing robust data analysis pipelines that accommodate complex detector responses. In classical
engineering, such as model-based product design, computational first-principles modeling of heat
and mass transfer allows one to tailor a solution to given requirements. While (Astro-)particle
physics and engineering may seem unrelated at first sight, they have in common that both fields
critically depend on accurate simulations to translate theoretical models into practical insights.

Today, predictive simulations achieve remarkable accuracy and are essential for scientific dis-
coveries and practical applications. However, their precision and reliability almost always come at
the cost of long computational time or additional resources, such as the need for high-performance
computing clusters or specialized hardware. This yields a trade-off between simulation precision
and computational resources whenever high-statistics simulations are required. This project aims
to address this trade-off with multiple approaches.

The first approach is based on interpretable surrogate models [1]. Its goal is to develop
ultra-fast simulations that combine state-of-the-art methods in generative deep learning and
interpretability to automatize the parametrization of the detector response. Generative sur-
rogate models employed currently in fast simulations are a priori “black boxes” that are very
difficult to interpret. This hinders identifying and correcting systematic biases. We propose to
address this issue with Kolmogorov-Arnold-Networks (WP2) and Symbolic Regression
(WP3) (SR), which we will use to derive compact and interpretable analytic expressions from
the outputs of the surrogate models. In computational engineering, precision is of utmost impor-
tance, requiring generative surrogate models to be physically consistent. Rather than verifying
consistency a posteriori, we will implement Bayesian model discovery with constitutive
neural networks (WP1), which allows the incorporation of invariants and symmetries into
the surrogate model architecture during calibration.

Our second approach aims to leverage the full precision of predictive simulations while increas-
ing their computational efficiency. Simulations in particle physics consist of multiple simulation
steps (particle interaction, detector simulation, data reduction), where the most expensive step is
typically the detector simulation. Examples (simulated events) generated from simulators often
vary dramatically in their relevance for downstream analysis tasks, so, in many cases, a large
amount of computation time is spent on creating irrelevant examples. We propose to address
this issue with a hybrid simulation approach based on Active Control (WP4), which aims to
predict the relevance of examples early in the simulation pipeline in real-time. Examples of high
predicted relevance can then be assigned a higher priority for downstream simulation, and thus,
the overall simulation efficiency can be substantially increased.

However, these approaches trade reduced computational costs with increased prediction er-
rors. Furthermore, the models may not explicitly account for the complexity of real-world condi-
tions or measurements, such as nonlinear interactions, discrepancies in sensor readout, stochastic
variations, and environmental influences.

Thus, our third approach focuses on learning and describing discrepancies across simu-
lations by addressing Domain Shifts (WP5) to enhance the simulation framework. We aim to
develop a neural network approach to learn and apply discrepancies between datasets, may they
stem from different simulations or measurement data and simulations. This method will improve



simulation accuracy and efficiency and enable the re-purposing of older datasets by aligning them
with current knowledge, reducing the need for new simulations.

Advanced techniques, including normalizing flow models or generative adversarial networks,
will facilitate feature transfer across detector geometries, enhancing calibration, signal-background
separation, and detector response understanding for a more robust simulation pipeline.
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Figure 1: Overview of the work packages and their relations.

The approaches that will be developed are general and apply to a broad range of ErUM
experiments and beyond. To show their real-world applicability, we will deploy them to a particle
physics experiment (CMS) and an astroparticle physics experiment (IceCube) to problems in
engineering and transfer this knowledge to industry.

An overview of the overall project is given in Figure 1. The key objectives of the project are:

Bayesian Model discovery: The goal is to develop a flexible tool that allows Bayesian in-
ference on parameters of an underlying partial differential equation while complying with
known physical constraints via constitutive neural networks (WP1).

Ultra-fast detector simulation with KANs: Goal is to develop a method to automize the
extraction of parametrized detector responses from detailed detector simulations using
Kolmogorov-Arnold Networks (KANs) (WP2).

Ultra-fast detector simulation with Symbolic Regression: The Goal is to utilize sym-
bolic regression to derive interpretable analytic parametrizations of the outputs of complex
simulators (WP3).

Active Control for Detector Simulations: The Goal is to implement an active learning
paradigm for simulation pipelines. We aim to optimize simulation pipelines such that
more computation time is spent on simulating examples of high relevance to downstream
analysis tasks. (WP4)

Domain Shifts: The objective is to create methods that can identify and learn the systematic
differences between two datasets. These methods allow us to pinpoint the causes of these
differences and to adjust the data on an event-by-event basis between the two domains.
This process improves the quality of less accurate or outdated datasets, reducing the need
for costly computational simulations. (WP5)



All of these objectives have scientific applications in all ErUM research fields that rely on
the simulation of physical processes. In addition, there are clear avenues for the transfer of the
tools to be developed to industry. We will be working with ControlEzpert, a company involved in
digitizing and speeding up manual processes in automobile insurance claim management. This
will enable us to apply, test, and verify our tools well outside our research fields. Our work
will propose to enable ControlExpert to substantially save computational resources, and thus
contribute to the sustainable transformation in industry.

1.2 Relation of the project to the funding policy goals

The project targets the development of new innovative tools and algorithms in experimental
simulations using cutting-edge Al methods. Our goal of improving both the speed and accu-
racy of detector simulations simultaneously will be immediately beneficial for improving the
performances of major research infrastructures and can be verified by the exploitation of our
tools within these. However, the need for highly efficient and accurate first-principle simula-
tion goes beyond particle and astroparticle physics but is relevant to many fields beyond, such as
model-based engineering. The configuration of the applying consortium maps two major research
infrastructures, CMS and IceCube, from two fields within ErUM with engineering and industry.
Structurally, this facilitates the development of general-purpose tools beyond the immediate ben-
efit for the studied use cases of the different work packages. Hence, we directly address the goals
of interdisciplinary networking and transfer while at the same time fostering digital competence
within ErUM in a general context. Moreover, the enhanced computational performance will also
reduce the computing load, given more sustainable solutions in data science.

1.3 Scientific and/or technical aim of the project

The project focuses on a general challenge of many experiments in the field of ErUM and beyond.
Most analyses of experimental data, as well as the training of machine learning tools, require
precise simulations. More precise simulations and more detailed modeling usually require sub-
stantially increased computational resources. This means that they can often only be achieved
as a vast collaborative effort. Still, physics analyses are often limited by the size of the simulated
samples. This project aims to systematically approach this challenge using state-of-the-art Al
methods for improving both, reducing the computational demands while improving the accu-
racy of complex simulations. We aim to develop generalized tools that enable the community to
more efficiently use available computing resources with the long-term perspective of substantially
reducing the power consumption related to simulation production.

1.4 Explanation of the interdisciplinary collaboration in the pillar “Software
and Algorithms”

The project is proposed by an interdisciplinary group of applicants. We cover the two ErUM
topics, particles and universe. The partners actively contribute to the major research infrastruc-
tures CMS and IceCube, explicitly mentioned in the call. Additionally, we include a group from
engineering science with expertise in model-based developments in computational engineering.
As an important key for extending the scope and applicability of our tools beyond the scope of
ErUM, we collaborate with the industrial partner ControlEzpert. This company strongly focuses
on data science and develops Al based solutions in automobile insurance claim management.



2 Status of science and technology in the relevant field, previous
work

2.1 Status of science and technology in the relevant field

Experiments in the ErUM fields rely heavily on Monte Carlo simulations to accurately describe
the measurement and data reduction processes. These include, in particular, experiments in
particle physics, astroparticle physics, hadron physics, and neutron physics. Mismatches in
the simulated and experimental data, as well as limited simulation statistics, cause systematic
uncertainties, which can bias the statistical analysis and thus have to be minimized as much as
possible.

However, generating a large number of simulated events is computationally very costly. At
the ATLAS experiment at the (HL-)LHC, for example, Monte Carlo simulations are expected
to account for about 50% of the total CPU resources in 2030 [2]|, where the main driver of the
necessary computing time is the Monte Carlo simulation of the detector response. At the LHC
experiments, two main approaches have been developed to address this challenge, which differ in
their accuracy: On the one hand, surrogate models have been developed based on deep generative
models (“fast simulation”) [3, 4, 5|. These models are meant to be used in data analysis and reach
an impressive accuracy compared to the full Monte Carlo model. Still, they are costly to train
and are often only available to members of the experimental collaborations. In situations where
less accurate simulations are required, e.g., for detector design or phenomenological studies, ana-
lytic parametrizations can provide an appropriate tradeoff between accuracy and computational
cost. In the past, analytic expressions for parametrising complex simulations have typically been
derived manually, guided by physical intuition or simplified scenarios [6].

In IceCube, ML-based surrogate models have not yet been incorporated into the simulation
pipeline. Here, the main computational cost is associated with simulating the Cherenkov photon
transport in the ice. Traditional approximative methods, such as splines or analytic models |7],
have been used as an alternative to the first-principles simulations. However, because of the high
dimensionality of the problem, these approximative methods have to impose symmetries that do
not hold in practice, limiting the precision of these methods.

Simulations for neutrino telescopes typically employ several techniques to improve the effi-
ciency of the simulation. Techniques, such as weighted sampling, can lead to better phase-space
coverage in the downstream event samples as more events of high relevance are simulated. Event-
based biasing algorithms exist for dedicated simulation codes (e.g. [8] for air-shower simulations
with CORSIKA). However, these algorithms are generally hand-tailored for a specific simulation
and require deep intrusion into the simulation code. Nevertheless, surrogate models can predict
many properties of simulated events, such as their approximative position in the final-level phase
space after the detector response simulation, without performing the detailed detector simu-
lation. As proposed in this project, a controlling algorithm will allow for fine control over the
sample density of simulated events at the final analysis level, efficiently using available computing
resources.

Symbolic Regression (SR) is a subfield of Machine Learning that seeks to discover mathemat-
ical expressions representing the relationships in data. SR is commonly employed in regression
tasks to model the relationship between a dependent variable (target) and independent variables
(predictors). Unlike classical parametric regression, which assumes a predefined functional form
(e.g., linear regression), or non-parametric regression methods (e.g., kernel regression or neural
networks), which are highly flexible but often opaque, SR does not require the user to specify
a functional form beforehand. Instead, it searches the space of possible symbolic expressions to
identify models that are both accurate and interpretable, bridging the gap between flexibility
and interpretability. SR has been shown to successfully reproduce physical laws, such as learning
Newton’s Law of Gravity from observed orbital trajectories [9], the discovery of formulas from
physics textbooks [10] and the construction of optimal observables for particle-physics experi-



ments [11]. Although using SR for density estimation has previously been explored (see [12]),
its use in creating generative models is, to our knowledge, underexplored compared to regression
tasks.

Recently, Kolmogorov-Arnold networks (KANs) have been proposed as an interpretable al-
ternative to multilayer perceptrons (MLP) [13]. These networks learn the activation functions
on the nodes instead of the weights in MLPs. The learned activation can then be directly in-
terpreted or symbolically regressed to obtain an analytic description. Despite their advantages,
SR and KANs have not been widely studied in ErUM research fields. The application of KANs
was studied for event classification [14], regression [15] and higher-order calculations in particle
physics theory [16]. The application of SR and KANs to detector simulations, as proposed in
this project, is a novelty.

Surrogate modeling strategies are by now also an integral part of model-based engineering
workflows, which often center around parameter-to-observable mappings aiming for sensitivity
studies, uncertainty management, and parameter calibration, all of which require a large number
of model evaluations. Approaches to surrogate modeling range from intrusive model-order reduc-
tion to regression-inspired statistical approaches to the application of modern machine learning.

Surrogate models that are non-intrusive concerning the underlying simulation method are
particularly flexible and are also referred to as the objective bias method [17], for instance, the
family of Gaussian process emulators [18, 19, 20|, in which a Gaussian process is conditioned
to simulation data. Gaussian processes can be evaluated ultra-fast and allow for an error esti-
mation that can be exploited to design active learning strategies [21]. GP training, however, is
computationally expensive and feasible only when the underlying parameter space is of moder-
ate dimension. Whenever the surrogate has to account for a high-dimensional parameter space,
e.g. describing the structure or geometry of an engineering system, neural networks consti-
tute a better approach. A recent trend is to enrich the neural network with information on
the underlying physical and mechanistic processes, either built into the network architecture as
CNNs and GNNs; or even GANSs; or physics-informed loss functions [17, 22| to account for inher-
ent knowledge of the to-be-surrogated mechanistic processes or data dependencies. Automated
model discovery has been proposed recently that enforces thermodynamic consistency through
accounting properties, such as material objectivity, material symmetry, and incompressibility
[23].

Simulations in a particle physics experiment form the foundation for the physics analysis.
Still, they are first-order approximations of real-world measurements. These approximations
introduce systematic discrepancies due to simplifications in simulation models and the inability to
replicate complex detector responses, which can affect subsequent physics analyses. Additionally,
fast-simulation surrogate models, while efficient, may exacerbate the issue by further obscuring
event-level differences from the actual ground truth. Domain adaptation methods, such as GANS,
diffusion networks, and normalizing flows, translate between domains without directly pairing
examples from each domain. This method has already been effectively used to transfer images
between domains in computer vision.

Techniques like CycleGAN or DRIT are widely used to map images from one style to an-
other, such as converting photographs into artistic renditions, translating images between dif-
ferent seasons (e.g., summer to winter), or adapting satellite imagery for various environmental
conditions [24, 25, 26, 27|. Recently, diffusion networks have gained considerable attention due
to their substantial advancements in image generation tasks [28, 28, 29]. Domain adaptations
have also been investigated in particle physics [30], while other approaches offer a reweighting of
existing simulation data [31] to account for discrepancies to measurement data. While methods
for domain adaptation have been studied in particle physics, they are still underutilized and not
extensively researched, making this a promising area for further exploration.



2.2 Previous work of the applicants
Profile of the contributing workgroups

WG Erdmann Johannes Erdmann is a Heisenberg professor for big data analytics in physics
research. He works on the application of deep learning methods for the data analysis in
high-energy physics experiments and gravitational-wave physics. He is a member of the
CMS and Einstein Telescope Collaborations. He has a strong background in LHC data
analysis in top-quark and Higgs-boson physics, where he made leading contributions to the
observation of new processes [32, 33, 34]. At the CMS experiment, he focuses on improving
the precision of Higgs-boson measurements with deep learning [35]. He has developed
applications for deep learning in the area of collider physics |36, 37, 38, 39] and has recently
proposed the first application of Kolmogorov-Arnold networks in particle physics [14]. At
the Einstein Telescope, he works on the application of differential programming for the
reduction of Newtonian noise [40].

WG Haack As an early career researcher, C. Haack is formally part of C. Kopper’s research
chair, however, he leads an independent research program. As a member of the IceCube,
KM3NeT, and P-ONE collaborations, he has worked on data analysis, reconstruction, and
simulation for large-volume neutrino telescopes. In IceCube, he has focused on the develop-
ment of analysis techniques for the measurement of the Galactic neutrino flux [41, 42, 43],
simulations for future detector upgrades [44] and novel reconstruction techniques which
have lead to the observation of a neutrino at the Glashow Resonance [45]. He has co-led the
Reconstruction Working Group, which oversees implementing and applying novel machine-
learning techniques. As the author of one of the standard analysis frameworks used in
IceCube, he has broad experience in the design and management of software frameworks.
He currently focuses on developing techniques for machine-learning-aided detector opti-
mization for future neutrino telescopes, such as P-ONE [46], differentiable programming
for optimizing data-analysis pipelines, surrogate models for detector simulation and the
integration of machine learning models into data selection pipelines.

WG Kopper C. Kopper’s focus is on detector simulation and modern analysis methods for high-
energy neutrino detectors. He has been active in the IceCube/IceCube-Gen2, KM3NeT,
and P-ONE collaborations. His current focus is on characterizing diffuse astrophysical flux
measurements, event reconstruction tools, and developing new data analysis methods in
high-energy neutrino detection. He is the main author of the clsim GPGPU-based photon
propagation tool [47, 48| used extensively in high-energy neutrino telescopes to simulate
their detector response. He has also been heavily involved in several of the key discoveries
in IceCube, such as the initial discovery of the astrophysical neutrino flux [49, 50| and
the first evidence for neutrino emission from a specific source (TXS 0506+056) [51]. He
previously acted as Analysis Coordinator of the IceCube collaboration, a key leadership role
in the collaboration’s organization structure with extensive responsibilities in guiding the
broad scientific output of the project. Currently, he co-leads the Diffuse and Atmospheric
Neutrino Fluzes Working Group within the collaboration. He specializes in data analysis
methods and, relevant to this proposal, in detector simulation techniques and ML /AT tools.

WG Kowalski Julia Kowalski’s research focuses on the field of computational science & engi-
neering. She and her team develop methods and software for data-integrated simulation
models of complex system’s including surface transport, heat transfer, phase-change and
mixing processes [52, 53, 54, 55, 56|. The team also works on error-controlled surrogate
models, e.g., based on Gaussian Processes, to achieve ultrafast evaluation of models, such
as needed for sensitivity analyses, uncertainty management, Bayesian parameter calibra-
tion, and model selection [57, 58, 59|. Further areas of interest are sustainability and



reproducibility of the developed computational workflows, including software and (bench-
marking) data sets [60], and their embedding into digital twins and virtual testbed infras-
tructure [61, 62]. In the context of DLR’s Explorer Initiatives, she develops simulation
models for trajectory and performance prediction of ice exploration technology [63] and,
in that context, collaborated with Christopher Wiebusch, who is also a PI to this project.
Julia Kowalski is a member of the board of directors of the Center for Modeling and Simula-
tion Science of the Jiilich Aachen Research Research Alliance (JARA), in which she fosters
activities in sustainable computing, e.g., via organizing the Karman Conference on Sus-
tainable Computational Science and Engineering”. She is also Steering Committee member
of the Profile Area Production Engineering at RWTH and its Digital Twin Initiative.

WG Wiebusch The scientific focus of the research group (RWTH Aachen) is data analysis
and detector development in astroparticle physics with emphasis on the measurement of
high-energy cosmic neutrinos using the IceCube Neutrino Observatory [64], as well as
neutrino oscillation physics with Double Chooz [65] and JUNO [66]. Furthermore, we are
involved in technology development for future missions in space physics [67, 68, 69]. Special
interest is placed on robust and precise estimation of astrophysical flux parameters [70],
which is limited by the simulation-precision of challenging-to-control environmental and
detector parameters, such as the depth-dependent transparency of Antarctic ice. We have
extensive experience with machine learning in all areas of data selection, classification,
and reconstruction, as well as in complex statistical procedures for data analysis. We sign
responsible for the Northern Tracks selection, a standard data stream in IceCube, which is
currently enhanced from a BDT-based to a new DNN-based selection. The group is familiar
with various techniques in deep neural networks ranging from graph convolutional networks,
see, e.g., [71], to more recent large language models and flow-based generative models.
Within the ErUM-funded AlSafety project, we have gained expertise in adversarial attacks
and adversarial training in fundamental research, e.g., the recently developed algorithm
MiniFool [72] that integrates experimental uncertainties into adversarial attacks of deep
neural networks for data selection in IceCube [73]. Within the DFG-funded NeuroDOM
project, we develop a new transformer-based event reconstruction for the IceCube Upgrade.

3 Detailed description of the work plan

3.1 Necessary project resources

The project is structured in five work packages as detailed in section 3.2. For each work package
we request funding for a doctoral researcher or a part-time post-doc. Only those dedicated
researchers will be funded through this proposal. The work-groups will be supplemented by
master and bachelor students with research topics within ErUM-ARIA and further doctoral
students and postdocs from the participating research groups with related research subjects. In
total, we apply for five E-13 positions at 75% salary for the duration of the project — one
for each participating group. As the project work is carried out in close thematic proximity to
computer science with higher salaries for doctoral researchers, the 75 % salary (above the often
used 50 % to 67 %) enables the recruitment of technically competent employees also from the field
of computer science or post-docs with experience in data science. Those scientists, if recruited,
would work 75% directly on the project and 25% on the analysis of physics data, which would
be financed from other funds (own contribution).

Our financial plan is shown in table |. The personnel costs are based on flat N.N. personnel
starting with E13 level-2, where the costs slightly differ between Erlangen and Aachen. This
results in a total of 917k€ for personnel.

Zhttps:/ /sustainable-cse.org/



Position ‘ Duration ‘ Principal Investigator ‘ Costs

PostDoc/PhD TVL-13, 75%, 3 years | Prof. Dr. Kowalski 184700 €
PostDoc/PhD TVL-13, 75%, 3 years | Prof. Dr. Erdmann 184700 €
PostDoc/PhD TVL-13, 75%, 3 years | Prof. Dr. Kopper 181315 €
PostDoc/PhD TVL-13, 75%, 3 years | Dr. Haack 181315 €
PostDoc/PhD TVL-13, 75%, 3 years | Prof. Dr. Wiebusch 184700 €
Destination ‘ Number ‘ Participants ‘ Costs

Int. Conferences & coll. Meetings 1 per year 1 participant per group 30000 €
Europ. Conferences & coll. Meetings 1 per year 1 participant per group 19500 <€
National community meetings (DPG/ErUM) | 1 per year 2 participants per group 18000 <€
Computing/Science school 1 1 participant per group 5500 €
Internal ErtUM-ARIA meetings 1-2 per year 2-3 per group 9840 €
Internships at industry partner 1 1 participant per group 11200 €
Project related consumables ‘ 7500 €
Total project costs (excl. Overhead) | 1018700 €

Table 1: Overview of requested funding.

In addition to the personnel cost, we apply for travel funds restricted to the scientists directly
involved in the project. The goal is to enable the participation of each scientist in one interna-
tional conference and one collaboration meeting per year, except for the last year with only one
of the two because of the planned internships (see below). Additionally, we apply for a one-time
participation in a national science or computing school or lecture program for each scientist in
the first year of the project. We apply for travel funds for the scientists and one master’s student
per group to participate in the DPG spring meeting or equivalent.

Internally, within the project, we plan for one in-person meeting per year with the partici-
pation of all people involved in the project, including master and bachelor students. A central
element of the work plan is internships at the industry partner toward the end of the project.
Here, we apply for financial support for the required daily allowances for a two-month internship
for each scientist. These internships will be co-financed by the industrial partner. The requested
travel funds total about 94 k€ which is roughly 10 % of the requested personnel funds. Finally,
we estimate a small amount of 1.5k€ per group for general project-related expenses, such as
publication costs and consumables not covered by the base funding. The total requested project
funding is 1,018,700€ plus additonal 20 % overhead.

3.2 Work plan including milestones

We define the following milestones, which specify the key deliverables for our project.

e Milestone 1 — Ultra Fast Surrogates developed — We have utilized SR and KANs
to create ultra-fast surrogate models for detector simulations. Performance and efficiency
gain compared to first-principles Monte-Carlo simulation have been quantified

e Milestone 2— Active Simulation Control integrated — A framework for active simu-
lation control is integrated into simulation pipelines to save computational resources

e Milestone 3 —-Domain Adaptations integrated — A framework for domain adaption to
mitigate domain shifts has been developed and applied to the ultra-fast surrogate models.

e Milestone 4 — Efficiency Gain Quantified — We have quantified the efficiency gain &
resources savings of our methods

e Milestone 5 — Methods applied in experiments. — Surrogate models have been
applied to experiments (IceCube, CMS, rheological engineering models).

Our 5 work packages are designed to achieve these milestones. The work breakdown structure
of the individual work packages and milestones is shown in fig. 3. Our cooperation structure
highlighting the collaboration on individual tasks is summarized in tab. 2 and explained in detail
in Chapter 5. The leadership of WP1, WP2, and WP?5 is assigned to RWTH Aachen, coordinated



by Pls Kowalski, Erdmann, and Wiebusch, respectively. WP3 and WP4 will be led by PIs Kopper
and Haack at FAU Erlangen. C. Haack will lead the overall project.

Milestone 1: Ultra-Fast Surrogates developed

Milestone 2: Active Simulation Control integrated
Milestone 3: Domain Adapation integrated
Milestone 4: Efficiency Gain quantified

Milestone 5: Methods applied in experiments.

WP1.1
WP1.2

Inference with Constitutive Networks
Comparison with KANs

WP1.3 Comparison with SR

WP1.4
models

Application to moment-based transport
WP2.1 KANSs for generic collider detector
WP2.2 Application to CMS

WP2.3 Comparison to SR (WP3)
WP2.4 Implement Domain Shifts (WP5)
WP2.5 Integration in Delphes
WP3.1 Density Estimation with SR
WP3.2 SR for PhotonProp
WP3.3 Comparison to KANs
WP3.4 Application to IceCube
WP3.5 Implement Domain Shifts (WP5)
WP4.1 Active Control PoC

‘WP4.2 Develop Framework
WP4.3 Interface with Domain Shifts (WP5)
WP4.4 Quantify Bias & Efficiency Gain

WP4.5 Application to IceCube

WP5.1 Domain Adaptation Framework
WP5.2 Domain Adaptation for IceModels
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Figure 2: Gantt Chart for the Work Breakdown Structure

3.2.1 WP1: Bayesian Model Discovery with Constitutive Networks

The goal of this project is to utilize recently proposed thermodynamically consistent neural
networks as surrogates for built-in rheologies. This will result in novel Bayesian model discovery.
Rather than determining step by step the plausibility of candidate rheologies, we will infer its
dominant contributions by means of Bayesian updates in a single step. This work package is a
key consumer of the surrogate model techniques developed in WP2 and WP3 and demonstrates
their applicability in the engineering context. The active simulation control framework developed
in WP4 will allow us to increase the efficiency of our simulation pipeline.

Deliverables We will provide a framework for Bayesian model discovery of constitutive models
in rheology and demonstrate the efficiency of surrogate models (Milestone 4) in describing

experimental data (Milestone 5).



Work Package | Sub-Tasks | Principal Investigator | Cooperation Partner

Bayesian Model Discovery with Constitutive Networks

WPI1-1: Inference with Constitutive Networks Kowalski Haack

WP1-2: Comparison with KANs Kowalski Erdmann, Kopper

WP1-3: Comparison with SR Kowalski Kopper, Erdmann

WP1-4: Application to moment-based transport models Kowalski Haack
Learning Physics for Ultra-Fast Simulations with KANs

WP2-1: Proof of concept based on a generic collider detector Erdmann Haack, Kopper, Kowalski

WP2-2: First application for the CMS detector in place Erdmann Haack, Kowalski

WP2-3: Comparison to Symbolic Regression (WP3) Erdmann Haack, Kopper

WP2-4: Implement Domain Shifts Erdmann ‘Wiebusch

WP2-5: Integration in Delphes Erdmann ‘Wiebusch
Learning Physics for Ultra-Fast Simulations with Symbolic Regression

WP3-1: Proof of Concept: Symbolic Regression for PDFs Kopper Haack, Erdmann

WP3-2: Photon propagation for a generic neutrino telescope Kopper Haack

WP3-3: Comparison to KANs Kopper Erdmann, Kowalski

WP3-4: Application to IceCube Photon Propagation Kopper Haack, Wiebusch

WP3-5: Interface with WP5 to mitigate Domain Shifts Kopper Wiebusch
Active Control for Detector Simulations

WP4-1: Proof of Concept: Atmospheric Muon Background Simulation Haack Kopper, Wiebusch

WP4-2: Development: Framework for Online Simulation Control Haack Erdmann, Kopper, Kowalski, Wiebusch

WP4-3: Interface with Domain Shifts Haack Wiebusch

WP4-4: Evaluation: Bias Quantification and Efficiency Gain Haack Kopper

WP4-5: Application to IceCube Haack Kopper, Wiebusch
Domain Shifts for Enhanced Simulations

WP5-1: Development of Domain Shift Toolkit & Interface Wiebusch Kowalski

WP5-2: Learn Domain Shifts related to simulated IceModels in IceCube Wiebusch Haack, Kopper, Kowalski

WP5-3: Evaluate method performance and limitations of the IceCube test case Wiebusch Haack, Kopper

WP5-4: CMS Interface, Application, and Evaluation Wiebusch Erdmann

WP5-5: Evaluate Symbolic regression performances for different ice models Wiebusch Haack, Kopper

Table 2: Cooperation structure.

Context and Motivation Simulation models in engineering applications are often governed
by parameters that are not known a priori and need to be calibrated, which means to identify the
parameter that matches an observed process data best. In Bayesian parameter estimation, the
parameter’s posterior distribution is determined based on a prior, a likelihood function and the
data’s evidence. Evaluating the likelihood is computationally costly as soon as either the forward
simulation is compute intense, or a large number of training data are considered. In order to
render this a computationally feasible task one can therefore train a likelihood surrogate based on
Gaussian processes (GPs) and utilize its built-in error estimate for active learning based on the
information entropy. While this works well for calibrating isolated parameters, the calibration
results do not automatically comply with known physical relations, e.g. incompressibility or
invariants. Additional effort is needed, when we want to calibrate for the best built-in empirical
model, e.g. a rheological or constitutive model. Model selection is then needed, which typically
takes immense computational resources due to the need for high-dimensional integration.

Challenge: Model discovery based on novel constitutive neural networks, has been very
successfully introduced in 2023 [23] as it enables the automatic identification of constitutive re-
lations. To our knowledge, its application so far is restricted to cases, in which the network’s
target space corresponds to the observable space. In our case, we cannot directly observe in
the target space, but need to conduct a simulation to relate both. In order to still learn from
observations, we will employ Bayesian methods, potentially enhanced by Gaussian process sur-
rogates and active learning. Combination of the two will yield an interpretable rheological or
constitutive relation that is conditioned to indirect observations. Challenges will be associated
with formulating the priors for predictors of the thermodynamically consistent network, and in
evaluating the likelihood.

Tasks
e WP 1.1 — Development: Bayesian Model Discovery In a first step, thermody-
namically consistent constitutive and rheological networks are build and tested against
synthesized data in the network’s target space. Next, Bayesian calibration is extended to
learning hyperparameters of the network. We will also investigate computational feasibility
enablers, such as GP-emulation of the likelihood and active learning strategies to minimize
the necessary number of simulations.
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e WP 1.2 — Comparison with KANs — We will investigate KANs (WP2) as an alterna-
tive to constitutive neural networks.

¢ WP 1.3 — Comparison with SR — We will investigate Symbolic Regression (WP3) as
an alternative to constitutive neural networks.

¢ WP 1.4 — Application: Moment propagation in heterogeneous background ma-
terial As a proof-of-concept, we will apply our novel Bayesian model discovery framework
to calibrate for rheological relations in a moment based shallow flow setting [52] due to
access to data. While the physical setting of the models differs from typical settings in
astro-particle physics, the mathematical model structure of a propagating PDF shares com-
monalities with kinetic transport, and hence photon propagation. In a next step, we will
extend our approach to other moment-based transport models in close collaboration with
partners in this consortium.

3.2.2 WP2: Learning Physics for Ultra-Fast Simulations with KANs

The goal of this work package is to develop “ultra-fast simulations” by an automatized extraction
of detector response parameterizations using KANs. The resulting simulations will be extremely
fast to evaluate, as the particle responses are simple functions, and they will correspond much
more closely to the real response of the fully simulated detector than existing parametrized
simulations. We will apply the methods developed in this work in constitutive models (WP1)
and the CMS (this WP), and IceCube experiments (WP 3). The active simulation control
framework developed in WP4 will allow us to increase the efficiency of our simulation pipeline.

Deliverables We will provide a framework for parametrizing detector response functions with
KANs (Milestone 1). The framework will be integrated in Delphes and applied to the CMS
detector (Milestone 5). The resulting simulation efficiency gain will be quantified (Milestone
4).

Context and Motivation These ultra-fast simulations would be very useful for the design of
analyses within the experimental collaborations. For example, the simulation of a new physics
process would not need to be interfaced to the full software stack of the experiment. Still, the
ultra-fast simulation can be used to get a first and reliable detector-level estimate. In addition,
such ultra-fast simulations will be very useful for physicists outside of the experimental collabo-
rations. For example, they will provide the possibility to account significantly better for detector
effects in phenomenological studies that inspire new directions in the experimental data analysis.
To our knowledge, no automated procedure for extracting response parametrizations exists in
high-energy physics, despite their wide-spread use, for example, in the Delphes framework [6].
Kolmogorov-Arnold networks (KANs) [13] have recently been proposed as a more interpretable
alternative to multilayer perceptrons (MLPs). Unlike MLPs, KANs have learnable activations
on the edges, parametrized by splines. Given this recent development, only very few applications
of KANs in particle physics exist, with the first proposed by the lead of this work package in
Ref. [14]. In this work, small KANs have been shown to be interpretable. They can also be
fit with a set of functions to obtain analytic expressions [13|, which makes them attractive for
the automated extraction of response parameterizations and their use in a Symbolic Regression
context.

Tasks:
e WP 2.1 — Proof of concept: The concept of ultra-fast simulations will first be tested on
a generic particle-physics detector. A small KAN will be used to learn analytic expressions
of the detector response as a function of the relevent particle kinematics. These expressions
are the parametrizations of the detector response for the ultra-fast simulation.
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e WP 2.2 — Application to CMS detector: The concept will then be applied to full event
simulations of the CMS experiment at the LHC. Ultra-fast simulations will be developed for
different particle reconstruction and identification algorithms. The results will be compared
with the current implement in the Delphes framework.

e WP 2.3 — Symbolic regression comparison: A detailed comparison of KAN-based
symbolic regression and non-KAN-based symbolic regression methods from WP3 will be
performed, assessing their precision and interpretability for detector simulations.

e WP 2.4 — Domain shift implementation: For several of the detector objects, such as
electrons and muons, we will use experimental data from the CMS detector to learn the
domain shift of experimental data to the ultra-fast simulations. For this sub-task, we will
work closely together with researchers from WP5.

e WP 2.5 — Integration in Delphes: The detector response parametrizations will then
be put into a detector card in the Delphes framework, due to its wide-spread use in particle
physics. The expressions in the ultra-fast simulations, however, are independent of that
particular framework and can also be used in other frameworks by the community.

3.2.3 WP3: Learning Physics for Ultra-Fast Simulations with Symbolic Regression

The goal of this work package is to utilize Symbolic Regression (SR) to obtain fast and in-
terpretable analytic surrogate models for physics simulations. We will explore both the use of
vanilla SR, which uses genetic programming or neural networks to explore the equation state
space, and KANs (WP2), which provide a novel method of combinding symbolic regression and
neural networks. We will focus not only on classical regression problems, but aim to
establish the use SR for density estimation. The interpretability of the analytic expres-
sions found by SR allows us to validate the models and explicitly include external inputs, such as
medium properties, calibration constants, invariants, or conservation laws. The methods devel-
oped in this work package will be applied in constitutive models (WP1) and the CMS (WP2)
and IceCube experiments (this WP).

Deliverables We will provide a framework for obtaining analytic surrogate models with SR
(Milestone 1) and apply these surrogates in experiments (Milestone 5). The resulting simu-
lation efficiency gain will be quantified (Milestone 4).

Context and Motivation Simulations for (astro-) particle physics experiments aim to pro-
duce samples from complex probability distributions, which encode the physical processes. As
these distributions are generally not available in closed form, Monte Carlo simulation is used to
transform random variates from simple distributions into the desired target distributions.

The computational complexity of these Monte-Carlo simulations is typically addressed by
training generative models, such as diffusion models, variational auto-encoders, or normalizing
flows. These implicitly learn the underlying distributions and allow for faster sampling. How-
ever, these models require large training datasets and specialized hardware (GPUs) and are not
interpretable. Invariants and conservation laws (such as energy or momentum conser-
vation) typically have to be implicitly learned by the generative model. Validation of
these models can only be done statistically. Problems, such as distribution shifts, are challenging
to detect and mitigate. Developing an SR framework that can generate high-quality approxi-
mations for probability distributions is a key goal of this work package. We will achieve this by
combining SR with automatic differentiation to obtain cumulative distribution functions, which
can then be differentiated to obtain the probability density functions.

Tasks
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e WP 3.1 — Development: Symbolic Regression for PDFs The first goal of this
work package is to develop a Symbolic Regression framework that can produce analytic
expressions for probability distributions.

e WP 3.2 — Proof of Concept: Photon propagation for a generic neutrino tele-
scope As a proof of concept, we will develop a surrogate model for photon propagation
in a transparent medium (water or ice) as used in the simulation for neutrino telescopes.
In this simulation, Cherenkov photons emitted by charged secondary particles produced
in neutrino interactions are propagated through the detection medium by a first-principles
physical model. The output of this simulation is a distribution of the number of detected
photons and their arrival times. We will use SR to obtain analytic functions for the num-
ber of detected photons and the cumulative density function (CDF) of their arrival times.
The resulting CDFs will be compared with MC simulations and existing simplified analytic
models.

e WP 3.3 — Comparison to KANs Using the experiences and tools from WP2 we will
employ KANs as an alternative to vanilla SR for developing a surrogate model for photon
propagation.

e WP 3.4 — Application: Photon Propagation in Ice Using the insights gained from
the proof of concept, we will apply the SR framework to photon propagation in ice, as
used in the simulation for the IceCube Neutrino Observatory. We aim to identify and
extract physical parameters (such as the optical absorption and scattering lengths) from
the SR-derived surrogate model and relate them to the known medium properties using
the Bayesian Model Discovery framework developed in WP1.

e WP 3.5 — Interface with WP5 to mitigate Domain Shifts We utilize the IceCube
interface to improve the performance of symbolic regression in WP3 and to enhance active
control in WP4, assessing them on an event-by-event basis. Experimental data will be
integrated into the evaluation process, allowing for a comprehensive analysis of systematic
differences and their application to the fast simulations.

3.2.4 WP4: Active Control for Detector Simulations

This work package focuses on developing an active simulation framework to address the inefficien-
cies in simulation pipelines. The core idea is to integrate an adaptive decision-making mechanism
within the simulation workflow to increase the relevance of simulated examples for downstream
analysis workflows. This work package provides a key synergy in our project, as it al-
lows us to decrease the variance of Monte-Carlo estimators and model uncertainties
for given computational resources. The methods and framework developed here, will be
applied in WPs 1, 2, 3 and 5.

Deliverables We will produce a software framework for implementing and integrating active
simulation control for physics simulation pipelines (Milestone 2). The resulting simulation
efficiency gain will be quantified (Milestone 4).

Context and Motivation Particle physics experiments generate vast quantities of raw de-
tector data, which undergo multiple stages of processing and reduction to extract meaningful
summary statistics. Accurate simulation of this data, including signals and backgrounds, is cru-
cial for statistical analyses. The precision of the simulation results depends on minimizing MC
statistical errors, which, if too large, introduce systematic uncertainties into the analysis.

The relevance of simulated events for downstream analysis tasks, such as measurements or
the development of surrogate- and regression models, can vary dramatically. The density of
simulated events at the analysis stage is typically not uniform, resulting in regions
of the parameter space with a large number of events (and thus low MC error) and
regions that are poorly populated (and thus significant MC errors). Especially for

13



backgrounds, achieving low MC errors often conflicts with the data reduction processes designed
to suppress such events. This leads to poor simulation efficiency, defined as the ratio of simulated
events retained after reduction to the total number initially simulated. For IceCube, this
efficiency can be as low as ~ 10~7. Since the simulation process is resource-intensive, low
efficiency translates to wasted computational resources and increased environmental and financial
costs.

Proposed Solution: Active Simulation Framework Our approach is to train surrogate
models to predict the relevance of simulated events for downstream analysis tasks early on in
the simulation pipeline. Using predictions from the surrogate models, the framework evaluates
whether an event is likely to contribute meaningfully to the final analysis. A heuristic, such as
the current density of simulated events in specific regions of the observable space, determines
whether an event is accepted or rejected. We can influence the tradeoff between computational
complexity and bias by tuning the heuristic. An aggressive heuristic will drastically reduce the
number of simulated events but might falsely reject events that have a significant impact on
the downstream analysis. Studying and quantifying this tradeoff will be an essential aspect of
this work package. Remaining biases will be addressed by the Domain Adaptation Toolkit
(WP5).

Tasks

e WP 4.1 — Proof of Concept — The initial proof-of-concept will focus on improving the
simulation efficiency of the atmospheric muon background simulation pipeline. A surrogate
model will be developed to predict the probability of an event surviving the selection process
before the computationally expensive photon propagation step.

e WP 4.2 — Development: Framework for Online Simulation Control — Building on
the proof-of-concept, we will generalize the active simulation framework for online control of
simulations. This framework will integrate surrogate models in real-time decision-making
to dynamically allocate resources during simulation runs. The framework will be designed
to interface with common simulation production frameworks such as IceProd [74] or Gaudi
[75]

e WP 4.3 —Interface with Domain Shifts — We will implement an interface with WP5
to mitigate biases introduced by the active simulation framework.

e WP 4.4 —Quantify Bias and Efficiency Gain — The framework will be rigorously
evaluated to ensure no significant biases are introduced. Metrics such as simulation effi-
ciency gains, resource usage, and accuracy of predictions will be quantified and compared
to traditional MC simulations.

e WP 4.5 —Application to IceCube — Using the optimized simulation pipeline, we will
produce a set of improved simulations for IceCube analyses. These simulations will serve
as benchmarks to demonstrate the practical benefits of the active framework, including
reduced computational cost and enhanced statistical precision.

3.2.5 WP5: Domain Shifts for Enhanced Simulations

This work package aims to develop Al-based tools to evaluate and quantify discrepancies between
model simulations and experimental data, or between more accurate simulations. By employing
domain adaptation techniques such as normalizing flows, GANs, and diffusion models, we will
systematically learn and apply variations between datasets on an event-by-event basis, allowing
us to investigate the root causes of these discrepancies. This iterative framework will enhance the
accuracy of simulations while minimizing the need for computationally expensive resimulations.
Additionally, these tools will offer valuable feedback for model development by identifying areas
that require improvement. By doing this, this work package provides support for WP2,
WP3, and WP4 and enhances the precision of simulations and subsequent analyses.
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Deliverables We will produce a domain shift toolkit capable of identifying and mitigating
discrepancies between datasets. This toolkit will be validated through applications to IceCube
and CMS data (Milestone 2 & 4) and evaluated for its performance, scalability, adaptability
and limitations (Milestone 3).

Context and Motivation Simulations in particle physics are essential for data analysis, but
they still represent approximations of experimental conditions. This can introduce discrepancies
that affect the accuracy and reliability of the results. These discrepancies often arise from
simplifications made in the simulation models, such as assumptions regarding detector responses
and environmental conditions. As these discrepancies accumulate over further approximation for
surrogate models, they can lead to potential biases in subsequent analyses. Domain adaptation
techniques, such as normalizing flow models, GANs, and diffusion models, have demonstrated
success in other fields like computer vision [24, 25, 26, 27|, where they are used to transfer features
across domains with varying conditions. These methods enable the adaptation of datasets across
different domains without needing direct pairs from each dataset. By utilizing these techniques,
we can address systematic differences, enhance the accuracy of simulations, and optimize the use
of existing computational resources, especially with legacy datasets. This approach enhances the
accuracy of simulations and reveals systematic discrepancies, allowing for focused refinements.

Challenge Unlike grid-based datasets in computer vision, particle physics data involve irregu-
lar detector geometries and multidimensional features, such as timing, energy, and spatial infor-
mation. Domain adaptation methods must be tailored to handle these complexities effectively.
They need to integrate diverse data into a cohesive framework while maintaining the granular-
ity required for detailed event-level analysis. Achieving this balance is critical to ensuring the
robustness and accuracy of adapted simulations.

Tasks

¢ WP 5.1 — Development and Proof of Concept of Domain Shift Toolkit — Design
and implement a flexible toolkit using state-of-the-art domain adaptation methods, includ-
ing CycleGAN, normalizing flows, and diffusion models. This toolkit will be validated on
an existing IceCube dataset, assessing its ability to detect and correct systematic differ-
ences. We will introduce artificial systematic deviations to the dataset to test the toolkit’s
accuracy in recovering the original inputs.

e WP 5.2 — Learn Domain Shifts Related to Simulated Ice Models in IceCube
— Using an implemented interface to the IceCube experiment, we apply domain shifts to
align older simulation datasets with current ice models. This approach reduces the need
for new computationally expensive simulations while increasing the precision of analyses
and enhancing data statistics.

e WP 5.3 — Evaluate Method Performance and Limitations of the IceCube Test
Case — We evaluate the performance, scalability, and adaptability of the toolkit using the
IceCube test case. This evaluation involves a thorough analysis of residual uncertainties,
the ability to scale to larger datasets, and the adaptability to various calibration conditions.
We will also identify potential limitations, such as biases or edge cases, to help guide future
improvements

e WP 5.4 — CMS Interface, Application, and Evaluation — We are developing an
interface for the CMS detector to ensure the toolkit’s universal applicability. Next, we will
apply domain shifts to CMS data to enhance the ultra-fast simulations developed in WP2,
incorporating active feedback to refine the surrogate models.

¢ WP 5.5 — Evaluate Symbolic Regression Performances for Ice Models, Including
Experimental Data — Leverage previously learned domain shifts from IceCube datasets to
enhance symbolic regression performance on an event-by-event basis. Experimental data
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will be incorporated into the evaluation, enabling a detailed examination of systematic
differences and their application to fast simulations.

4 Exploitation plan

4.1 Commercialization prospects

The research topics addressed in this application are focused on applications in Astrophysics and
Particle physics within the ErUM field. Though scientific progress is our driving motivation,
our goal is the development of methods and tools that can be applied to other fields. This con-
cept is also beneficial for our initial research goal because the validation of the applicability to
problems in other domains enforces the generalization of approaches beyond the initially focused
application. This concept is structurally embedded into the project by including partners from
industry and engineering. ControlExpert, represented by Dr. Sebastian Schoenen, is a company
that specializes in Al applications in automobile claim management. The chair of Methods for
Model-based Development in Computational Engineering (MDB), represented by co-PI Julia
Kowalski, focuses on innovative methods for engineering, particularly predictive process simula-
tions for engineering science. For both fields, developing new innovative simulation methods is
highly relevant, and the chances of commercial exploitation are very high. A relevant example for
application is the generation of synthetic data of vehicles with different types of damages. For car
damages, the amount of training data is very limited and the training of enhanced ML-models
greatly benefits from a large sample of high-quality artificial data. The commercial interest is
expressed in the attached letter of intent by ControlExpert. To foster this aspect, we plan for
our doctoral researchers to conduct 2-month internships at the company to transfer our methods
directly to industrial applications. The institute MDB is inherently entangled in the work plan
and leads the WP-1.

4.2 Scientific and/or technological prospects

The proposed project team combines our long-year expertise in ML-based data science in the
involved ErUM projects with expertise in model-based engineering, as well as an excellent in-
dustry partner within a closely entangled work plan. The work plan is based on clearly defined
work packages and steps that can be achieved with tools and data that are currently available.
Therefore, we consider the prospects of achieving our research goals high.

These results will directly impact the ErUM projects CMS and IceCube explicitly mentioned
in the funding call. Furthermore, they can be applied to closely related projects such as ATLAS,
other neutrino telescopes, and beyond. An example is the group in Erlangen, which is, beyond
IceCube, involved in the neutrino telescopes KM3NeT and P-ONE. Common for most ErUM
projects is that science results are immediately linked to the availability of high-quality and
high-statistics of simulated data. Therefore, the central goal of improving both the quality and
performance of simulations has very high prospects of immediate and long-term relevance in the
ErUM research field and as a driver for innovation in the general community.

Throughout the project, our results will be continuously reported to the involved experimental
collaborations as well as at national and international conferences. These are conferences in
astro- and particle physics, conferences focused on Al-based methods in information science and
engineering, and particularly meetings within the ErUM-Data and DIG-UM communities. For
this, travel funds are requested in the application. Beyond that results will be published in
journal papers with quality control. New methods will become technical papers authored by the
collaborators of this project. Additionally, the successful application of science results will enter
and improve publications by the involved experimental collaborations. Publications within our
field, particularly if signed by full collaborations in view that first they need to be established
in actual physics analyses of those collaborations, usually take longer time than few-author
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technical papers. Therefore, we foresee that technical papers will be published mostly during
the time frame of the project. Still, for the research results, we expect that the full exploitation
of this project will continue for 2-5 years beyond the project’s duration.

A further important exploitation aspect is the use of results for teaching and educating
young researchers. Recently, requests for handing out research topics with the application of
machine learning in data analysis for Bachelor and Master theses amount to more than 50% of
requested thesis topics in our groups. Master and Bachelor students can be easily integrated
into the workflow of this project. Based on the requests during recent years, we can estimate
to supervise of the order of roughly 15-25 Bachelor and Master theses per year with direct or
indirect connection to these projects. Furthermore, the involved Pls are very active in teaching,
with dedicated lectures, seminars, and exercises for data science and ML applications. The topic
of efficient simulation is ideally suited to be integrated into these courses. It will help improve the
education of young students in data science and prepare them for later careers in the industry.

4.3 Scientific and commercial impact

The availability of high-quality and high-statistics simulation data is essential within the field of
ErUM as discussed above. Therefore, the proposed research work is immediately connected to the
full ErUM research field. Through explicit involvement in several experimental collaborations,
the project team can directly apply the new research algorithms. The proposed methods have
been planned as generic tools that can be easily adapted to different use cases and projects. We
have planned our research program structurally in a multi-disciplinary framework. From this,
we expect a high connectivity to other fields beyond ErUM.

4.4 Subsequent use

To successfully evaluate our developed methods and algorithms we need to implement them
into the simulation software and data processing chain of the involved research facilities CMS
and IceCube and potentially beyond. This guarantees the subsequent beneficial use within
these facilities. Both projects have implemented thorough internal review procedures that eval-
uate each step of analyses, including verification of tools and excellent documentation. Fur-
thermore, we plan to publish the code of our tools through platforms like GitHub with full
open access. Our technical papers will be published in Open-Access journals and uploaded
on preprint-servers like ArXiv. Also, our involved experimental collaborations usually publish
all their results with open access and regularly release their data to the public. Examples
are CMS Open data (https://cms-opendata-guide.web.cern.ch/) and data releases of IceCube
(https://icecube.wisc.edu/science/data-releases)/ ).

4.5 Sustainability

A more sustainable use of computing resources is put forward as a central goal of the funding call.
This is targeted directly by this project. The generation of simulation data occupies roughly 50 %
of the total computing budget of our facilities, see e.g. Figure 1 in [2]. The other half is shared
by e.g. data processing, calibration, analysis, and statistical evaluation of confidence intervals.
Therefore, simulation can be considered the hungriest consumer of energy for computing and
correspondingly emission of C'O,.

Experience shows that improved computing —although more efficient — generally does not
lead to switching off computing facilities and correspondingly to savings of COz. However, the
exploitation of our methods within ErUM projects have the potential of dramatically improv-
ing the efficiency of used resources, resulting in a better ratio of resulting science per emitted
COs. Beyond this, the estimation of needs for computing resources in future projects usually
depends on the current state-of-the-art computing and the requirements of achieving the re-
search goals. A detailed study for the HL phase of the LHC can be found in Figure 5 of [2].
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Here, the implementation of our algorithms can lead to a significant reduction in the number
of future computing facilities required for these projects. Furthermore, sustainability measures
are implemented within our experimental collaborations. A prime example is the IceCube Neu-
trino Observatory which is hosted in one of the most fragile environments of our planet. For
the planning of the next generation infrastructure, IceCube-Gen2, a dedicated Sustainability &
Environmental Impact working group has been created to minimize the C'Oo-footprint of the
facility and significantly reduce the use of fossil fuels in comparison to the construction and
operation of IceCube. Beyond power, transportation, and travel, computing has been identified
as a key objectives for enhancing the sustainability (see e.g. the recently submitted proposal to
the National Prioritization Process for Large Reserach Infrastructures of the BMBF).

Beyond the gain in efficiency, the transfer of methods to industry and engineering has the
potential of a large multiplication of the gain within ErUM. In commercial industrial applications,
improved modeling and more efficient simulation can immediately reduce computing demands
on shorter timescales.

Beyond the central goal defined in the call, the Sustainability Guide for Research Processes
of the DFG has also been taken into account. Within the applying universities, the involved
groups at these universities can meet without the need of traveling. With only two applying
universities also the traveling between them can be minimized by holding virtual phone meetings
every month. In addition, we plan for a single in-person meeting per year only, but will utilize
common meetings such as collaboration meetings or the DPG spring meeting for splinter meetings
for in-person exchange. In addition, the proposed measures for reduced computing power are
directly embedded in our work packages. Particular examples are WP-4 which directly steers
the efficiency of simulations or WP-5 which has the potential of re-using existing simulations.

This proposal considers several of the sustainable development goals as defined by the Agenda
2030 of the United Nations. Our work program directly addresses goal 9 (resilient infrastructures
and fostering innovation). Furthermore, our research is committed to the implementation of FAIR
principles for exploitation and inclusive education based on equity and diversity, addressing not
only goal 4 (Equity in quality education) but also goal 5 (Achieve gender equality). As our project
structures are unbiased with respect to gender, they are thus ideally suited for empowering women
and girls in science. Lastly, peace, as stated in the agenda, is a prerequisite for sustainability. The
European Organization for Nuclear Research (CERN) is the European laboratory that represents
peaceful cooperation between nations for collaborative research with an unprecedented history
of meanwhile 70 years.

5 Work sharing/Cooperation with third parties

The work plan of the proposed project is structured according to closely entangled work packages
(WPs) to ensure efficient collaboration and task distribution. The division of labor within the
work packages and sub-tasks has been detailed in table 2. The close entanglement requires a
well-organized cooperation in particular given the geographical distance between Aachen and
Erlangen. Beneficial is that all project partners look back to a long-year history of joint collabo-
rative work between each other. E.g. the groups of J. Kowalski and C. Wiebusch cooperate since
more than a decade in space science projects funded by the DLR. The CMS and IceCube groups
in Aachen have already successfully implemented a joint weekly meeting on ML-related topics in
their research. The PI of our industry partner has a background in IceCube and many employees
have been trained in particle physics. The overall project will be coordinated by the early career
scientist C. Haack from Erlangen. As a former PhD graduate from Aachen, he provides excellent
knowledge of both institutions as a key to implementing and supervising fruitful cooperation.
For internal cooperation and tracking the project’s progress, we will run monthly virtual
meetings and one dedicated in-person meeting per year — alternating between the sites. Addi-
tionally, researchers have the possibility of traveling between the institutions for dedicated work
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meetings with colleagues at the respective other site. Furthermore, we can profit from existing
structures, such as collaboration meetings and the possibility of a dedicated splinter meeting at
the DPG spring meeting. Pre-defined milestones will be monitored continuously to ensure that
issues and dependencies are resolved early and the project stays on track. During the later phase
of the project, we have included internships at ControlExpert GmbH in the work plan, which
will provide unique opportunities for hands-on collaboration with the industry.

Beyond internal collaboration, we will cooperate closely with all international collaboration
partners from CMS and IceCube, as well as many other partners within the ErUM community.
We will also cooperate closely with Dr. Martin Rongen from FAU Erlangen, an expert in modeling
the optical properties of the Antarctic ice for IceCube. The German research structures provide
excellent opportunities for collaborative work. That is, beyond the DPG spring meeting, frequent
community meetings which are organized by the Komitee fiir ElementarTeilchenphysik (KET),
the Komitee fir Astroteilchenphysik (KAT), and last but not least within ErUM-Data, well-
supported workshops organized by the ErUM-Data-Hub.

6 Necessity of the financial support

In this application we propose an interdisciplinary project that combines astroparticle physics
with particle physics from within the ErUM program of the BMBF, engineering and an industrial
partner for exploitation. The required resources are detailed in the work plan. The goals will
be highly beneficial for the involved major research infrastructures IceCube and CMS, explicitly
stated in the funding call. The proposed research plan is not covered by existing BMBF funding
or other funding sources for these projects as it targets the development of cutting-edge Al
methods for enhancing the digital competence within ErUM and beyond. The composition of
the research group reflects this. The partners from the different research areas are not associated
within another network or consortium nor can the work plan be mapped to existing project
funding within the BMBF ErUM framework program. The necessary funds cannot be raised
from the universities’ basic funding. Therefore, funding within the framework of the “Software
and Algorithms” program is essential for achieving the research objectives.
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