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Agenda

1) Learning Representations of Pulse Shapes
2) Sampling from Pulse Shapes
3) Closing Remarks and Outlook



Learning Representations of Pulse Shapes

Data are generated through RPfiber simulations.

* Each simulation takes a filter setting as input and returns the complex spectrum.

* Filter settings are randomly generated by sampling different pulse shapes in time domain.

* Time domain phase is described as a 4™ order polynomial, whose coefficients are uniformly
sampled based on FWHM.

 Data available on Zenodo 10.5281/zenodo.14906677

Shape Gaussian, Parabolic, Sech, Triangular, Flat-top
Order parameter (gaussian | triangle) 1,2,3,4,5,10 1,2, 4
FWHM Uniform: 2 — 40 ps
SOC Gaussian: u=0, 0 =50 * 2/ 3*(FWHM**2)
TOC Gaussian: u=0,0=50* 2 / (FWHM**3)

FOC Gaussian: p =0, 0 =50 * 8 / (FWHM**4)



Learning Representations of Pulse Shapes

Idea: Find a lower
dimensional latent
representation of
pulse shapes

by leveraging VAESs

Idea’: Can the dynamics * & 7

mapping input to output
pulses be replicated in
a learnt latent space?
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Used network architecture in pulse shape representation learning.



Learning Representations of Pulse Shapes
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Learning Representations of Pulse Shapes
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Multimodal Generative Models for Scalable Weakly-Supervised Learning, https://arxiv.org/pdf/1802.05335



Learning Representations of Pulse Shapes
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Multimodal VAE inference results, ground truth in blue, reconstructions in orange.
From L.t.r.: Input pulse intensity profile, first derivative of the unwrapped input phase,
output pulse intensity profile.



Inverse Transform Sampling from Pulse Shapes

Idea: View pulse intensity profile as pdf and sample by transforming samples from a
uniform distribution on [0,1] by virtue of the corresponding cdf. Implemented in PyTorch.

CDF on area normed pulse shape Longitudinal Particle Samples
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Inverse Transform Sampling from pulse shapes. From L.t.r.: laser intensity profile,
cumulative distribution function of laser intensity profile, histogram of electron emission
times sampled from intensity profile.



Closing Remarks and Outlook
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Own differentiable
simulation software Pamde Electron gun Re.St .Of
Emission Photoinjector

Surrogate model|
Inverse Tra.nsform trained on already sampled
Sampling ASTRA data

+ resampled data (first 3m)

Annika's and Jan's
software Cheetah

Possible way to model the whole system by interfacing the subsystems (1) and (2),
derived from a discussion with Henrik.



Closing Remarks and Outlook

* Training of a gun surrogate model
- learn the evolution of simulated of bunch states from
simulated state sequences

- Reshape already existing simulation data for XFEL and
PITZ

- resample data with varying pulse shapes

 Benchmark Cheetah vs ASTRA for beam simulations beyond
3.2m
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