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We are going to touch the following questions

What does the Higgs self-coupling have to do with gravitational waves?
Were there bubbles in the early universe?

Can we disappear instantly?

Are the current limits we have on the Higgs self-coupling useful?

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Worksh

Why havent we discovered the Higgs self-coupling yet?
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 Stability of the universe




A short introduction

Higgs potential and Higgs pairs

The Standard Model (SM) Higgs potential 1s given by

V(gp) = — ugp* + Ag*
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A short introduction

Higgs potential and Higgs pairs

The Standard Model (SM) Higgs potential 1s given by

V(gp) = — ugp* + Ag*

After electroweak symmetry breaking, we have ¢ = ( -(I)- h)
1%

When inserting this into V(¢), we get the Higgs Lagrangian

| |
Fisgoh) = 5 {11}
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A short introduction

Plot for illustration purpose

Higgs potential shape for different «, values
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Beginning of the universe

The early universe

How did the Electroweak symmetry break?
electroweak phase transition = when the Higgs field is “turned on”™ 5\
\
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Beginning of the universe

The early universe

How did the Electroweak symmetry break?

electroweak phase transition = when the Higgs field is “turned on”™

A) A first order phase transition
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Beginning of the universe

Phase transition and Higgs self-coupling?

V.rs(o) | 1st-order

Verrlo) | 2nd-order

0

e 0| O

The potential barrier depends on the
Higgs self-coupling

A strong deviation from the SM value

would be a hint of a strong first-order
EWPT

The SM does not predict a first order
phase transition

First order 1s only allowed in BSM

G. Weiglein, Higgs Pairs 2025

Y

models

SM = Standard Model, BSM = Beyond Standard Model
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https://indico.cern.ch/event/1399335/contributions/6390512/attachments/3067773/5426894/Hpairs_models_25.pdf



https://magazine.krieger.jhu.edu/2023/05/riding-the-gravitational-waves/

Beginning of the universe

Primordial Gravitational Waves

Two types of gravitation waves (GWs):
1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now

2. Primordial (cosmological) GWs (PGWs): from the early unmiverse (produced during
inflation, cosmic strings, or first-order phase transitions)
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Primordial Gravitational Waves

Two types of gravitation waves (GWs):
1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now

2. Primordial (cosmological) GWs (PGWs): from the early unmiverse (produced during
inflation, cosmic strings, or first-order phase transitions)

A possible origin of PGWs:

e If the phase transition 1s first order — bubbles — bubbles
collisions — shake spacetime — producing gravitational waves
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Beginning of the universe

Primordial Gravitational Waves

Two types of gravitation waves (GWs):
1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now

2. Primordial (cosmological) GWs (PGWs): from the early unmiverse (produced during
inflation, cosmic strings, or first-order phase transitions)

A possible origin of PGWs:

e If the phase transition 1s first order — bubbles — bubbles
collisions — shake spacetime — producing gravitational waves

Properties of PGWs:

* should present as a stochastic gravitational wave background, a
random “hum” present everywhere
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Beginning of the universe

Gravitational Waves and the Higgs boson

Gravitational Waves Higgs boson

EW phase transition
PGWs Shape of the potential

The connection origins from the EW phase transition with 1s connected to both the Higgs bosons
self-coupling and to the primordial gravitational wave production
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Current knowledge



Current knowledge arX1v:1910.00012

Di-Higgs production at the LHC
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(a) Box Diagram (b) Trilinear Coupling

Leading order Feynman diagrams for the dominant gluon—gluon fusion production

These two diagrams interfere destructively!
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>
S Consequences:
g  Low amount of events: very rare process
E S S S - triangle |

-0.1 rieriorence e Amount of events depends on k;

[ — Sum _
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300 400 500 600 700 21



https://cds.cern.ch/record/2692014/files/1910.00012.pdf

Current knowledge

The HH — bbyy channel

Final state particles observed in the ATLAS
detector: photons and b-jets

= photon reconstruction and calibration

= b-jet reconstruction and calibration

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

22




Current knowledge

Why are we doing this analysis?

dO' OEITITITITITII . H
dMuH

Ho We can access low di-Higgs masses
| thanks to the photons (that have low
thresholds in the trigger)

This region 1s more dependent on k,

= better sensitivity to k; despite the
lower statistics

200 300 400 500 600 700 800
mun [GeV]
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)

Kinematic fit to improve my,, resolution

Object and event selection

< 6 jets
(pr > 25,|n| <2.5)

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

At least 2 b-tagged jets Sketch courtesy of E. Brost

(GN2 tagger, WP85)
24




Current knowledge

Simplified Analysis Strategy

. , -
Prepare the objects (photons and b-jets) T‘”
Split into high mass region and low mass region 2 TarflthSK SM
':IE: A
330GeV ... EEE————
2
§ Targets
% BSM KA
—
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Current knowledge

Simplified Analysis Strategy
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)

‘U’ Mbbyy
Split into high mass region and low mass region
U é Targets SM
Train Boosted Decision Trees (BDTs) to s HH K
distinguish signal from backgrounds socey NI G WD
v
. = | [argets LM1 M2 | LM3 |Lma4
Make categories based on the BDTSs outputs H R

BDT score
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)

\

Split into high mass region and low mass region

\

Train Boosted Decision Trees (BDTs) to

distinguish signal from backgrounds

\

Make categories based on the BDTs outputs

\

Make simultaneous fits to m,,
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)
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Current knowledge

Simplified Analysis Strategy

Prepare the objects (photons and b-jets)

Split into high mas
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Current knowledge

Newest di-Higgs constraints

Combined Run 2:

New bbyy analysis:

ATLAS Run 2

L I L | LB l:
- Qbserved limit (95% CL) -

=1 | L
- ATLAS Preliminary
- Vs =13 TeV, 126—140 fb-!
| HH combination

Expected limit (95% CL) -
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Expected limit +10

]
E —— Combined —— bbTtT- 1 Expected limit £20 =
S Multlepton —— bbyy EES Theory prediction .
I +EMSS —— bbb Y7  SM prediction

—-1.2 <k, <7.2at95% C.L.

—1.6 <k; <6.6at95% C.L.

o
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o
w

CMS Run 2
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=== Theory prediction === 95% expected
¥ SM prediction

2
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Upper bound on A of currently about 7 X (SM value)
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Translated to the potential shape

V(D) [GeV?]
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Current knowledge SM = Standard Model
BSM = Beyond Standard Model

Are the current limits interesting?

= the current limits are already interesting for theory

= k, can be modified up to ~7 X SM from BSM

Cédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop
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https://indico.cern.ch/event/1399335/contributions/6390512/attachments/3067773/5426894/Hpairs_models_25.pdf

Current knowledge

Future limitations and show stoppers?

Current limitation: STATISTICS

bbyy systematic uncertainties

g

=

=

S

2

P

Uncertainty source Aa é
|70 5

Photon Energy Resolution (PER) +0.42 =
Photon Energy Scale (PES) +3.5 E
Jet < 0.1 3=
Eiss +0.1 g
Muon < +0.1 =
Photon Efficiency +0.27 <
Flavor Taggi < £0.1 o~
largest systematic uncertainty Cé

Branching ratio +0.32 ot
Parton showering model < £0.1 gﬂ
Heavy-flavour content +0.98 %
Pileup < * =
Luminosity < =£0. 5
Background model (spurious signal) < + ~

All systematics +13 35




Current knowledge J. Davies, Higgs Pairs 2025

Theoretical uncertainties

The theoretical uncertainties on the di-Higgs cross-section are directly related
to the uncertainty on k,

\V/S 13 TeV 13.6 TeV 14 TeV
PDF+os +2.3% +2.3% +2.2%

ren. scale +22%/-5.0% | +2.1%/-49% | +2.1%/-4.9%

e top mass scheme

e renormalization and factorization scales

worsens scale S |
e parton distribution functions (PDFs)

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

e strong coupling (ay)
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https://indico.cern.ch/event/1399335/contributions/6387357/attachments/3064833/5420991/davies.pdf

Current knowledge HL-LHC = High Luminosity LHC

A look at the future: HL-LHC

oF
o
=
=
o
1.2 . . . . . . . =
ATLAS + CMS paper | : &
1.0F Projections ESPPU 2026 i E
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08— sM T © ainty i predict a strong first-order phase transition B
SMEFT 6, k57" = 1.66 k3 €[0.74 — 1.29] a1 S
S a7 SMEFT 8, kI""=1.69, kj"" =5.4 HH-driven 7 -
0.6f . . 7 5 o
N —-= Log. Potential, k§"" = 1.57 1o Uncertainty 2 =
> Exp. Potential, kzni” =1.99 K3 €10.74-1.291 ./' . . —1 z;
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0.2r . .
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T A —— the four alternative hypotheses: -
I | | 'I | | ,': ([ J ([ J ([ J m
~N ST S ainty i driven oty 7 in specific models we can either find ~
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S o1l E
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https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-25-002/index.html
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Fate of the universe



Fate of the universe Plot for illustration purpose

Stable, metastable and unstable

How could a Higgs potential look like?

vv
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Unstable
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Fate of the universe Plot for illustration purpose

Stable, metastable and unstable

Before electroweak symmetry breaking

vv

— Mexican hat
Unstable
— Metastable
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Fate of the universe Plot for illustration purpose

Stable, metastable and unstable

After electroweak symmetry breaking

Simplest assumed Higgs potential

vv

— Mexican hat
Unstable
— Metastable
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Fate of the universe Plot for illustration purpose

Stable, metastable and unstable

After electroweak symmetry breaking
Simplest assumed Higgs potential

Can tunnel at any point in
time to the secondary
minimum

— Mexican hat
Unstable
— Metastable
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Fate of the universe Plot for illustration purpose

Stable, metastable and unstable

After electroweak symmetry breaking
Simplest assumed Higgs potential

Can tunnel at any point in
time to the secondary
minimum

— Mexican hat
Unstable
— Metastable
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Fate of the universe
Stability of the universe and Higgs self-coupling
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https://arxiv.org/pdf/1307.3536

Fate of the universe

Stability of the universe <> Higgs and top masses <> Top Yukawa coupling and Higgs coupling

V= const.+mé\H\2+/1|H\4

Small variations of any of these
three parameters with respect to
their measured values could have
devastating consequences for our
life-friendly universe.

0.8

0.6

Top Yukawa coupling y,(Mp)

0.0 | [ | [ B | [ B | 1
-006 -004 -0.02 0.00
Higgs coupling A(Mp,)

Stability of the universe and Higgs self-coupling

04

I | T I I | I I I

Planck—scale
"« dominated

Stability

0.02

0.04

0.06

45

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop



https://arxiv.org/pdf/1307.3536

Conclusion

e Electroweak symmetry breaking: what phase transition? We don’t know yet
 The current limits are already useful to exclude some Beyond the Standard Model models

 The limiting factor to the Higgs boson self coupling discovery 1s the statistics that should be achieved
at HL-LHC, at that point the limiting factor will be the theory prediction precision

e Current knowledge tells us we could 1n theory disappear instantly due to the universe being metastable

Electroweak symmetry
breaking in the early
universe

global shape of the
Higgs potential

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

nggs Self_coupling Universal Stablhty
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Backup content

* Top mass scheme

e (Gravitational Waves

 An introduction to EFT

e Heavy top limit

 Theoretical uncertainties: PDF 1ssues
e Plot: LO interference

e Plot: Stability - mass

e Plank scale

e Plot: Stability - coupling

e Kinematic fit detailes
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Top mass scheme

1. The Problem: What is the Top Quark Mass?

e  Top quark mass 1s a fundamental parameter in the Standard Model.

e Different ways to define “mass” lead to slightly different numerical values.

e  The uncertainty 1sn’t just experimental — 1t’s theoretical, depending on the scheme used.

2. Mass Schemes

Scheme Definition Key Feature Uncertainty Source

Pole Mass Mass of the quark as an on-shell Intuitive, linked to physical mass Ambiguous due to infrared effects
particle (propagator pole) (~A_QCD = 200 MeV)

MS-bar ( M—S) Short-distance mass, defined in Scale-dependent, avoids long- Needs scale choice; less direct
dimensional regularization distance ambiguity physical interpretation

1S | PS [ Kinetic Masses tied to bound-state Reduces long-distance QCD Small scheme conversion
properties or low-energy effects uncertainties (~100 MeV)

observables
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Top mass scheme and k,

Fig. 1

From: Higgs boson pair production at NLO in the POWHEG approach and the top quark mass

uncertainties
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Left: the total inclusive cross sections at \/E — 13.6 TeV for different choices of the top mass renormalization scheme, at LO (dashed) and NLO

(solid), as a function k). Right: the corresponding K-factors

Bagnaschi et al., Eur. Phys. J. C 83, 1054 (2023)‘
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https://link.springer.com/article/10.1140/epjc/s10052-023-12238-8

IBagnaschi et al., Eur. Phys. J. C 83, 1054 (2023)|

Top mass scheme and m,;;; distribution
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Beginning of the universe

Gravitational Waves (GWs)

source

e are ripples in spacetime

e produced by violent cosmic events (€.g.
black hole merges)

e can be detected with experiments like
LIGO and Virgo
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https://magazine.krieger.jhu.edu/2023/05/riding-the-gravitational-waves/
https://www.ligo.caltech.edu/news/ligo20170927
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Current knowledge

Effective field theory (EFT) - ldea

J SM + new physics

new physics

L

mass spectrum

Number of events
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Current knowledge

Effective field theory (EFT) - ldea

oEs
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Current knowledge

Effective field theory (EFT) - ldea

oEs
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Current knowledge

Effective field theory (EFT) - SMEFT lagrangian

Extend the Standard Model (SM) Lagrangian with higher orders:

1 1
N Scale of new physics
with gi — Z CJ.O]." ].n many BSM models, \ is
. interpreted as the mass of
J the new particle
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Current knowledge

Effective field theory (EFT) - SMEFT lagrangian

Extend the Standard Model (SM) Lagrangian with higher orders:

1 1
N Scale of new physics
with £, = Z C] IZI; ;Z;fmy BSM models, A\ is
=0 preted as the mass of
J the new particle

Wilson coefticients
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Current knowledge

Wilson coefficients

The Wilson coefficients are our free parameters 1n the EFT theories

They can be imaginged as follows

g\mmsw/ H

Standard Model 1s refound with the Wilson coetficients at zero.

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

So any significant deviation from zero 1s interesting. 61




Current knowledge

Wilson coefficients - constraints
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Observed 95% C.L. limaits:
—0.38 < ¢y, < 0.49

~0.19 < ¢, < 0.70

date on ¢, and ¢,

predictions

No new physics found yet

These represent the most stringent constraints to

The results are compatible with the SM
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2021-18/

Heavy Top Limit

This 1s the approximation made to compute it more simply
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Current knowledge

Theroretical uncertainties - example: PDF issues
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https://indico.cern.ch/event/1585551/contributions/6681700/attachments/3137090/5566674/HiggsHunting-adapted-ATLAS-Warwick.pdf

arX1v:1910.00012

LO diagram interference

0.2

The effect of the trilinear Higgs self- | / 14 TeV
coupling 1n the LO total cross section |
amounts to a reduction of about 50%
with respect to the box-only
contribution, due to the large
destructive interference.

-
—_

da/dmyy [fb/GeV]
-
o

A S . - triangle
The QCD corrections increase the | interference
total cross section by about a factor | —— sum
' o .
of two with respect to the LO 300 200 00 500 290

rediction,
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Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.
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Top pole mass M; in GeV
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The uncertainty from o.and from
theoretical errors are indicated by the
dashed lines and the colour shading along
the borders.

Also shown are contour lines of the
instability scale A

From this result we conclude that vacuum stability of the SM up to the Planck scale 1s excluded
at 2.86 (99.8% C.L. one-sided). Since the main source of uncertainty in eq. (64) comes from
M, any refinement in the measurement of the top mass 1s of great importance for the question
of EW vacuum stability.
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2. Quantum corrections: from V () to Vg (o)

In quantum field theory (QFT), particles interact via loops — virtual fluctuations that shift the energy
levels.
So the true energy density for a given field configuration isn't just the classical V(gb), but the effective

potential Vg (¢), which includes loop corrections.

Mathematically:

V:eff(qb) — V:cree(qb) =+ AVvl-loop(qb) + AVvZ—loop(qb) + -

Each AV term accounts for higher-order quantum effects (Feynman diagrams with loops).

3. Why the effective potential matters

* The vacuum state of the universe is the field configuration that minimizes V;ff(qb).

* Quantum corrections can shift or even create new minima at large field values.
For example, due to the heavy top quark, the Higgs quartic coupling /\(,u) can run negative at high
energy scales.

* This means the SM potential may develop a second, deeper minimum at large ¢, making our

electroweak vacuum only metastable.

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop

That's what Buttazzo et al. study: how quantum corrections (encoded in V.¢) change the vacuum

structure.
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4. The role of the renormalization group (RG)

The effective potential depends on the renormalization scale .
To make physical predictions stable under changes in i, we use renormalization group equations

(RGESs) to evolve the couplings (A, g, ¥4, . . .) with energy:

dA
— A .
The RG-improved effective potential is then:
1 4

Vege(h) >~ 1 Aett(h) B

for large Higgs field values h > w.

This form shows that if )\eff(h) < (0 at some scale h, the potential turns downward — indicating vacuum

Instability.

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop
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2. Quantum corrections make A run with energy

Quantum loops (especially involving the top quark, W, Z, and the Higgs itself) modify how the parameters

behave at different energy scales.

So A becomes scale-dependent via Renormalization Group Equations (RGESs):

d
dln p

— 5)\()‘79157:%7 .o )

Here:
* L is the renormalization scale (the energy at which you probe the theory),
* g; are the gauge couplings,

* 1 is the top Yukawa coupling.

This “running” of )\(u) Is computed from the SM's B-functions — typically up to 3-loop precision in

modern analyses like Buttazzo et al. (2013).

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop
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6. How the instability scale links to lifetime qualitatively

Instability scale A; Behavior of A Vacuum lifetime

A; > Mp No zero crossing - stable Infinite (no decay)

A ~ 107 GeV Crosses just below Planck Extremely long (> 10%°x age of universe)
Ar ~ 101912 GeV Crosses moderately early Still enormous lifetime (metastable)

A; 5 10° GeV Crosses low, A very negative Lifetime shorter than universe (unstable)

So the lower the instability scale, the faster the potential decay — because A_eff turns negative sooner

and more strongly.

© 2. "Perturbative” vs. “Non-perturbative”

In the SM, we compute the running of couplings (A, g;, ¥, ...) using perturbation theory — i.e. we expand

observables in powers of small couplings:

Observable = tree level + ¢; g* + cog* + - -

This works only when all the relevant couplings are small (< 1) so that higher-order terms are suppressed.

If a coupling grows too large, the perturbative expansion stops converging — the theory becomes non-

perturbative, and our usual RGEs and loop calculations no longer give trustworthy results.

71
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A 3. What causes that in the Higgs sector

For very large Higgs masses M}, the quartic coupling A must also be large, because:

2

m
Aw) = b
(v) =55

So if M}, is, say, 500 GeV, then A(v) ~ 0.5; if M = 1TeV, A(v) ~ 8 — enormous.

Then, as we run )\(,u,) to higher scales using the RG equations, it increases even more and can diverge at

a finite energy scale — the so-called Landau pole.
That means:

 The perturbative calculation breaks down.
« We lose predictive control before reaching the Planck scale.

e The SM cannot be extrapolated reliably there.

~ 5. The big picture

Region Behavior of Aff(u)

Stable Aeff > 0, small, up to Planck
Metastable Aeff crosses O slightly, stays small
Unstable Aeff < O, sizable
Non-perturbative Aeff » 1 or diverges (Landau pole)

Interpretation

SM vacuum absolutely stable

Long-lived false vacuum

Vacuum would have decayed

SM loses predictivity; need new physics
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o 4. What it tells us about our universe

Using the measured values
My, ~ 125 GeV, M; ~ 173 GeV, and as(My),

the authors find:
A; ~ 10" GeV,
and the vacuum lifetime 7 > tyupniverse-

So our universe sits in the metastable region, extremely close to the boundary with absolute stability —

what they call near-criticality.

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop
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Plank scale

Quantity

Planck mass
Planck energy
Planck length

Planck time

e Connection:

Definition Numerical Value
Vhe/G ~ 2.2 x 10 % kg
Mpc? ~ 1.22 x 10" GeV
v hG/c? ~ 1.616 x 10" % m
Ip1/c ~5.39 x 10 # s

1 1

Epy~ Mpy ~ — ~ —
lp1  tp
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1. What they did in Figure 3

In Figure 3, the phase diagram is drawn in terms of the low-energy, measured parameters:
e Higgs mass M},
e Top quark mass M;

These are pole masses measured near the electroweak scale (~ 100 GeV).

 From these masses, you infer the low-energy Higgs quartic coupling A(v) and top Yukawa y;(v).
* Then you use RGEs to run them up to high energies (u ~ 101019 GeV) to see if the vacuum is

stable, metastable, or unstable.

2. The idea behind Figure 4

In Figure 4, the authors reparametrize the phase diagram using the values of the couplings themselves

at a high-energy scale:

A(Mhigh);  Yt(Unigh)

* Typically, phigh ~ 101718 GeV, just below the Planck scale.
« This is where the potential is near its critical behavior — i.e., near the scale where A\.¢ could cross

Zero.

Ceédrine Hiighi (DESY), Astroparticle and Particle Physics Workshop
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Stability - coupling plot

Top Yukawa coupling y,(Mp,)
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The area denoted as ‘no EW vacuum’ corresponds to a situation in which A 1s negative at the
weak scale, and therefore the usual Higgs vacuum does not exist.

In the region denoted as ‘Planck-scale dominated’ the instability scale Al 1s larger than 10718
GeV.

In this situation we expect that both the Higgs potential and the tunnelling rate receive large
gravitational corrections and any assessment about vacuum stability becomes unreliable.
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BJetCalibration correction

Improve the m,, resolution by correction for

* muons escaping the cone
* neutrinos

e other out-of-cone effects

Improve by ~ 23% the m,,, resolution

ﬁ.457 [ LI I LI I | L I LI I LI I LI I | L I LI I LI 'l:
) - TLAS Internal Poak Width Imp 3
B 0.4F =
D — ® No correction 114.4 18.82 -
20.35 e— Muon-in-jetcorr 118.7 16.87 14%—
;—_J - ® Muon-in-jet+pt corr125.3 15.89 23% -
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0.o5F Preselection SM ggF HH and GN2@85WP_2pBjets E
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K; and K,y

g 009909990999~

g 009909990999~

(a) Trilinear coupling

(a) Trilinear coupling

K
H g 2990999999999 > ®---------- H
. A Y
AN . . \ Ht
H 9 2000999999999 < ®------—~---- H
(b) Box diagram
q q
K9 H
v
v T
H
q q
(b) HHVYV vertex (c) VVH Production mode
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Systematic uncertainties

Systematic uncertainties affect the shape and normalisation of the diphoton invariant mass distributions of
the Higgs boson pair signal and single Higgs boson backgrounds. Nevertheless, due to the limited number
of events and the small signal-to-background ratio, the impact of the systematic uncertainties is small

compared with that of the statistical uncertainties.

Systematic uncertainty source

Relative impact [%o]

Experimental

Photon energy resolution 0.4
Photon energy scale 0.1
Flavour tagging 0.1
Theoretical

Factorisation and renormalisation scale 4.8
B(H — yv, bb) 0.2
Parton showering model 0.2
Heavy-flavour content 0.1
Background model (spurious signal) 0.1
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Complementarity of bbyy and 4b
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https://arxiv.org/abs/2406.09971

Complementarity of bbyy and 4b
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VBF parameter dependency
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Parametrisations
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The non-resonant bbyy channel

g 0900000000009 < ®----- - - --- H g 2000000000009~

(a) Box Diagram (b) Trilinear Coupling

DiHiggs production with one Higgs decaying to two photons and one to two b-quarks

S
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The non-resonant bbyy channel

Final state particles observed in the ATLAS
detector: photons and b-jets

= photon reconstruction and calibration

= b-jet reconstruction and calibration

Muon
Spectrometer

Hadronic
Calorimeter

g —
ofon

Electromagnetic
Calorimeter

Solenoid magnet

Transition
. Radiation
Traclq ng Tracker

Pixel/SCT detector
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Motivation to use the bbyy channel

do

200 300 400 500 600 700 800
mun [GeV]

—_—(

bbyy sensitivity bbbb sensitivity

The low my; region 1s essential to constrain the
trilinear coupling

The diphoton signature has the advantages:
e cificient photon reconstruction
e low energy resolution

e diphoton trigger 1s able to get the Higgs at rest

This ensures good sensitivity to low miy

We would love to do HH to yyyy

However,....
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Higgs decay modes
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H — yy has a very low branching ratio

LHC HIGGS XS WG 2016

bb WWwW TT /7 YY
WWwW 25% 4.6%
TT 7.3% 2.7% 0.39%

yy4

At the moment DiHiggs searches are limited by statistics = bbyy

= bbyy 1s thus great to access low my; region and still have a reasonable statistics
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Kinematic fit

s r > > -
Y B I o -
S 0.06—
(\\ ', / wn -
. ’ . I i / i I f A/n B B o ee
Dr i + Dr i = —p p AV, O — No Corrections: Impr [%] 0+1+243 Additional Jets
T,jet T,jet Ty Iy /] _—~—— P13 = = % 2118922020 o=
y -~ p= 92 + 0. o=18.56 = 0.15
- c 0.05— o
~ T . BCalibration:
\ B X,=125.14 £ 024 0=15.17+020 183
- BCal + KF:
0.04— x,=12084+0.15 0=1323:0.15 28.7(12.7) ,
> 0.03— q 1K
0.02— "L
0.01— £ ‘
- 2N
0 ol o IIIIIIIIIIIIIIIIIII~
0 20 40 60 80 100 120 140 160 180 200
m - [GeV]

Improve the m,, resolution by an additional 16% compared to the BCalibration correction
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m,, distribution

Events / 2.5 GeV
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l |
ATLAS

I|IIII|IIII|IIII|II

1
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l

Internal
fs=13TeV, 140 fb
HH—bbyy
HH preselection

EasyJet GN2v01 @ 85%WP

I : I : |
+ Data
YY+i
yy+bb

Single Higgs

ll|llll llll|llll|llll|llll|llll|l

E_ _+_ - ggF+VBF HH(bbyy)

é ++

= RERSs shiin ol =

= AR S s

— | | | 1 | : | ! —
ing BERS= =22 SREREE HE o o o

110 120 130 140 150 180
m.. [GeV]

m.. 1S the distribution we want to fit to

Yy

extract K

The main background is yy+jets

SM ggF HH | SM VBF HH
Vs=13TeV | 30.771fb 1.687 fb
Vs=13.6TeV | 34.13fb 1.874 fb
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Boosted Decision Tree (BDT) training

Normalized events

K —
mbbyy o mbbyy

— my,;, — m,,, + 250 GeV

VY
HM (high mass) region = SM-like region: m[;kbyy > 350 GeV
LH (low mass) region = BSM-like region: m[fbyy < 350 GeV
HH - bbyy
Pre-selection —— >M ggF HH : :
1 ggF HH k3 =0 ml;kbyy is preferred over simply my,,..
gg9F HH Ky =2 ) o :
—1 ggF HH =7 since it improves the signal mass
— —] ggF HH K, = 10 resolution due to the cancellation of
B detector effects
-
| H &5 e A BDT is trained for each region to
L — distinguish signal from backgrounds
= —
300 400 500 600 700 800 900 1000

Mppyy*
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Event categories

oF
o
<
o)
E
° ° ° B
3 categories for HM region and 4 for LM region are defined based on the BDT scores 3
N
2z
=9
Low Mass region High Mass region 3
g [ | | | I | | | I | | | I | | | I | | | _ g B | | | I | | | I | | | I | | | I | | | : E
S - ATLAS Internal —— SMHH ggF S - ATLAS Internal —— SM HH ggF - —g
~ 11 - ~

o 10°E vs_13Tev, 140 fo-! ==+ HHggF, k=10 - n 10T vs=13TeV, 140 fo —— HHggR, =10 S
I - ) — SM HH VBF ] e = ) ——— SM HH VBF . i
O - HH-bbyy HH VBF, ky=10 - D - HH-bby . HH VBF, ky=10 - é’
q‘-'f 100 Run3Low mass region Single H B E - Run3High mass region Single H - =
O = 7 -0.66 — Yy+jets - © 1 00 Z=0.28 — Yy+jets — %
S - ¢ Datasidebands |5 S - ¢ Data sidebands ] j&-;:
= i g = - HM3 = <
=107 | i S = - ’—’_‘?C' -
- | o aete i 5 L N 10-1  Le ' HM1 HM2 |2 %
i B r - cat AN NI : i = - ~
e s = B - SR M S Az e & s ; - . =
R B ! i o L Hl- e > i =
o | | N 107 =5 = = T
B E I I | N : E ’: 0.)
1073} | ' M2 IL]E,V[} 13Vi4 : * ' | l S : 2

R R L1 ] L Ly 1 i B R T L1 | T R d o0 N b R
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 O

BDT score BDT score
01




1.000
-0.870
-0.740
r0.610
-0.480
0.350
0.280
0.210
0.140
0.070

6.407
5.125
3.844
2.563
1.281
0.000
-0.200
-0.400
-0.599
-0.799

r6.238
- 5.864
-9.490
r5.115
r4.741
r4.367
3.493
2.620
1.747
0.873

https://arxiv.org/pdf/2409.03651
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V(\Phi) [GeV™4]

Higgs potential shape and ki

Post-EWSB Higgs Potential vs |\Phi| (absolute field)
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V(h) [GeV™4]

Higgs potential shape and ki

1e9 Post-EWSB Higgs Potential vs h (fluctuation)
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Understanding the beginning of Universe

\Iegg( T> 400 (eV

early Universe

|
\ C

n phase

0

.—/\/ transition
R R
- / today
Vv

current knowledge

A violent EW symmetry breaking

V=0 . S 4
&
.
\
V-.-.o ‘\

First Order Phase Transition
(FOPT)

< —
‘/ N\ u boiling universe

\/:D b

Why the Universe is made of matter?
The Higgs potential shape is crucial

s e

ONLY a Strong FOPT can explain a boiling universe

“Ph_

|7
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1e10 HEFT Higgs Potential (phenomenological parameterization)

SM-like (k3=1, k4=1, ab=a6=0)
Enhanced cubic (k3=1.5, k4=1)

>1 — Suppressed cubic, stronger quartic (k3=0.5, k4=1.2)
—— Tilt + stabilizer (a5=+1/A, ab=+1/A"2)
—— Shallow quartic, stabilized (k4=0.6, ab=+2/A\"2)

4 -

Shifted potential V(h) - V(0) [GeV*]
N
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Primordial GWs frequency ranges?

Primordial gravitational wave frequencies span a broad range, with current and future observatories targeting specific bands: Pulsar Timing Arrays (PTAs) probe the nanohertz (nHz) to microhertz (uHZz)

range, space-based interferometers like LISA target the millihertz (mHz) to 1 Hz range, and ground-based detectors like the Einstein Telescope (ET) and Cosmic Explorer (CE) aim for the 1 Hz to 10 kHz
band. Scientists also look for even higher frequencies, from kilohertz to 100 gigahertz (GHz), though these frequencies are primarily associated with sources like cosmic strings that have left no imprint
on current detectors

* The strength and nature of the electroweak phase transition depend partly on
the Higgs potential — and thus on the Higgs self-coupling.

e The mexican hat SM 1s a smooth transition from 0 to VEV thus not first order

 The higgs selcoupling gives us information about the shape of the higgs
potential and thus conseguently on how the Higgs did “roll” into that minima

e for a first-order phase transition the frequency range would depend on the
temperature of the universe when 1t happened

e A first order phase transition higgs potential would have a secondary minima
that can be reached suddenly through tunneling for example
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e First connection between the very small and the very big? (SM and gravity?)
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HL-LHC resuits will stay for years to come
and some will be reference until Fcc-hh

[De Blas et al., 2020]

kappa-0 |HL-LHC | LHeC | HE-LHC ILC CLIC CEPC| FCC-ee |FCC-ee/eh/hh
S2 S2’ [250 500 1000| 380 15000 3000 240 365
17 [0.75 [1.4 098] 1.8 029 024[0.86 0.16 0.11] 1.3 | 1.3 0.43 0.14
1.5 1.2 [1.3 0.9 [0.29 0.23 0.22| 0.5 0.26 0.23| 0.14 |0.20 0.17 0.12
2.3 36 (19 1223 097 06625 13 09| 1.5 |17 1.0 0.49
19 | 76 |16 1267 34 19 |98 50 22| 3.7 |47 39 0.29
10. — |57 3.8 |99% 86x 85% [120x 15 6.9 | 8.2 [81x 75% 0.69
- 41 |= =125 13 09|43 18 14|22 [18 1.3 0.95
3.3 — 28 17| = 69 16| = = 27| = | = = 1.0
i, [%] | 3.6 | 21 (32 23|18 0.58 048] 1.9 0.46 0.37| 1.2 | 1.3 0.67 0.43
<lxu[%;) 4.6 — |25 1715 94 621|320« 13 58| 89 | 10 89 0.41
=% 19 | 33 |15 1.1 |19 0.70 057 3.0 1.3 0.88| 1.3 | 1.4 0.73 0.44

k,, kz, kz, will be the most precise measurements for a long time
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Higgs potential shape and ki

2. Where a secondary minimum comes from

To have a second minimum at large field values, you need the full Higgs potential at large h, including:

e Higher-order terms beyond h*

* Radiative corrections (Coleman-Weinberg potential)

 Possible new physics contributions

For example:

* Inthe SM, RG running of A(u) can make it negative at high scale - metastability

 |n BSM, extra terms can create another local minimum

3. Link between k) and secondary minima

Here's the subtlety:

« Measuring k) tells you about the third derivative of V' (h) at h = v:

]' n

K) X ; V (h)‘hzo

A secondary minimum, however, depends on the integrated shape of V(h) far from h = v.
A wildly different k) can be a sign that the quartic (and higher) terms are also different, which might

allow for a second minimum — but ) alone doesn't prove or rule it out.
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1e13 Higgs Potential: Showing Secondary Minimum
—— Stable (SM-like)
1.0 4+ —— Metastable example
—— exagerated Metastable example
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Current knowledge

Effective field theory (EFT) - Warsaw basis

if you start from ““all operators of dimension 6,” you get a very redundant set
Why do we need to chose a basis? Because there 1s no unigue way to remove redundancies
We need to chose a basis.

A basis 1s the minimal set of independent operators (parameters) for the most general classification
of BSM effects.

We pick by convention the Warsaw basis

The Warsaw basis (Grzadkowski et al. 2010, JHEP 10 (2010) 085) 1s the most widely used
complete and nonredundant set of dimension-6 SMEFT operators 1n the linear realization of EWSB
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deforming SM correlations

-----------------------------------------------------------------

.......................................... -
SMEFT e “SM is a good IR reference point” %
. » clear power counting } E
» comparably few (bosonic) parameters c.g-[Croberetal. *15] ! i?
» tight correlations across Higgs multiplicities §
. » non-linear elw vacuum: non-trivial technical implications... ' :§
o R e Nl R e SN WA O S A S R e i T e 5 §
. HEFT Su(@)xSu()/su) “SM EWSB perhaps too limiting” ;i
» power counting debatable %
» large number of parameters ;ED
» data informs Higgs multiplicity correlations %’
» elw vacuum coarse-grained: technical simplifications... » U




 Good for model independent searches +
* Can be matched to UV complete theories +
* Allows to scan a wide range of BSM +

* Depending on the scenario, number of willson coefficients to test can be huge —

e Choices need to be made how to scan in these cases and also deal with
degeneracies e.g. Eigenvector decompositions —

 Based on this, all results include baked in assumptions such as other
coefficients fixed to SM case —

— Looking for some (benchmark) UV complete models directly?

Torben Lange (KBFI Estonia) | Higgs Pairs | Elba 13.05.2025 | torben.lange@cern.ch

Advantages and disadvantages of EFT

02/15
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