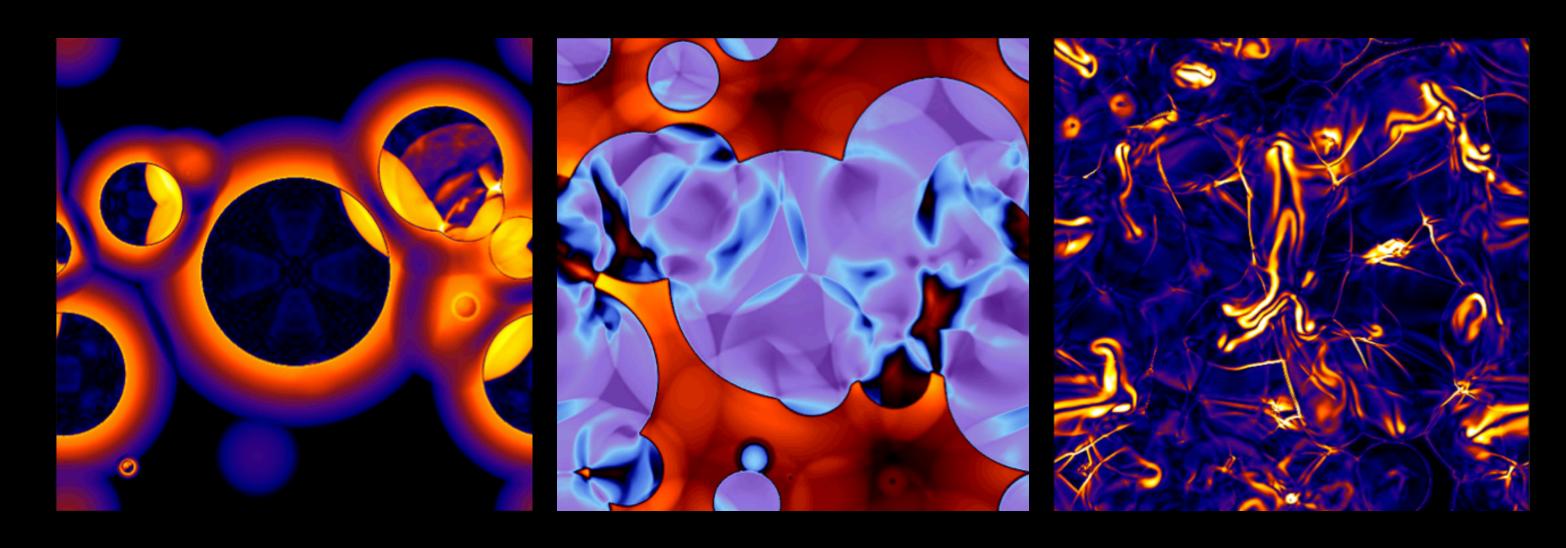
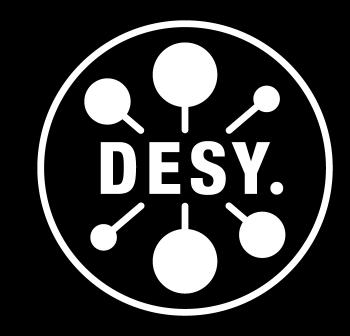
# The Higgs boson self-coupling and what we can learn from it

Cédrine Hügli





Astroparticle and Particle Physics Workshop Zeuthen, October 6th, 2025



# We are going to touch the following questions



What does the Higgs self-coupling have to do with gravitational waves?

Were there bubbles in the early universe?

Can we disappear instantly?

Are the current limits we have on the Higgs self-coupling useful?

Why haven't we discovered the Higgs self-coupling yet?

### Content

- 1. Short theory introduction
- 2. Beginning of the universe
  - Electroweak (EW) phase transition (PT)
  - Primordial Gravitational Waves (PGWs)
- 3. Current knowledge
  - Introduction and strategy of the  $HH \rightarrow bb\gamma\gamma$  analysis
  - Current limits
  - Future limitations and showstoppers
- 4. Fate of the universe
  - Stability of the universe



# Higgs potential and Higgs pairs

The Standard Model (SM) Higgs potential is given by

$$V(\phi) = -\mu\phi^2 + \lambda\phi^4$$

## Higgs potential and Higgs pairs

The Standard Model (SM) Higgs potential is given by

$$V(\phi) = -\mu\phi^2 + \lambda\phi^4$$

After electroweak symmetry breaking, we have  $\phi = \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$ 



## Higgs potential and Higgs pairs

The Standard Model (SM) Higgs potential is given by

$$V(\phi) = -\mu \phi^2 + \lambda \phi^4$$

After electroweak symmetry breaking, we have  $\phi = \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$ 

$$\mathcal{L}_{Higgs}(h) = \frac{1}{2}m_h^2 h^2 + \lambda v h^3 + \frac{1}{4}\lambda h^4$$



# Higgs potential and Higgs pairs

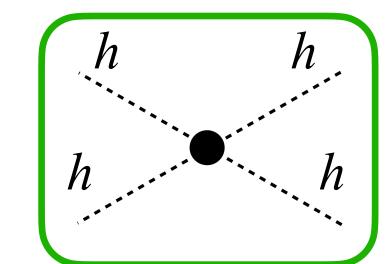


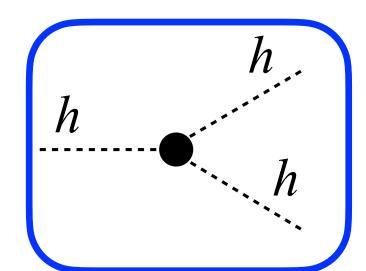
The Standard Model (SM) Higgs potential is given by

$$V(\phi) = -\mu\phi^2 + \lambda\phi^4$$

After electroweak symmetry breaking, we have  $\phi = \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$ 

$$\mathcal{L}_{Higgs}(h) = \frac{1}{2}m_h^2h^2 + \left[\lambda vh^3\right] + \left[\frac{1}{4}\lambda h^4\right]$$





## Higgs potential and Higgs pairs

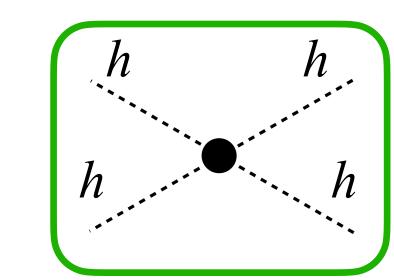


The Standard Model (SM) Higgs potential is given by

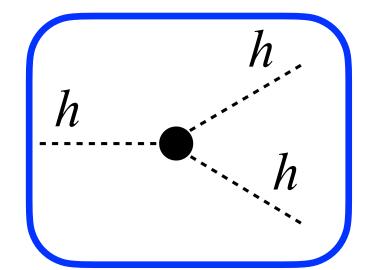
$$V(\phi) = -\mu\phi^2 + \lambda\phi^4$$

After electroweak symmetry breaking, we have  $\phi = \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$ 

$$\mathcal{L}_{Higgs}(h) = \frac{1}{2}m_h^2h^2 + \left[\frac{\lambda vh^3}{4}\right] + \left[\frac{1}{4}\lambda h^4\right]$$



SM: 
$$\lambda = \frac{m_h^2}{2v^2} \approx 0.13$$



# Higgs potential and Higgs pairs

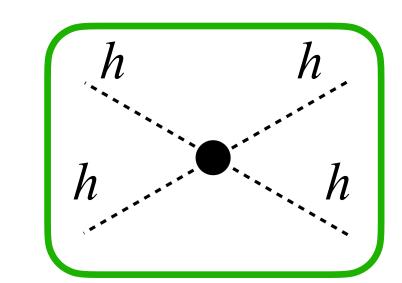


The Standard Model (SM) Higgs potential is given by

$$V(\phi) = -\mu\phi^2 + \lambda\phi^4$$

After electroweak symmetry breaking, we have  $\phi = \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$ 

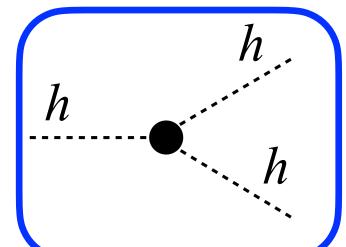
$$\mathcal{L}_{\text{Higgs}}(h) = \frac{1}{2}m_h^2h^2 + \lambda vh^3 + \left(\frac{1}{4}\lambda h^4\right)$$



SM: 
$$\lambda = \frac{m_h^2}{2v^2} \approx 0.13$$

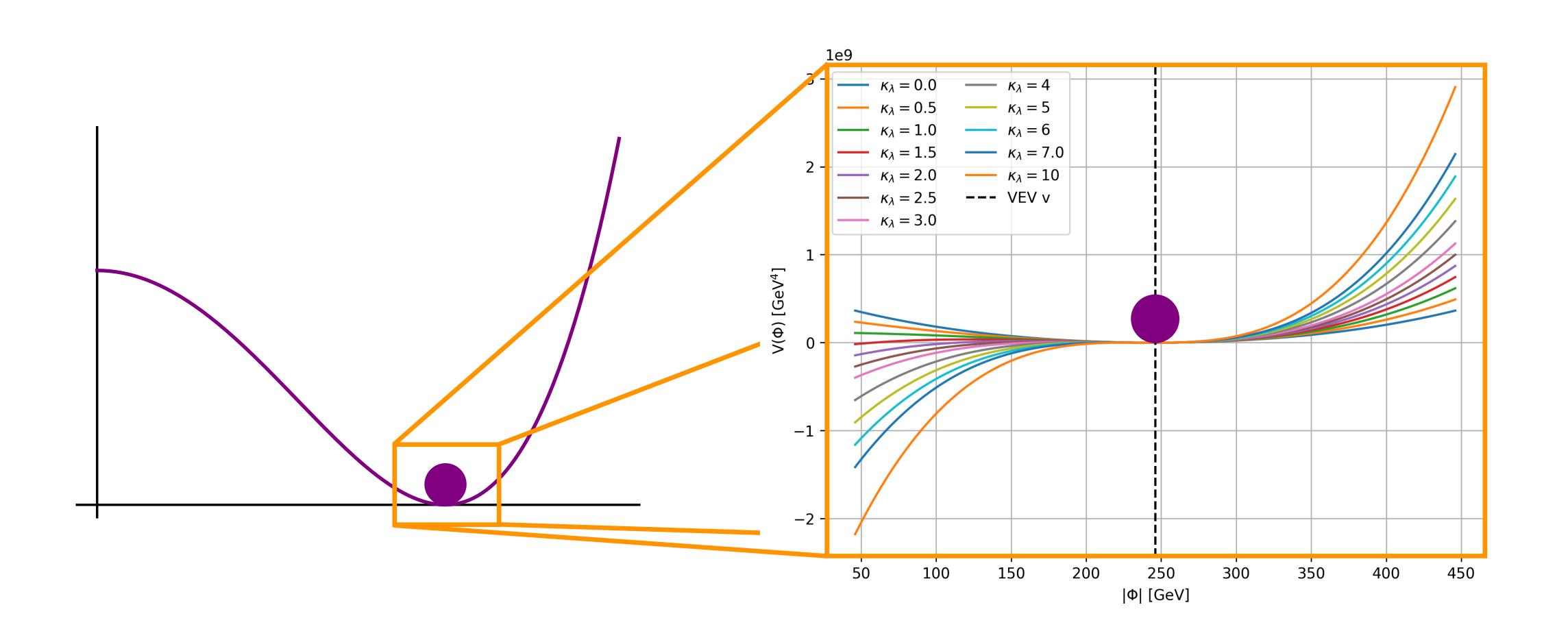
$$\kappa_{\lambda} = \frac{\lambda_{\text{obs.}}}{\lambda_{\text{SM}}}$$

SM: 
$$\kappa_{\lambda} = 1$$



# Higgs potential shape for different $\kappa_{\lambda}$ values

$$\kappa_{\lambda} = \frac{\lambda_{\text{obs.}}}{\lambda_{\text{SM}}}$$



# Beginning of the universe

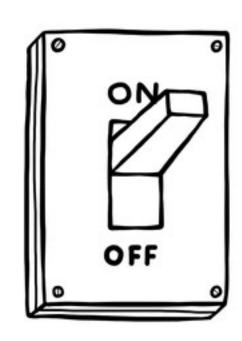
## The early universe



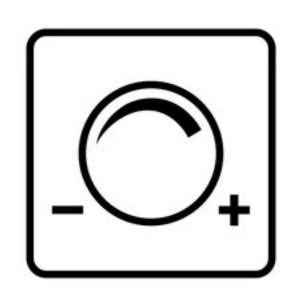
### How did the Electroweak symmetry break?

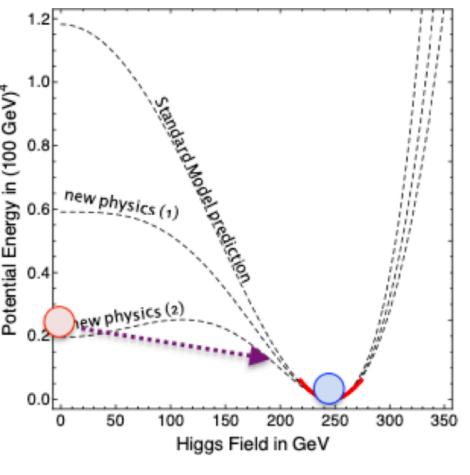
electroweak phase transition = when the Higgs field is "turned on"

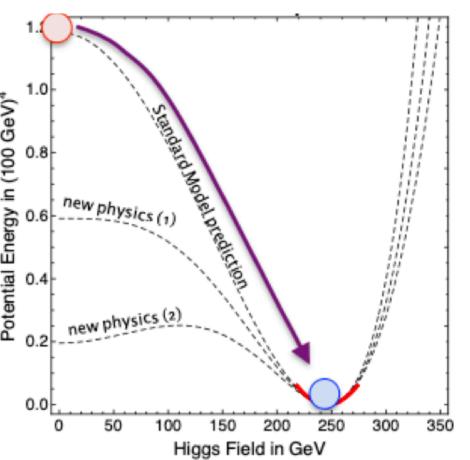
A) A first order phase transition

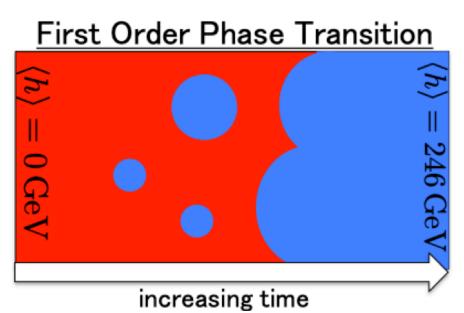


B) A higher order phase transition

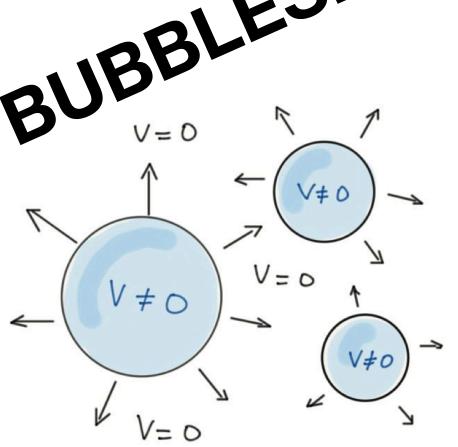


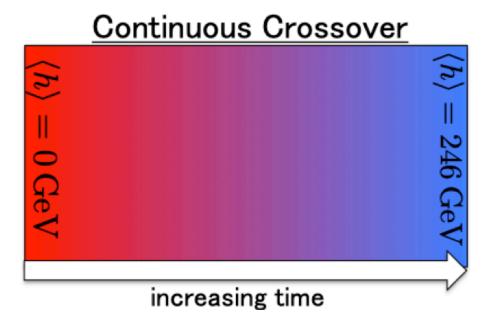












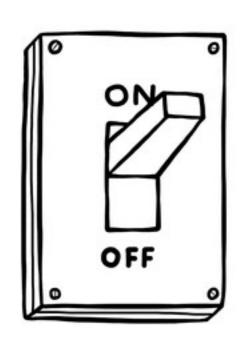
## The early universe



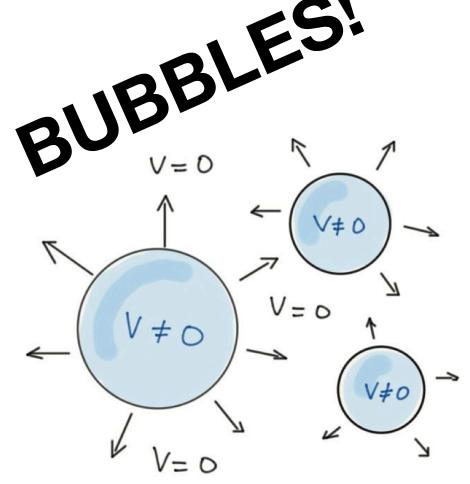
### How did the Electroweak symmetry break?

electroweak phase transition = when the Higgs field is "turned on"

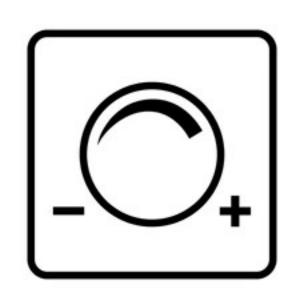
A) A first order phase transition

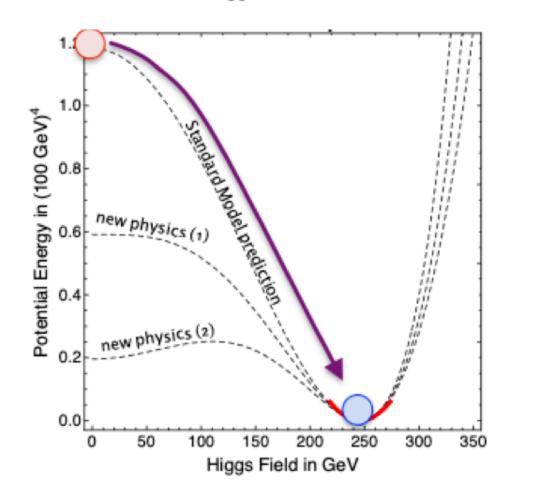


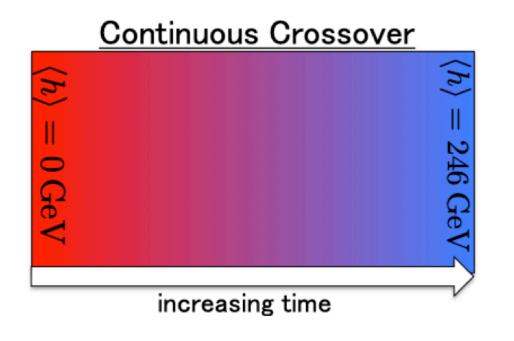




B) A higher order phase transition

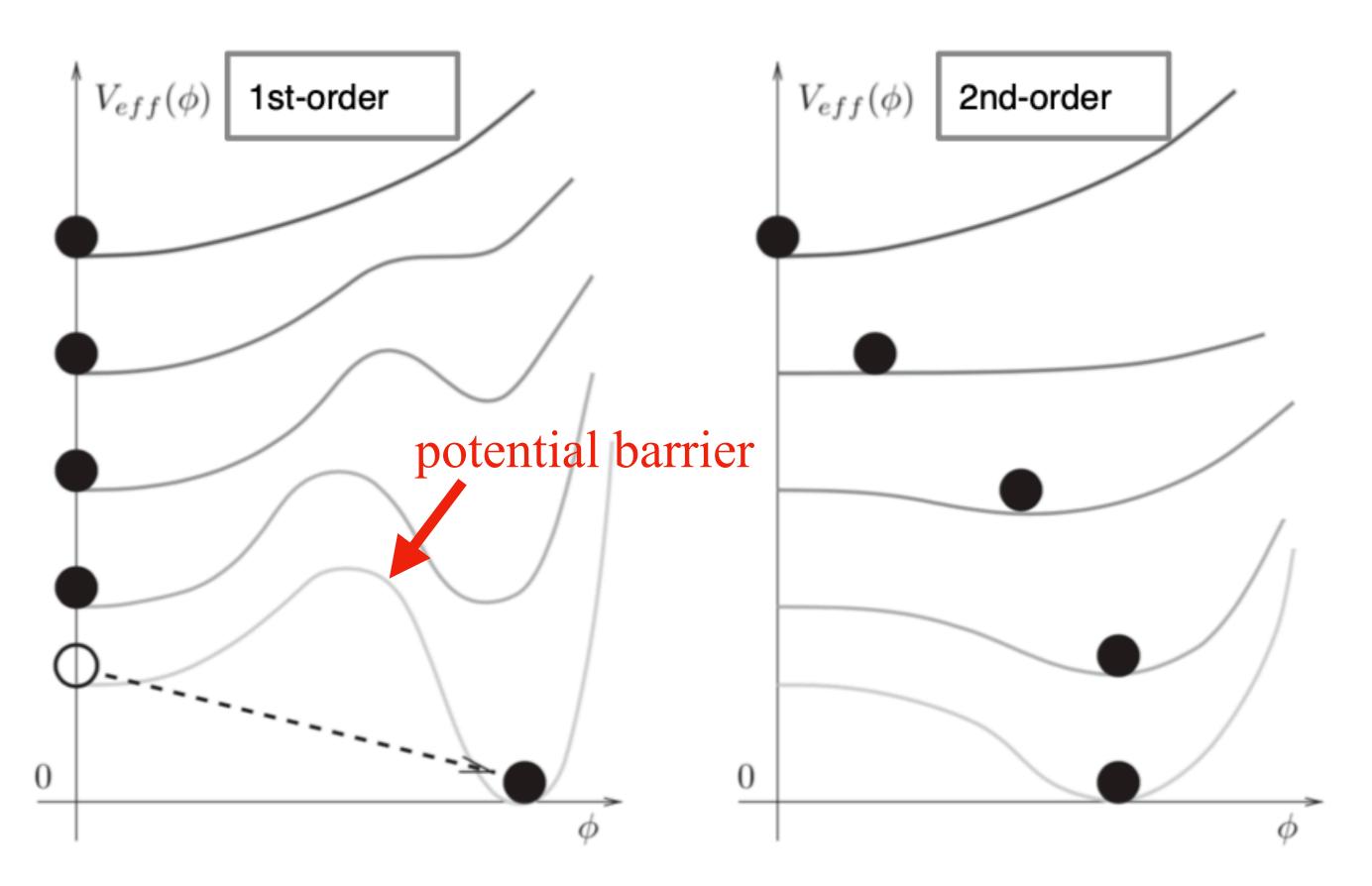






# Phase transition and Higgs self-coupling?



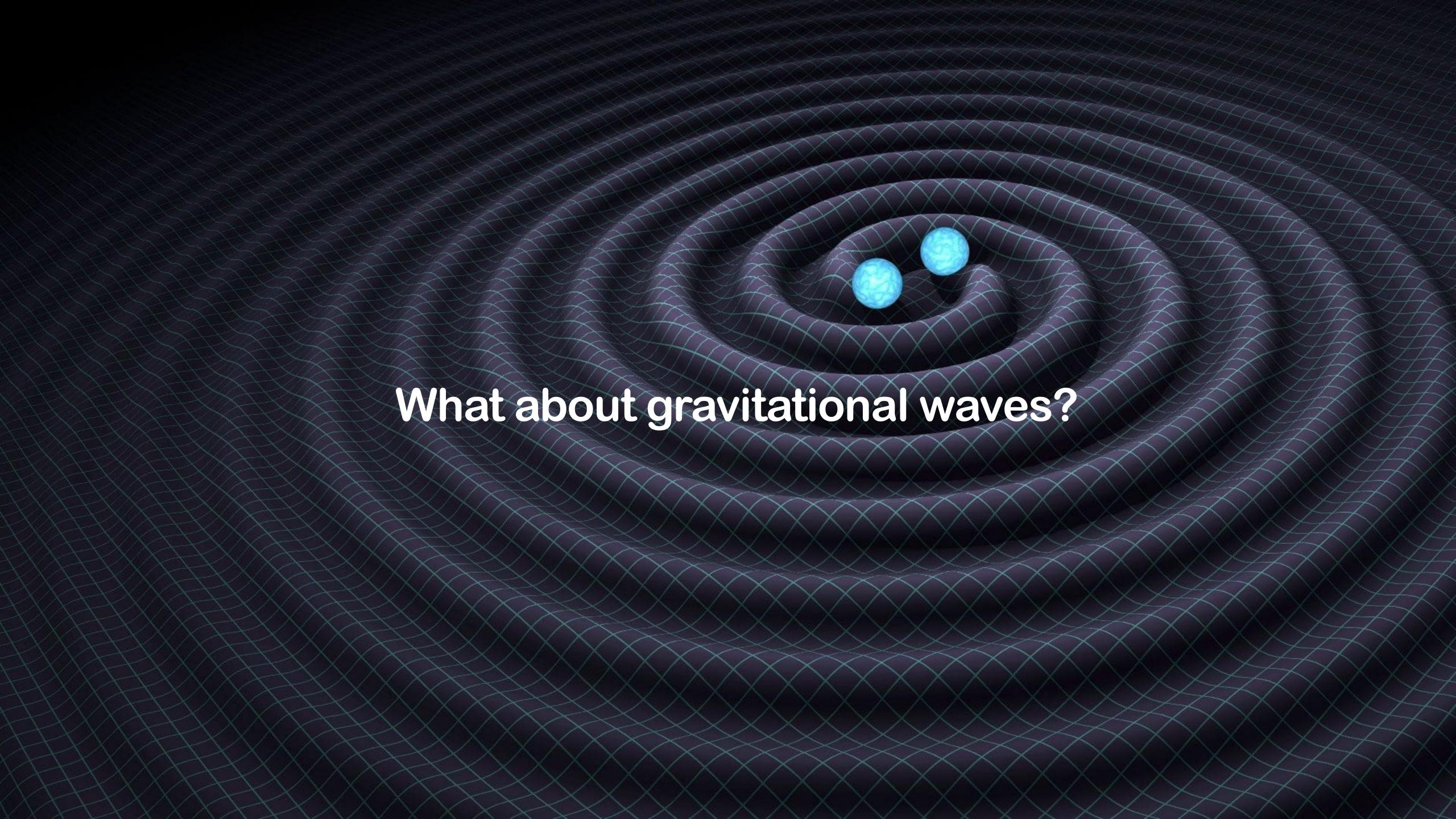


The potential barrier depends on the Higgs self-coupling

A strong deviation from the SM value would be a hint of a strong first-order EWPT

The SM does not predict a first order phase transition

First order is only allowed in BSM models



### **Primordial Gravitational Waves**

### Two types of gravitation waves (GWs):

- 1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now
- 2. **Primordial (cosmological) GWs (PGWs):** from the early universe (produced during inflation, cosmic strings, or first-order phase transitions)

### **Primordial Gravitational Waves**



### Two types of gravitation waves (GWs):

- 1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now
- 2. **Primordial (cosmological) GWs (PGWs):** from the early universe (produced during inflation, cosmic strings, or first-order phase transitions)

### A possible origin of PGWs:

• If the phase transition is first order → bubbles → bubbles collisions → shake spacetime → producing gravitational waves



### **Primordial Gravitational Waves**



### Two types of gravitation waves (GWs):

- 1. Astrophysical GWs: from black holes/neutron star merging, what we can detect now
- 2. **Primordial (cosmological) GWs (PGWs):** from the early universe (produced during inflation, cosmic strings, or first-order phase transitions)

### A possible origin of PGWs:

If the phase transition is first order → bubbles → bubbles
 collisions → shake spacetime → producing gravitational waves

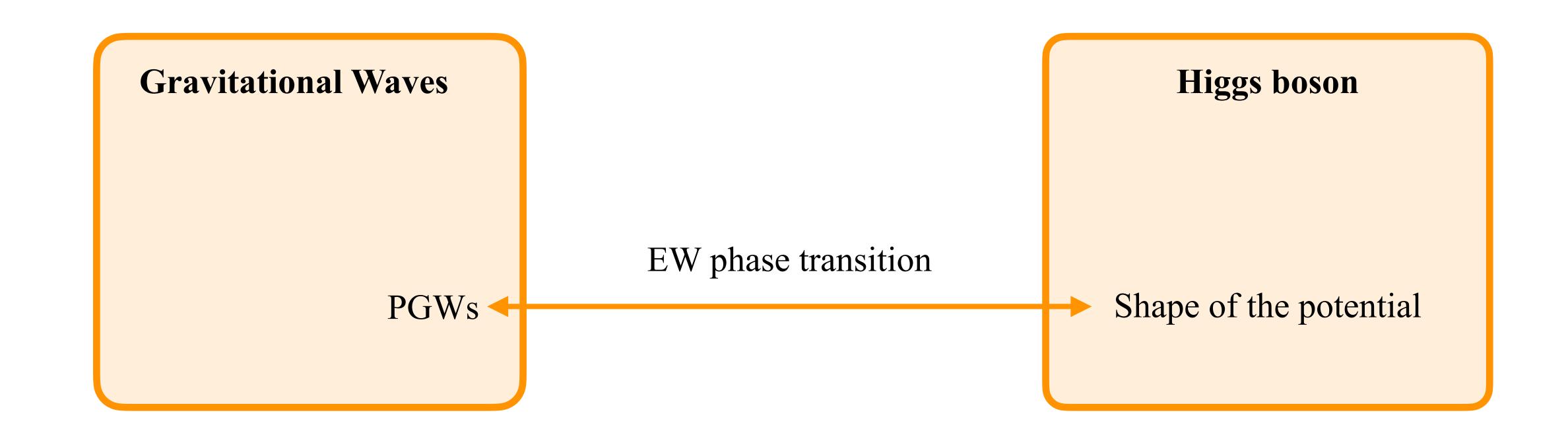
### **Properties of PGWs:**

• should present as a stochastic gravitational wave background, a random "hum" present everywhere



## Gravitational Waves and the Higgs boson



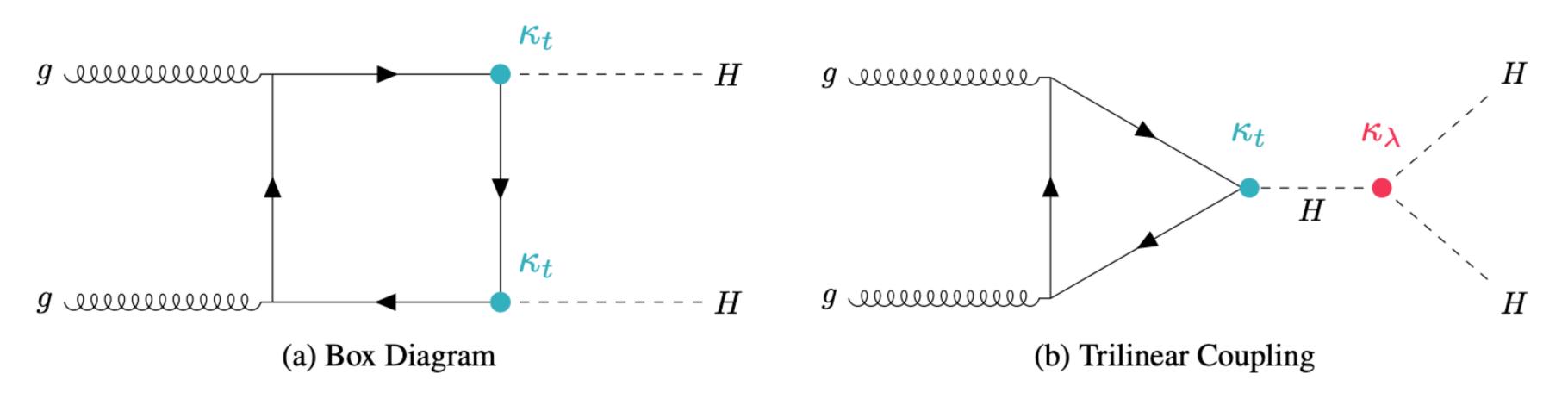


The connection origins from the EW phase transition with is connected to both the Higgs bosons self-coupling and to the primordial gravitational wave production

# Current knowledge

# Di-Higgs production at the LHC





Leading order Feynman diagrams for the dominant gluon-gluon fusion production

### These two diagrams interfere destructively!

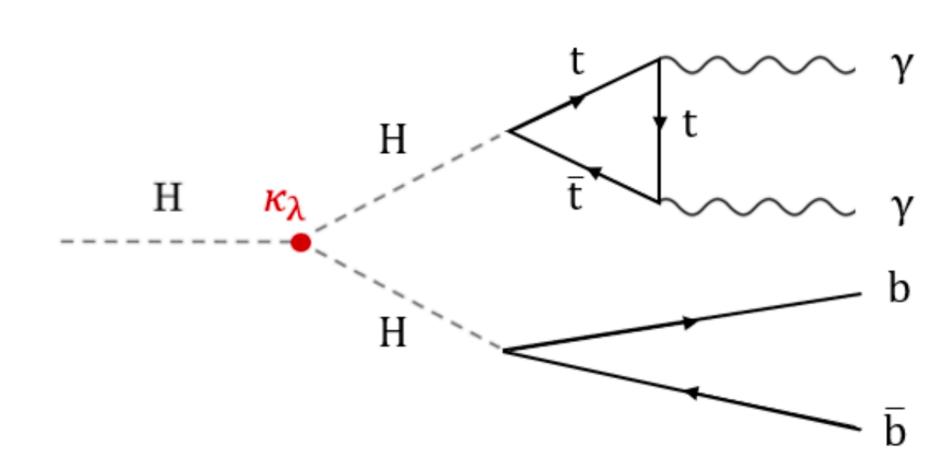


### Consequences:

- Low amount of events: very rare process
- Amount of events depends on  $\kappa_{\lambda}$

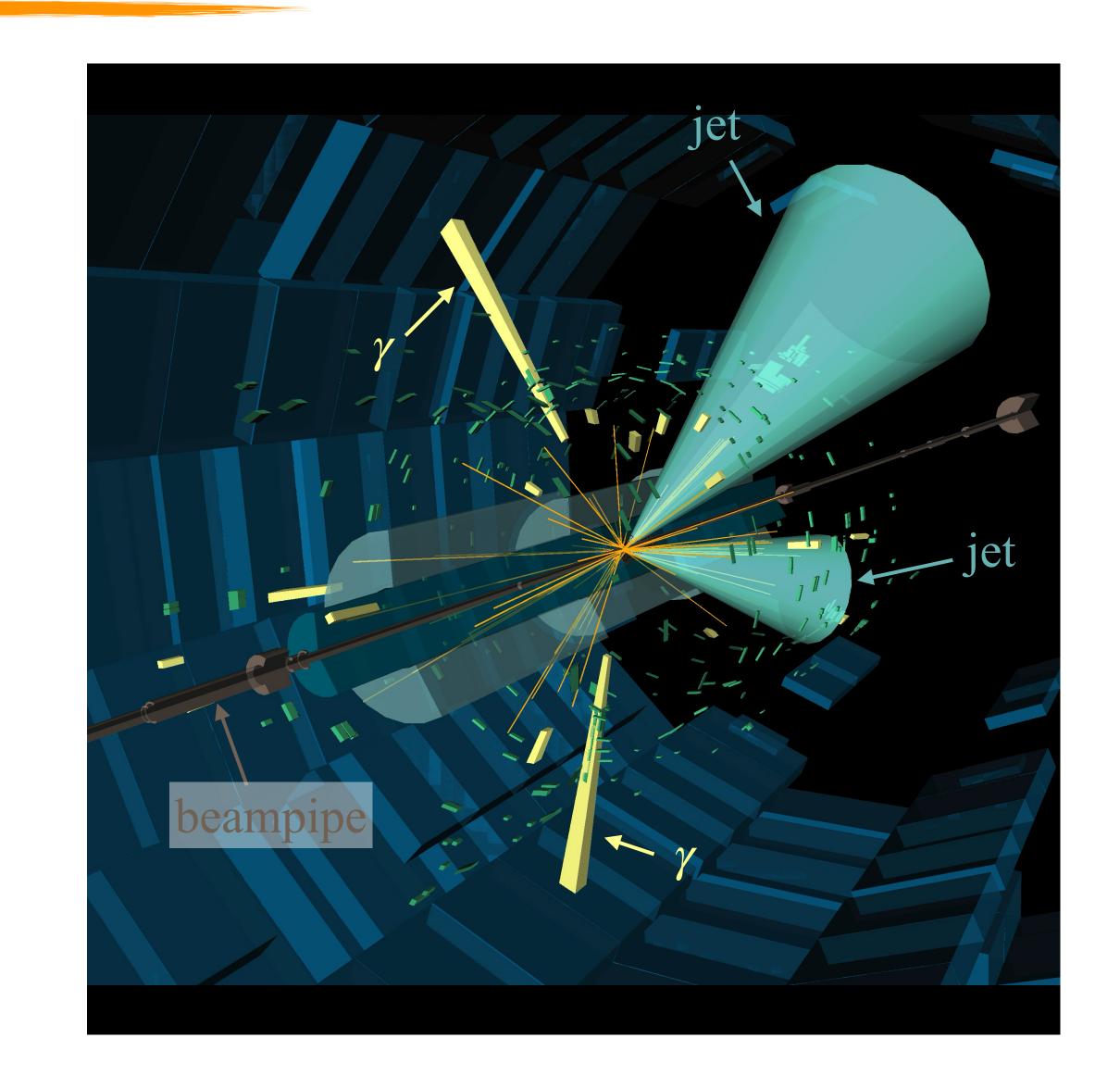
# The $HH \rightarrow bb\gamma\gamma$ channel





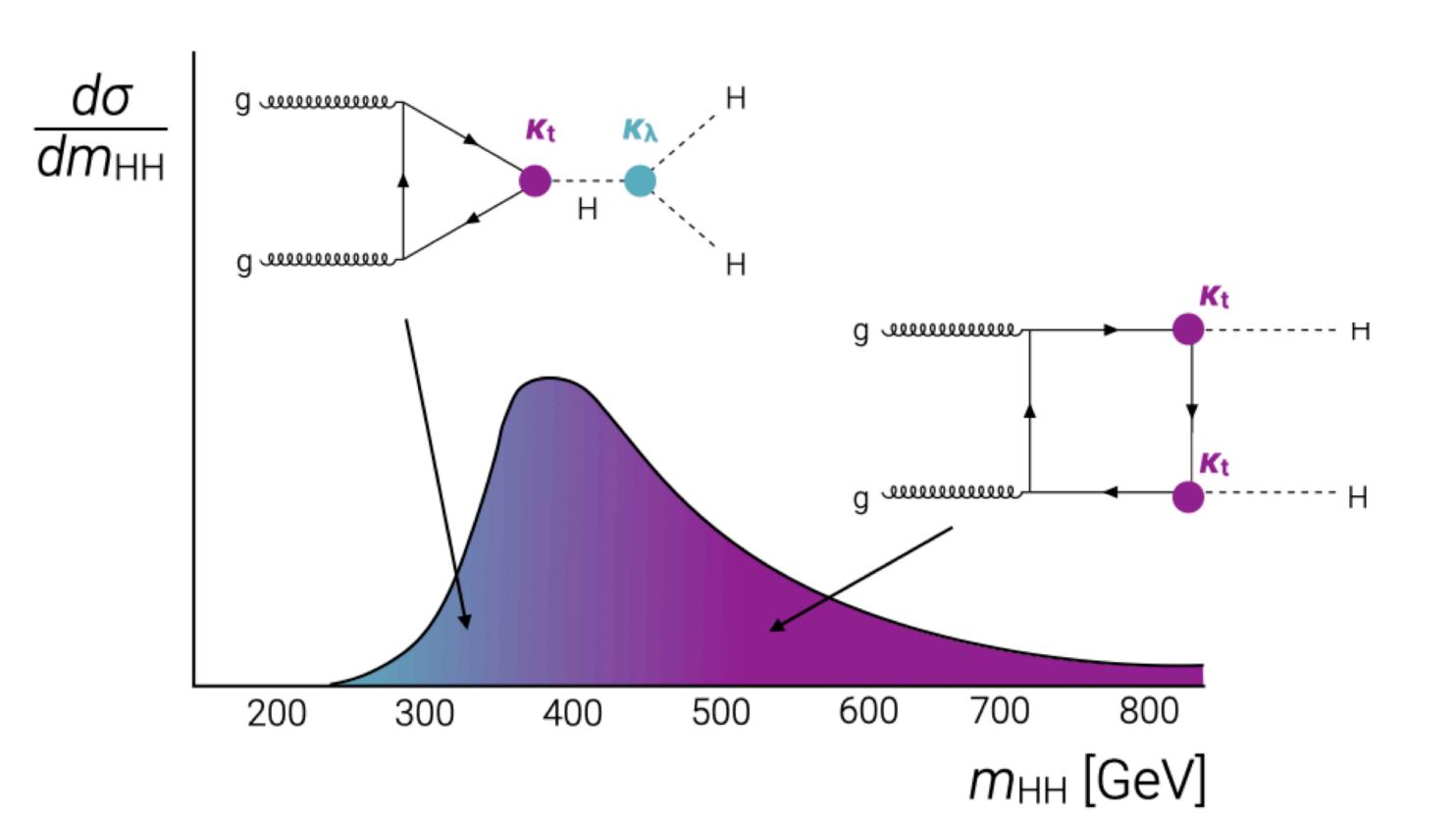
Final state particles observed in the ATLAS detector: photons and *b*-jets

- ⇒ photon reconstruction and calibration
- $\Rightarrow$  b-jet reconstruction and calibration



## Why are we doing this analysis?





We can access low di-Higgs masses thanks to the photons (that have low thresholds in the trigger)

This region is more dependent on  $\kappa_{\lambda}$ 

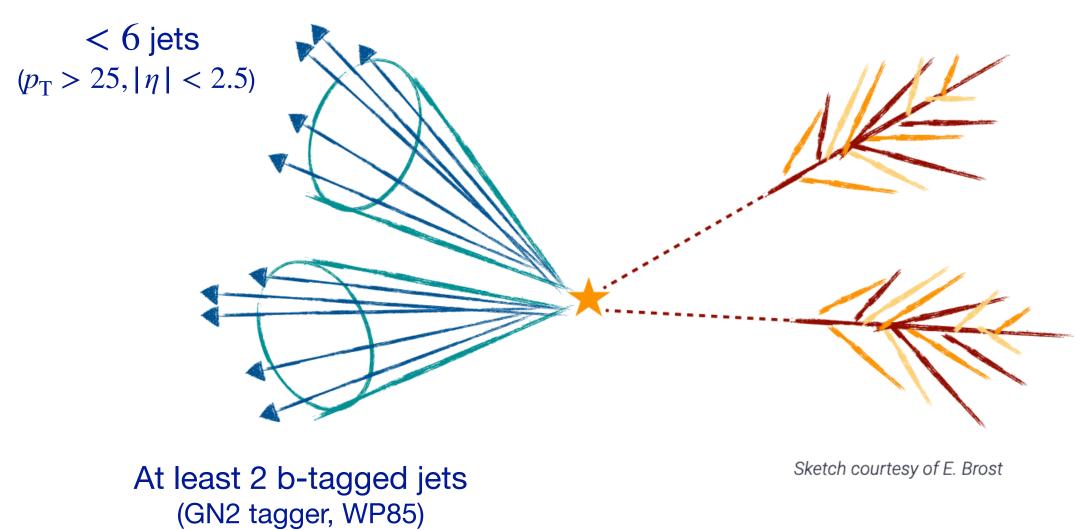
 $\Rightarrow$  better sensitivity to  $\kappa_{\lambda}$  despite the lower statistics

# Simplified Analysis Strategy

DESY.

Prepare the objects (photons and *b*-jets)

### Object and event selection



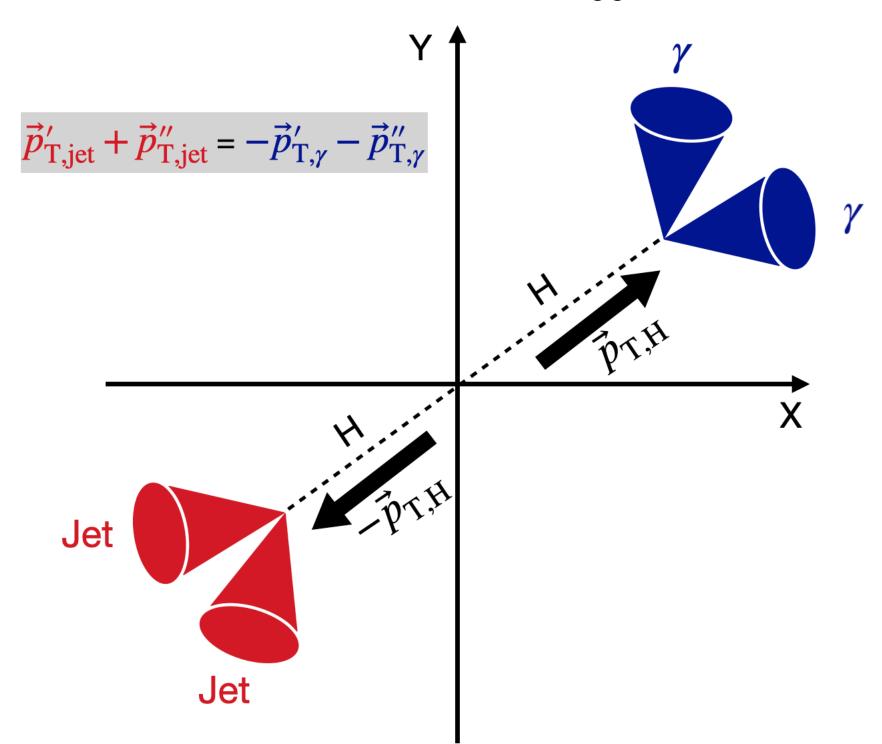
Di-photon trigger  $(E_{\rm T} > 35(25)~{\rm GeV})$ 

At least 2 photons (Leading (subleading)  $\gamma$   $p_{\rm T}/m_{\gamma\gamma} > 0.35(0.25)$ )

 $105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$ 

No e or  $\mu$  in the event

### Kinematic fit to improve $m_{bb}$ resolution



# Simplified Analysis Strategy

Prepare the objects (photons and b-jets)



Split into high mass region and low mass region



## Simplified Analysis Strategy

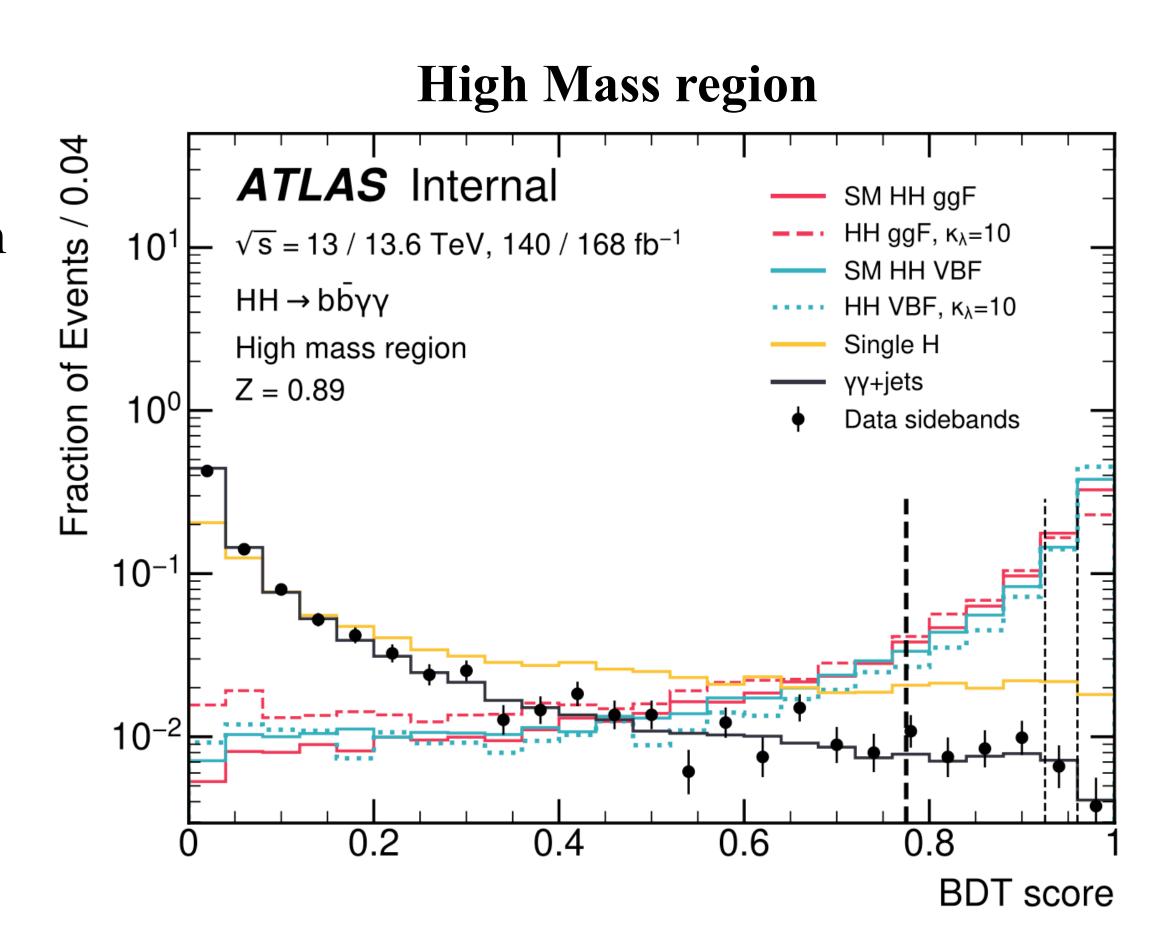


Prepare the objects (photons and b-jets)

 $\downarrow \downarrow$ 

Split into high mass region and low mass region

Train Boosted Decision Trees (BDTs) to distinguish signal from backgrounds



## Simplified Analysis Strategy

DESY.

Prepare the objects (photons and b-jets)

**\|** 

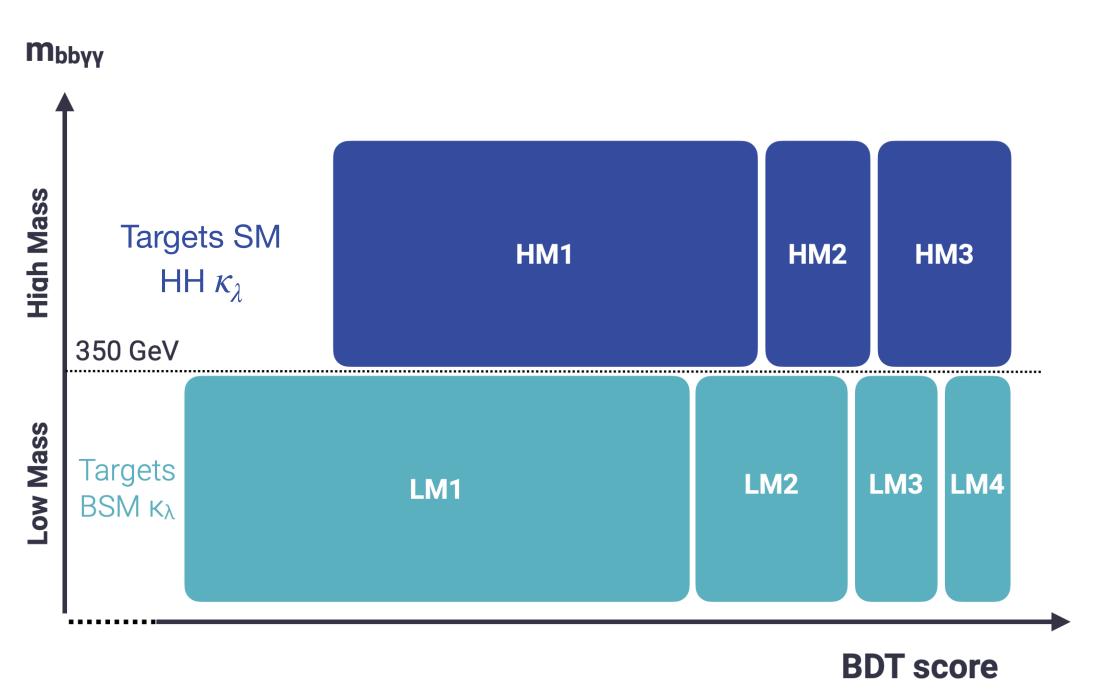
Split into high mass region and low mass region

 $\prod$ 

Train Boosted Decision Trees (BDTs) to distinguish signal from backgrounds

11

Make categories based on the BDTs outputs



## Simplified Analysis Strategy

DESY.

Prepare the objects (photons and b-jets)

 $\downarrow$ 

Split into high mass region and low mass region

 $\bigvee$ 

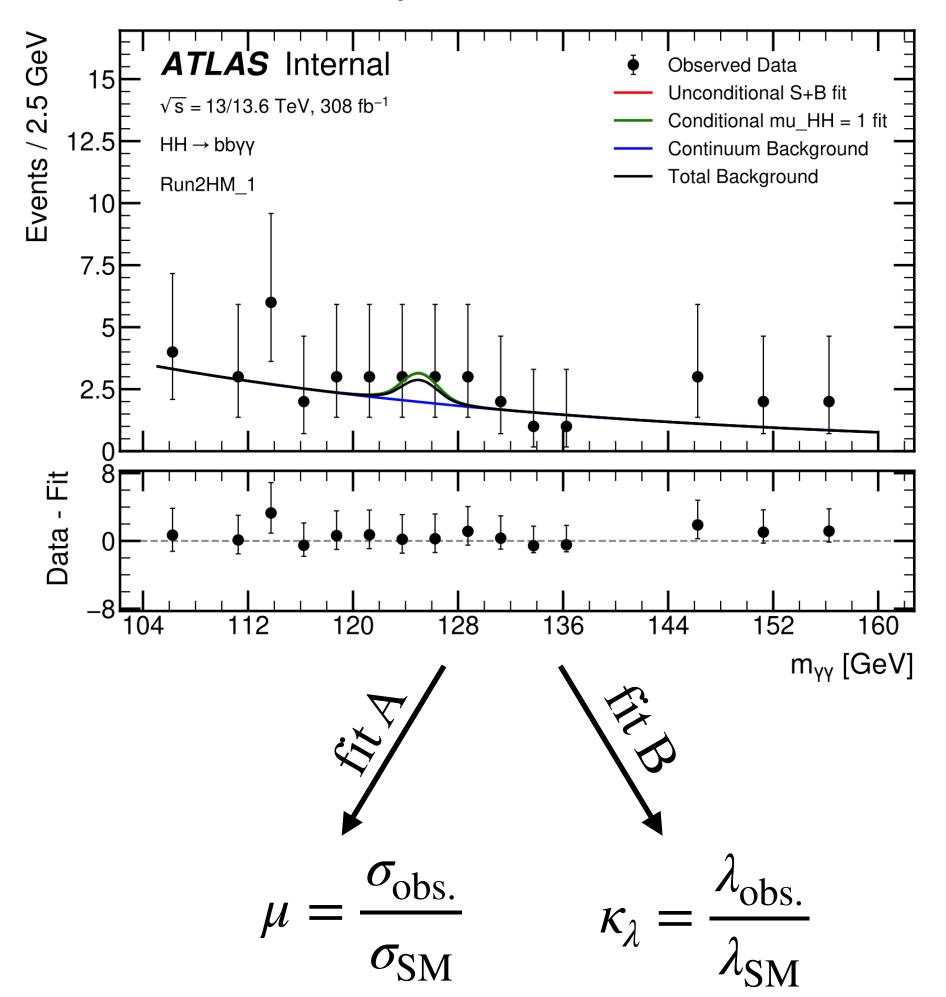
Train Boosted Decision Trees (BDTs) to distinguish signal from backgrounds

11

Make categories based on the BDTs outputs

Make simultaneous fits to  $m_{\gamma\gamma}$ 

### Run 2 HM1



# Simplified Analysis Strategy



Prepare the objects (photons and b-jets)

 $\bigcup$ 

fit A:

Split into high mass region and low mass region

Train Boosted Decision Trees (BDTs) to distinguish signal from backgrounds

 $\iint$ 

Make categories based on the BDTs outputs

Make a simultaneous fit to  $m_{\gamma\gamma}$ 

 $\|\cdot\|$ 

Get the upper limit on the signal strength from fit A and the constraints on  $\kappa_{\lambda}$  from fit B

Observed significance of SM HH: 0.80

**Expected significance: 1.0** $\sigma$ 

# Simplified Analysis Strategy



Prepare the objects (photons and b-jets)

**\|** 

Split into high mass region and low mass region

 $\bigcup$ 

Train Boosted Decision Trees (BDTs) to distinguish signal from backgrounds

 $\prod$ 

Make categories based on the BDTs outputs

 $\prod$ 

Make a simultaneous fit to  $m_{\gamma\gamma}$ 

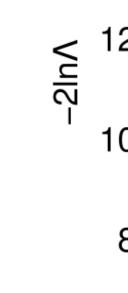
**||** 

Get the upper limit on the signal strength from fit A and the constraints on  $\kappa_{\lambda}$  from fit B

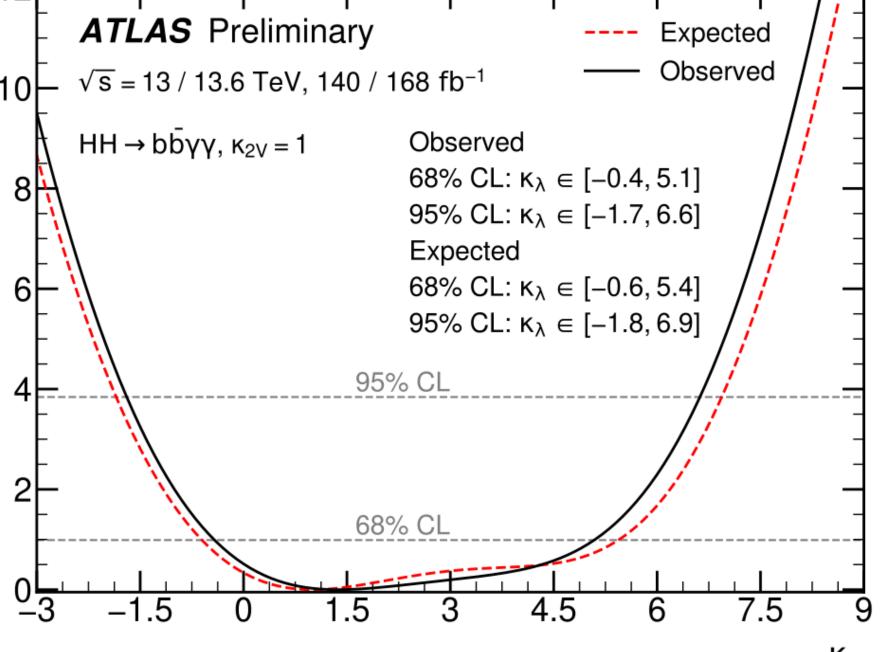
fit A:

Observed significance of SM HH: 0.80

**Expected significance: 1.0** $\sigma$ 



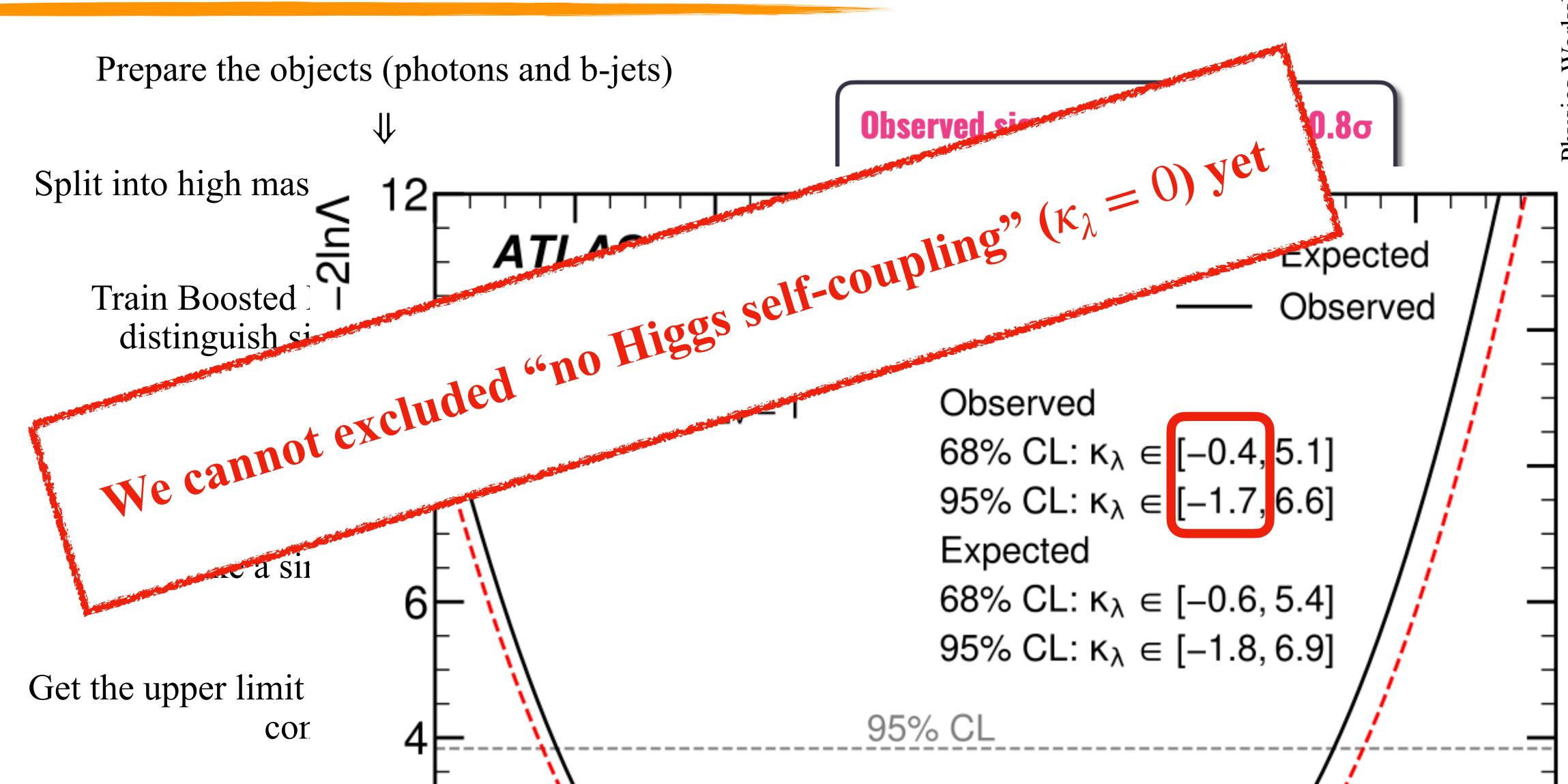




30

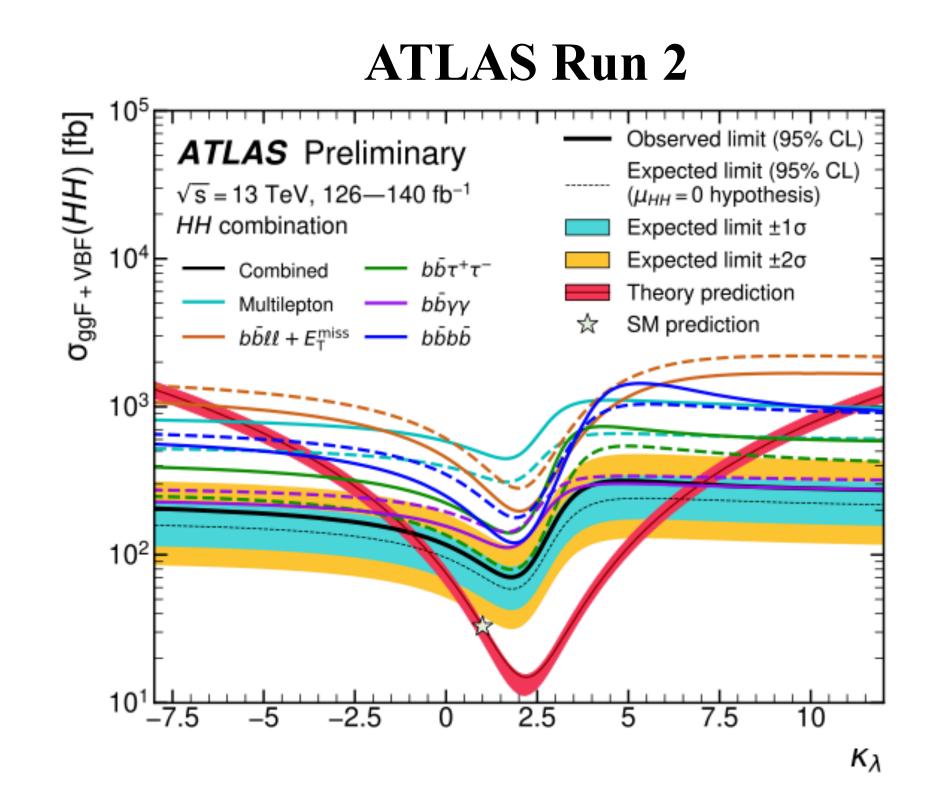
# Simplified Analysis Strategy

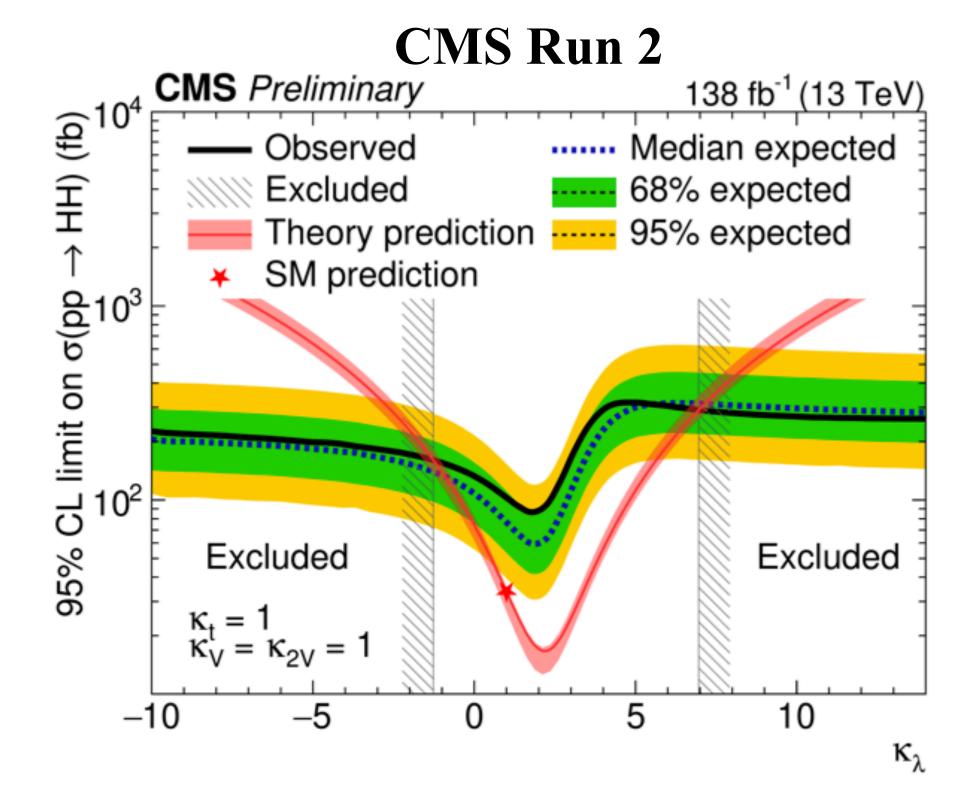




## Newest di-Higgs constraints







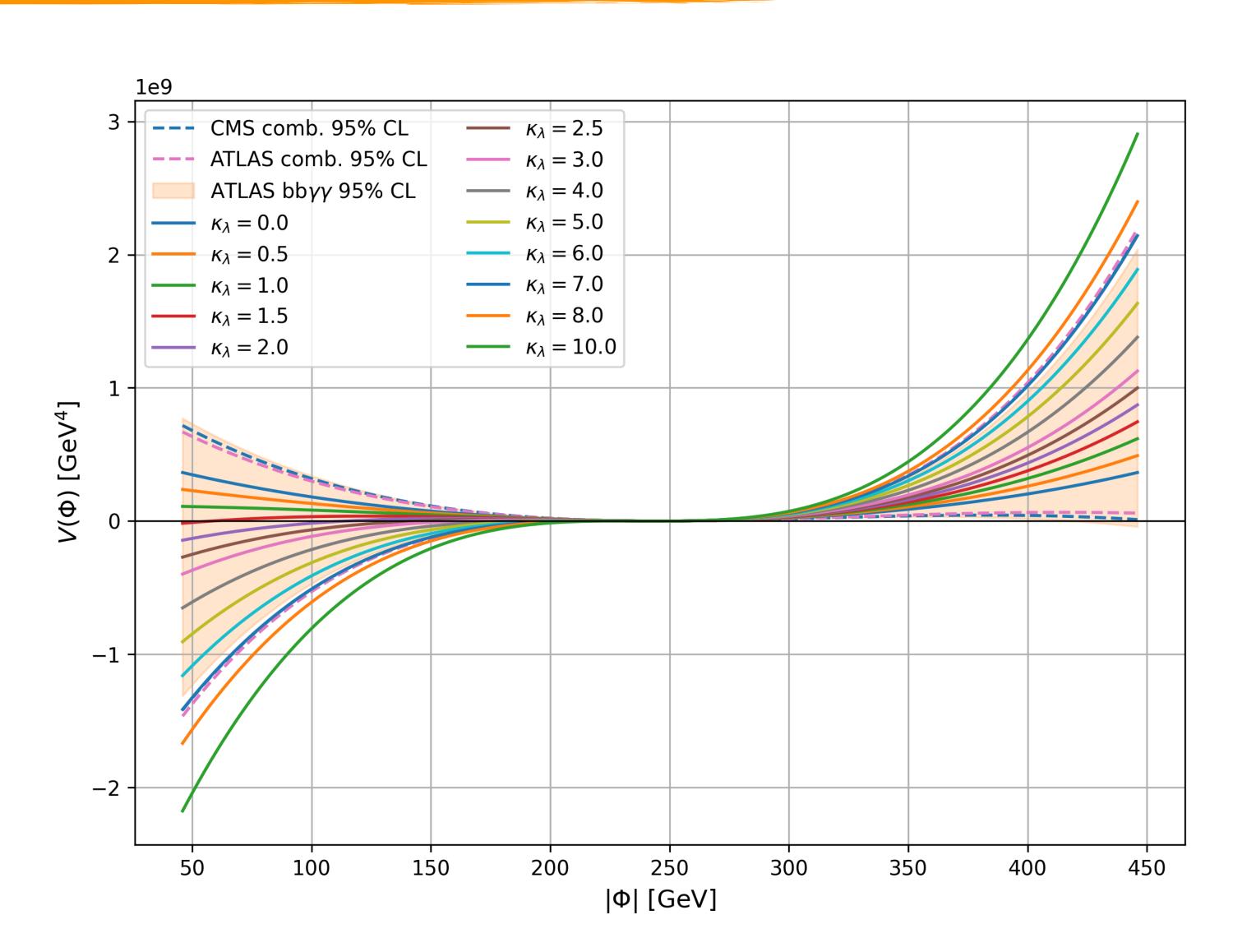
Combined Run 2:  $-1.2 < \kappa_{\lambda} < 7.2$  at 95% C.L.

 $-1.4 < \kappa_{\lambda} < 7.0$  at 95% C.L.

New *bbyy* analysis:  $-1.6 < \kappa_{\lambda} < 6.6$  at 95% C.L.

Upper bound on  $\lambda$  of currently about 7 × (SM value)

# Translated to the potential shape



## Are the current limits interesting?

### Standard model

higher-order contributions to  $\lambda$ , mostly from top loop:

 $\sim 0.07 \times SM$ 

# BSM models (UV-complete)

mass splitting between BSM Higgs states yields large enhancement of  $\lambda$ :

~ several × SM

### Effective field theories

BSM effects parameterized as higher-dimensional operators, large enhancement of  $\lambda$  possible:

~ several × SM

- ⇒ the current limits are already interesting for theory
- $\Rightarrow \kappa_{\lambda}$  can be modified up to  $\sim 7 \times SM$  from BSM

# Future limitations and show stoppers?

### **Current limitation: STATISTICS**

| 1 1 |                                        | , , , , ,  | , • , •       |
|-----|----------------------------------------|------------|---------------|
| nnv | / <b>/</b> / .                         | Systematic | uncertainties |
|     | \[ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Systematic |               |

| DDYY SYSTEMATIC AMEERIAAMIE                    |                 |                                |
|------------------------------------------------|-----------------|--------------------------------|
| Uncertainty source                             | $\Delta \sigma$ |                                |
|                                                | [%]             |                                |
| Photon Energy Resolution (PER)                 | $\pm 0.42$      |                                |
| Photon Energy Scale (PES)                      | $\pm 3.5$       | preliminary                    |
| Jet                                            | $< \pm 0.1$     |                                |
| $E_T^{ m miss}$                                | $< \pm 0.1$     |                                |
| Muon                                           | $< \pm 0.1$     |                                |
| Photon Efficiency                              | $\pm 0.27$      |                                |
| Flavor Tagging                                 | $< \pm 0.1$     |                                |
| QCD Scale + $m_{\text{top}}$ , PDF+ $\alpha_S$ | $\pm 7.1$       | largest systematic uncertainty |
| Branching ratio                                | $\pm 0.32$      |                                |
| Parton showering model                         | $< \pm 0.1$     |                                |
| Heavy-flavour content                          | $\pm 0.98$      |                                |
| Pileup                                         | $< \pm 0.1$     |                                |
| Luminosity                                     | $< \pm 0.1$     |                                |
| Background model (spurious signal)             | $< \pm 0.1$     |                                |
| All systematics                                | $\pm 13$        |                                |



## Theoretical uncertainties

The theoretical uncertainties on the di-Higgs cross-section are directly related to the uncertainty on  $\kappa_{\lambda}$ 

| $\sqrt{S}$                        | 13 TeV      | 13.6 TeV    | 14 TeV      |
|-----------------------------------|-------------|-------------|-------------|
| $\sigma_{ m NNLO\ FTapprox}$ [fb] | 30.77       | 34.13       | 36.37       |
| $PDF + lpha_S$                    | ±2.3%       | ±2.3%       | ±2.2%       |
| ren. scale                        | +2.2%/-5.0% | +2.1%/-4.9% | +2.1%/-4.9% |
| $m_t$                             | +4%/-18%    | +4%/-18%    | +4%/-18%    |

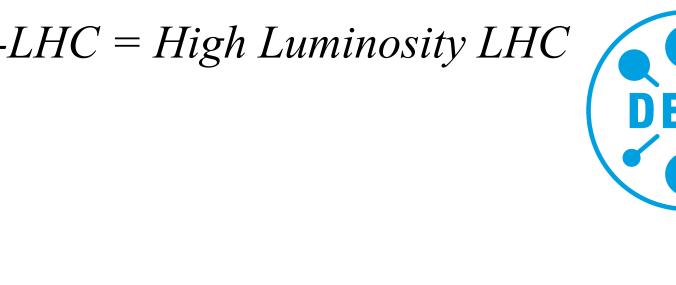


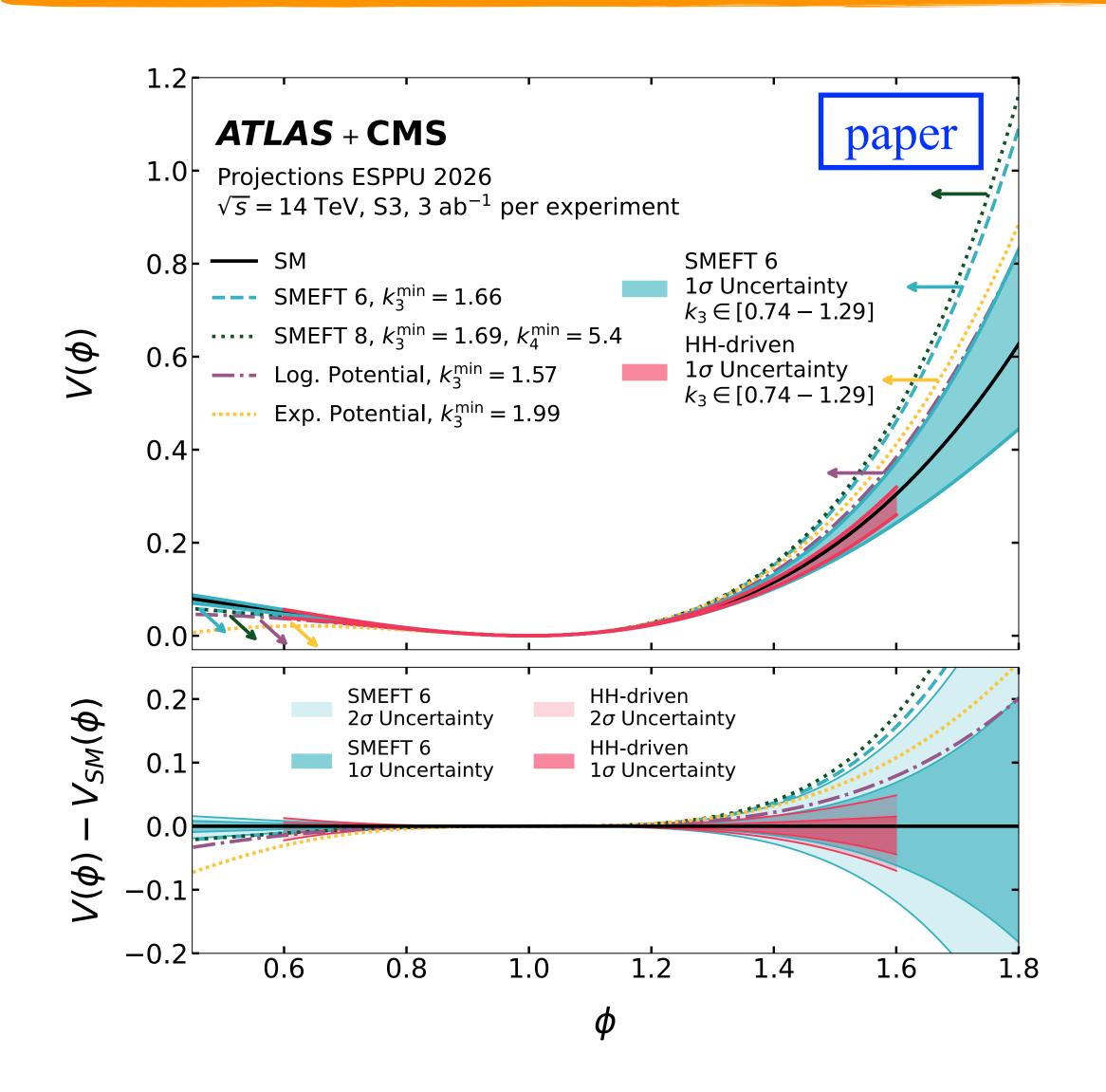
top mass scheme

worsens scale

- renormalization and factorization scales
- parton distribution functions (PDFs)
- strong coupling  $(\alpha_S)$

### A look at the future: HL-LHC





Arrows indicate where four BSM scenarios predict a strong first-order phase transition

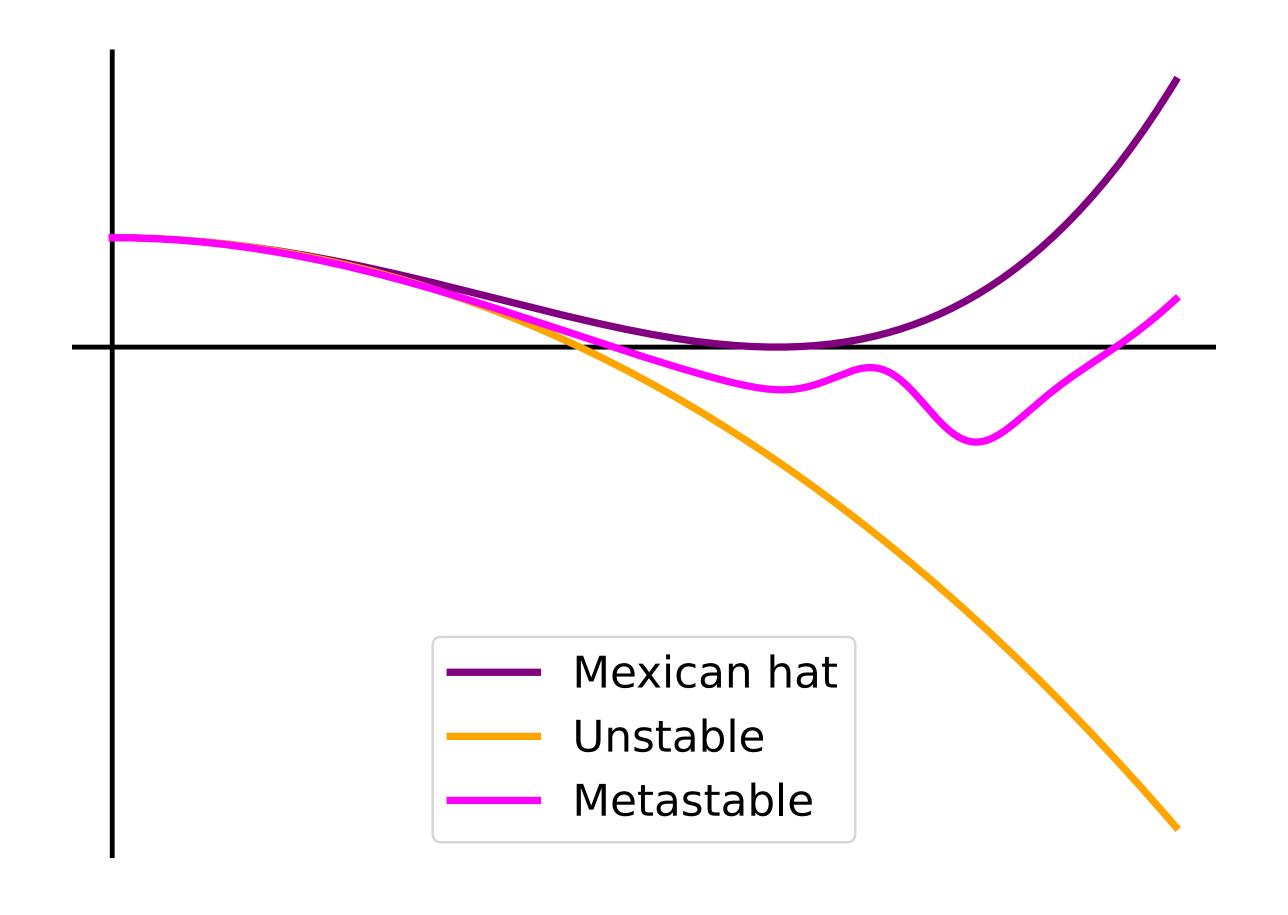
This means that at HL-LHC with 3  $ab^{-1}$ the 95% CL red band excludes as good as all possible strong-FOPT scenarios across the four alternative hypotheses:

in specific models we can either find hints of a First Order Phase Transition or exclude one!

### Fate of the universe

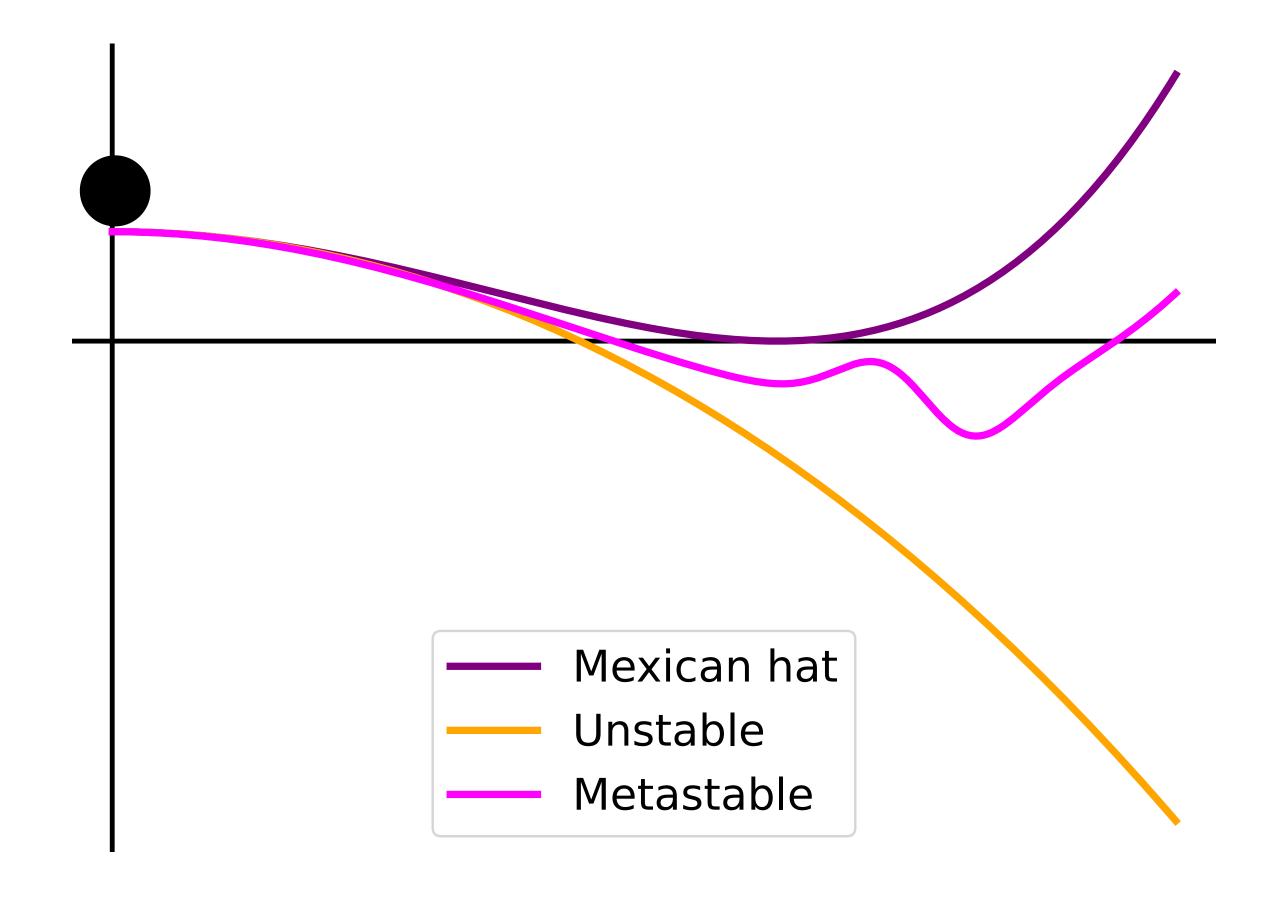


### How could a Higgs potential look like?





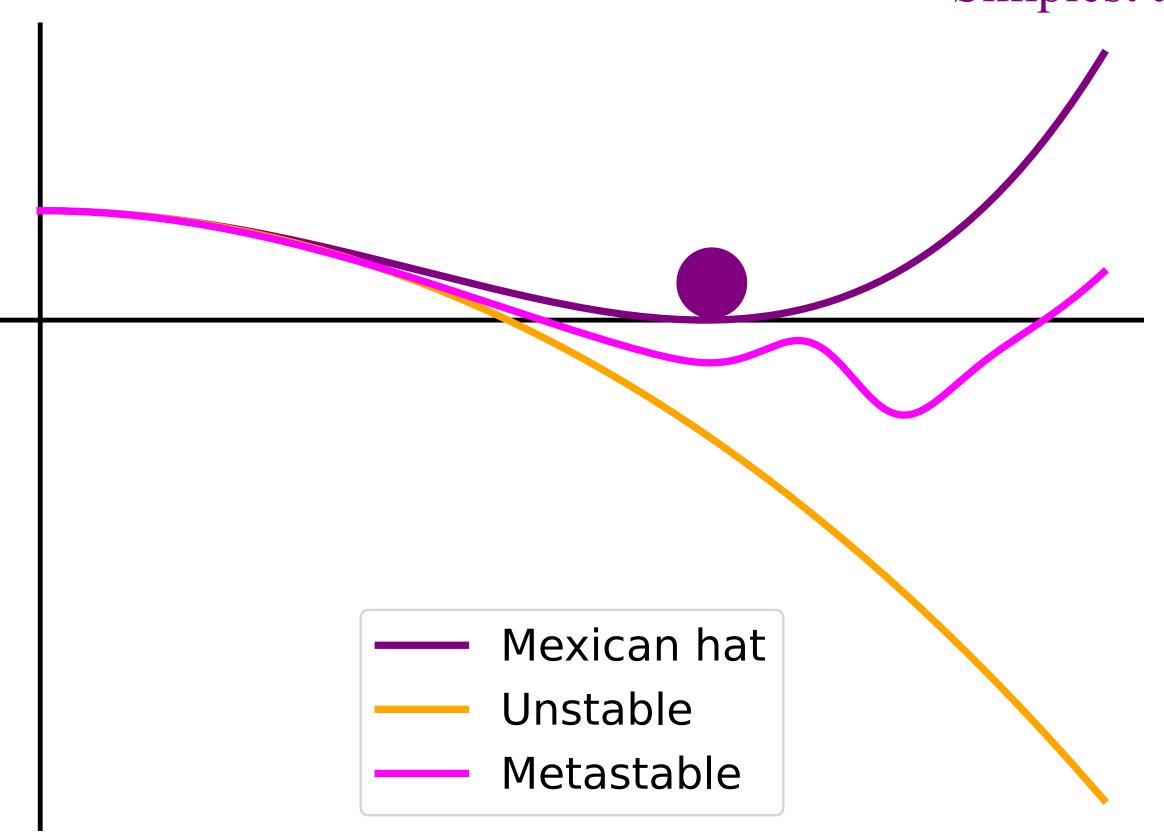
### Before electroweak symmetry breaking





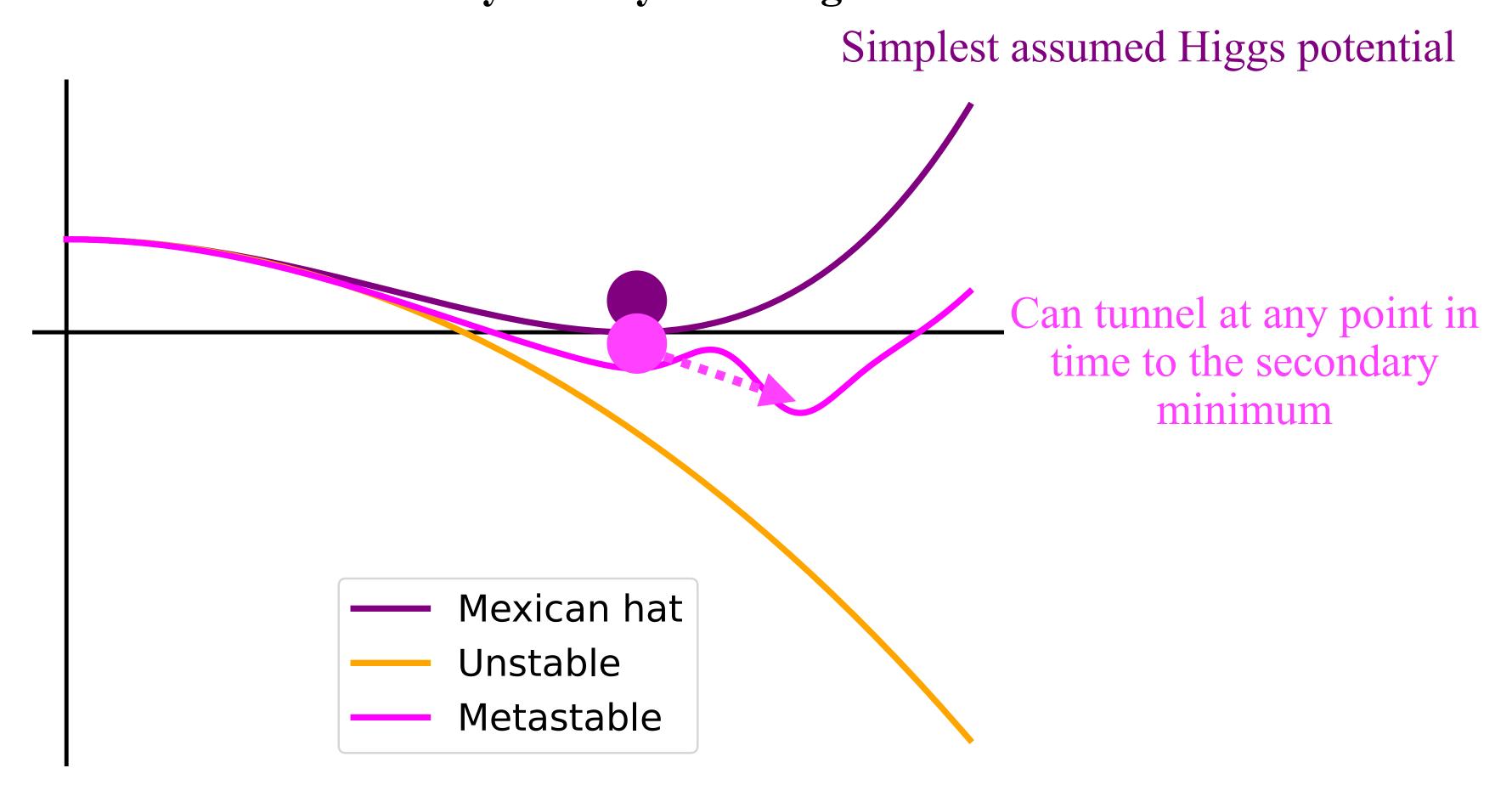
### After electroweak symmetry breaking

Simplest assumed Higgs potential



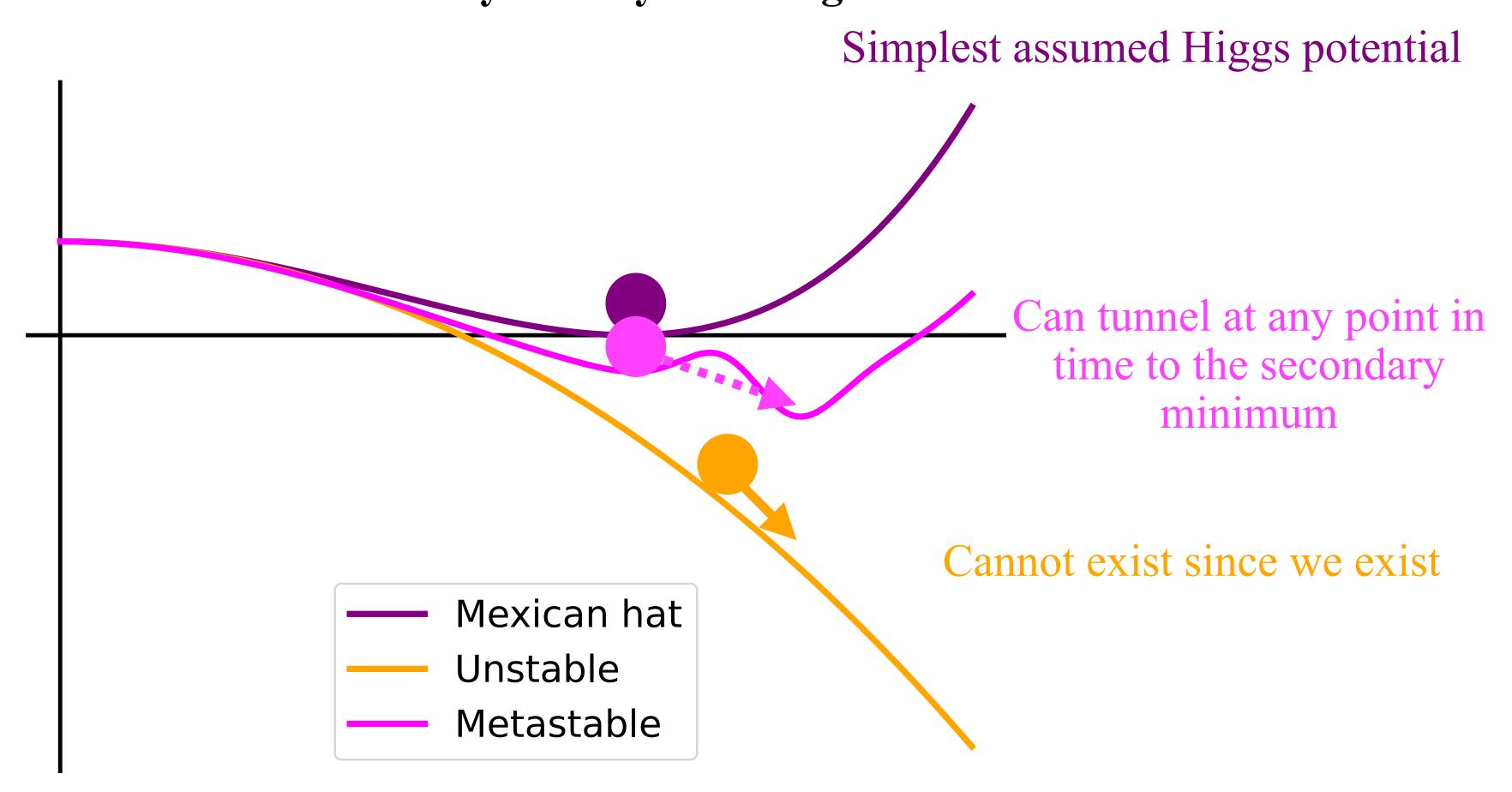


### After electroweak symmetry breaking



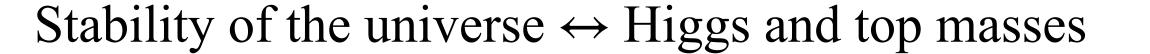


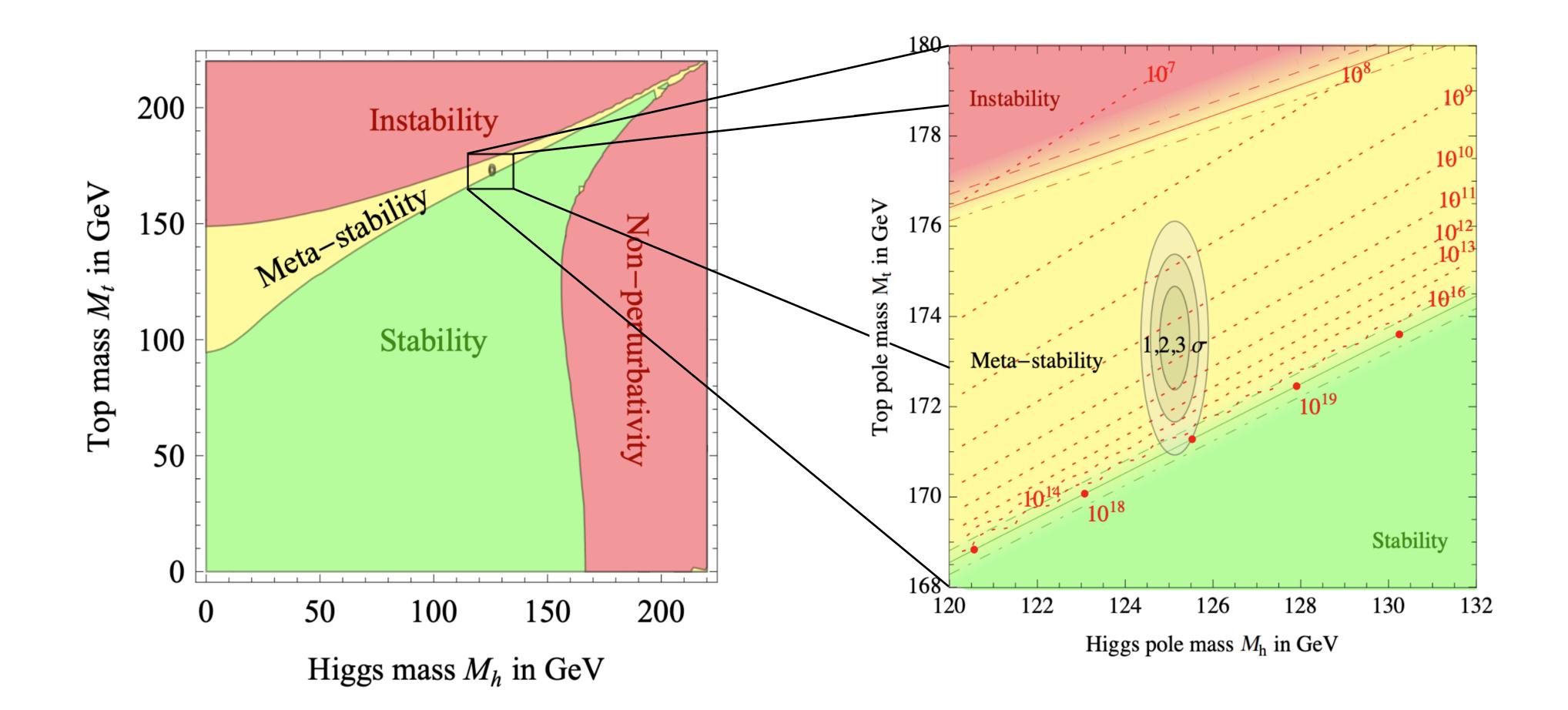
### After electroweak symmetry breaking



# Stability of the universe and Higgs self-coupling







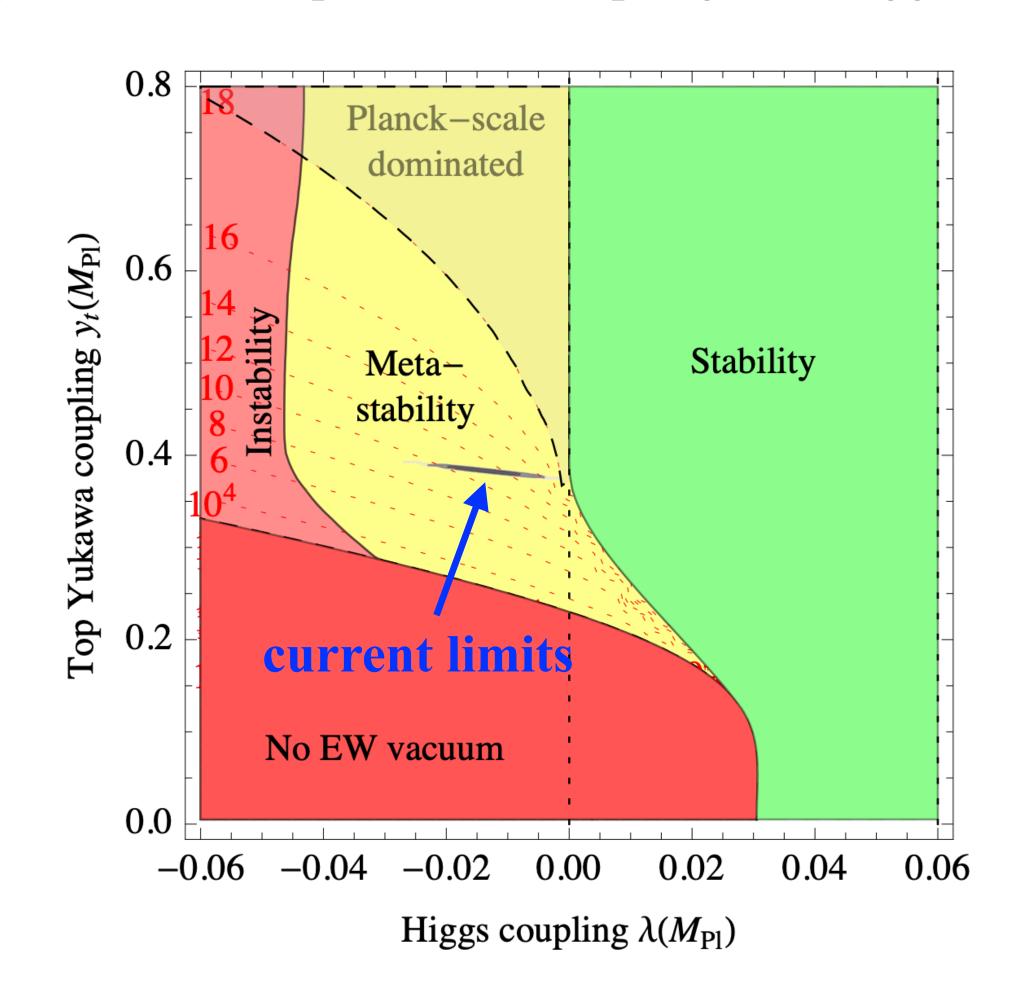
## Stability of the universe and Higgs self-coupling



Stability of the universe ↔ Higgs and top masses ↔ Top Yukawa coupling and Higgs coupling

$$V = const. + m_H^2 |H|^2 + \lambda |H|^4$$

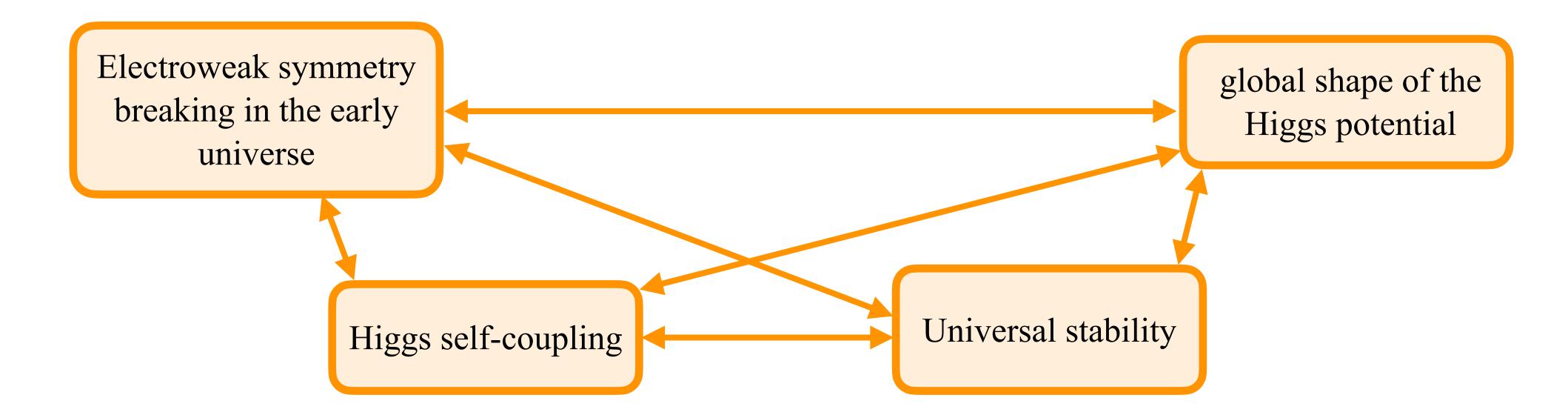
Small variations of any of these three parameters with respect to their measured values could have devastating consequences for our life-friendly universe.

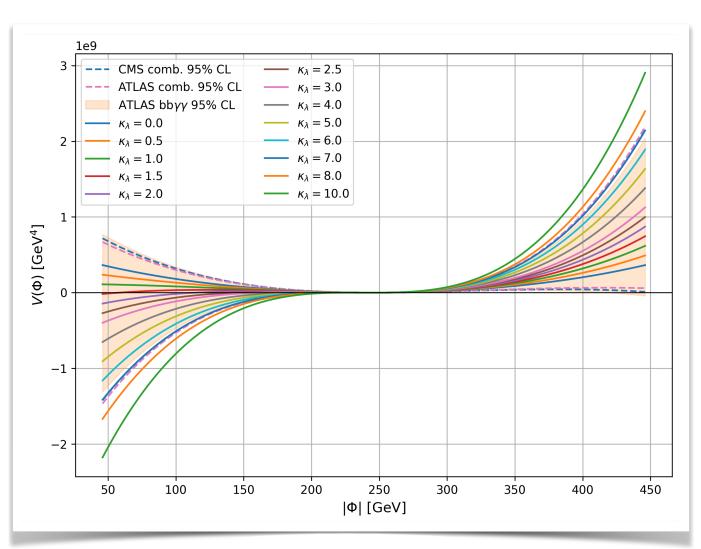


### Conclusion

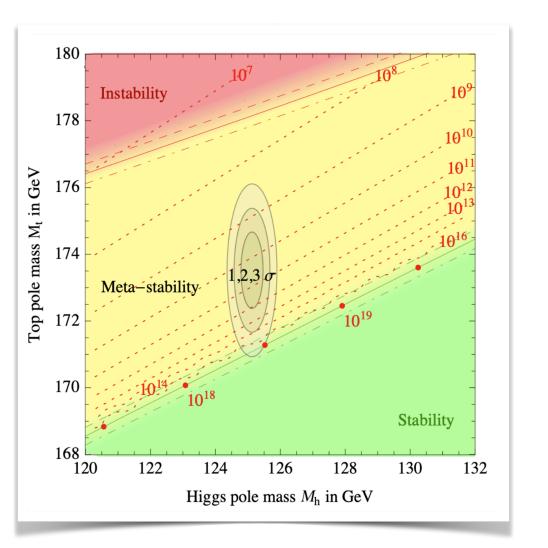
DESY.

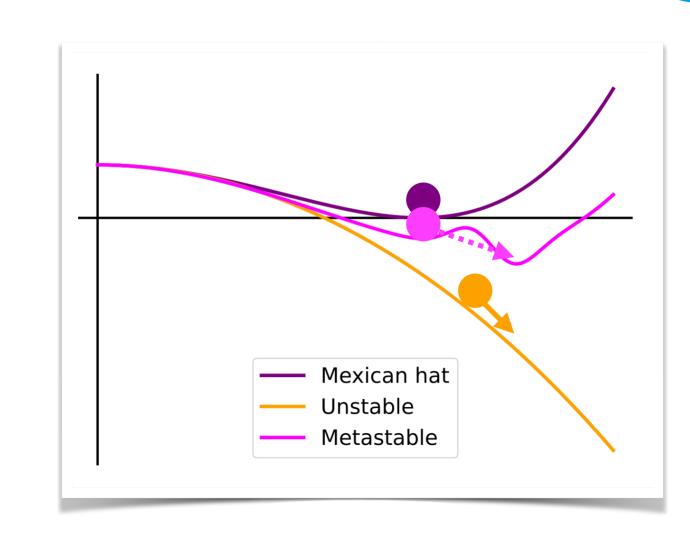
- Electroweak symmetry breaking: what phase transition? We don't know yet
- The current limits are already useful to exclude some Beyond the Standard Model models
- The limiting factor to the Higgs boson self coupling discovery is the statistics that should be achieved at HL-LHC, at that point the limiting factor will be the theory prediction precision
- Current knowledge tells us we could in theory disappear instantly due to the universe being metastable





Thank you for listening! Questions?









# **BACKUP**

# Cédrine Hügli (DESY), Astroparticle and Particle Physics Workshop

## Backup content

- Top mass scheme
- Gravitational Waves
- An introduction to EFT
- Heavy top limit
- Theoretical uncertainties: PDF issues
- Plot: LO interference
- Plot: Stability mass
- Plank scale
- Plot: Stability coupling
- Kinematic fit detailes

### Top mass scheme



### 1. The Problem: What is the Top Quark Mass?

- Top quark mass is a fundamental parameter in the Standard Model.
- Different ways to define "mass" lead to slightly different numerical values.
- The uncertainty isn't just experimental it's **theoretical**, depending on the scheme used.

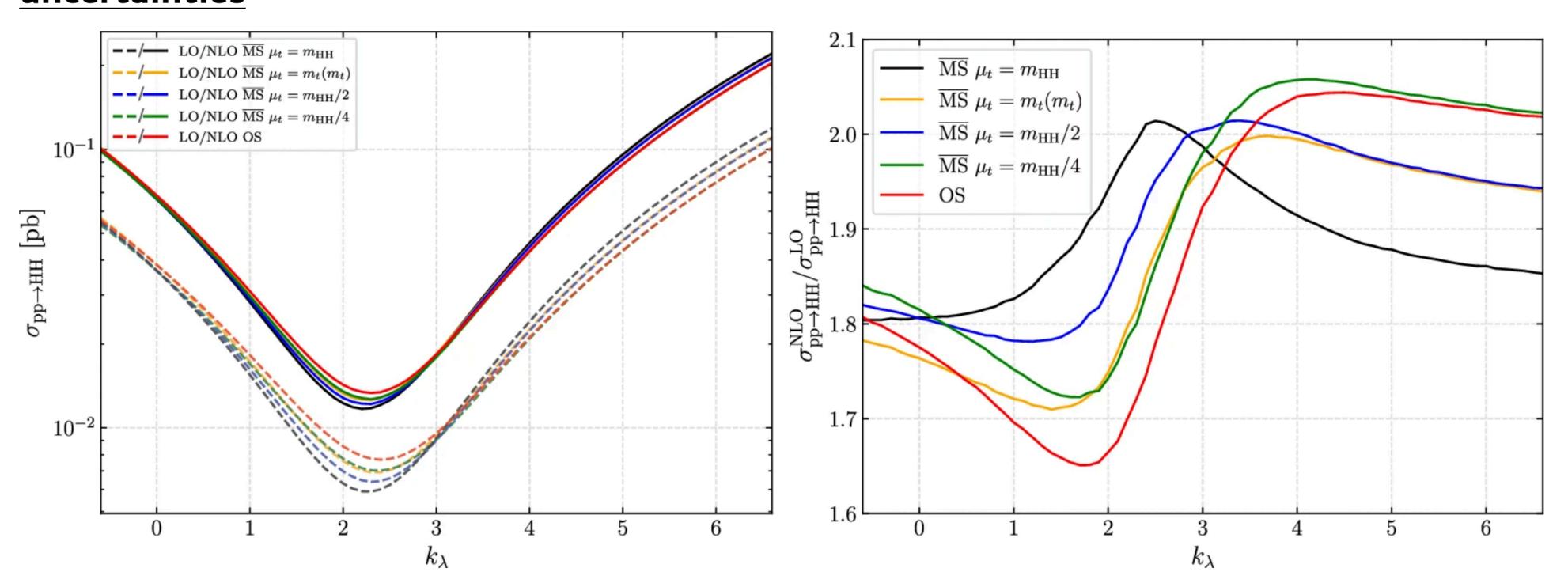
### 2. Mass Schemes

| Scheme                        | Definition                                                      | Key Feature                                         | Uncertainty Source                                                              |
|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|
| Pole Mass                     | Mass of the quark as an on-shell particle (propagator pole)     | Intuitive, linked to physical mass                  | Ambiguous due to infrared effects $(\sim \Lambda\_QCD \approx 200 \text{ MeV})$ |
| MS-bar ( $\overline{ m MS}$ ) | Short-distance mass, defined in dimensional regularization      | Scale-dependent, avoids long-<br>distance ambiguity | Needs scale choice; less direct physical interpretation                         |
| 1S / PS / Kinetic             | Masses tied to bound-state properties or low-energy observables | Reduces long-distance QCD effects                   | Small scheme conversion uncertainties (~100 MeV)                                |

# Top mass scheme and $\kappa_{\lambda}$

DESY.

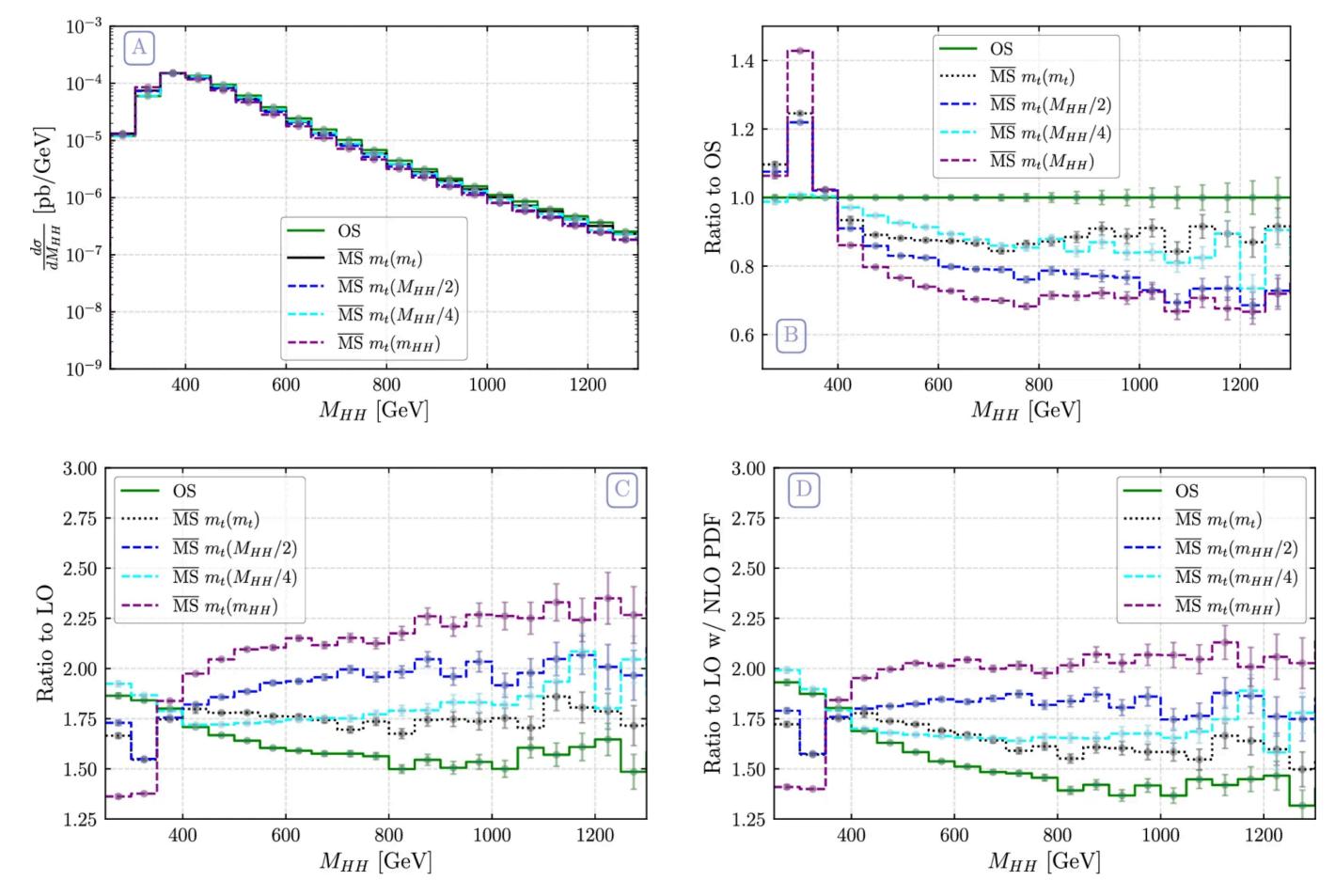
Fig. 1
From: <u>Higgs boson pair production at NLO in the POWHEG approach and the top quark mass</u> uncertainties



Left: the total inclusive cross sections at  $\sqrt{s}=13.6$  TeV for different choices of the top mass renormalization scheme, at LO (dashed) and NLO (solid), as a function  $\kappa_{\lambda}$ . Right: the corresponding *K*-factors

# Top mass scheme and $m_{H\!H}$ distribution

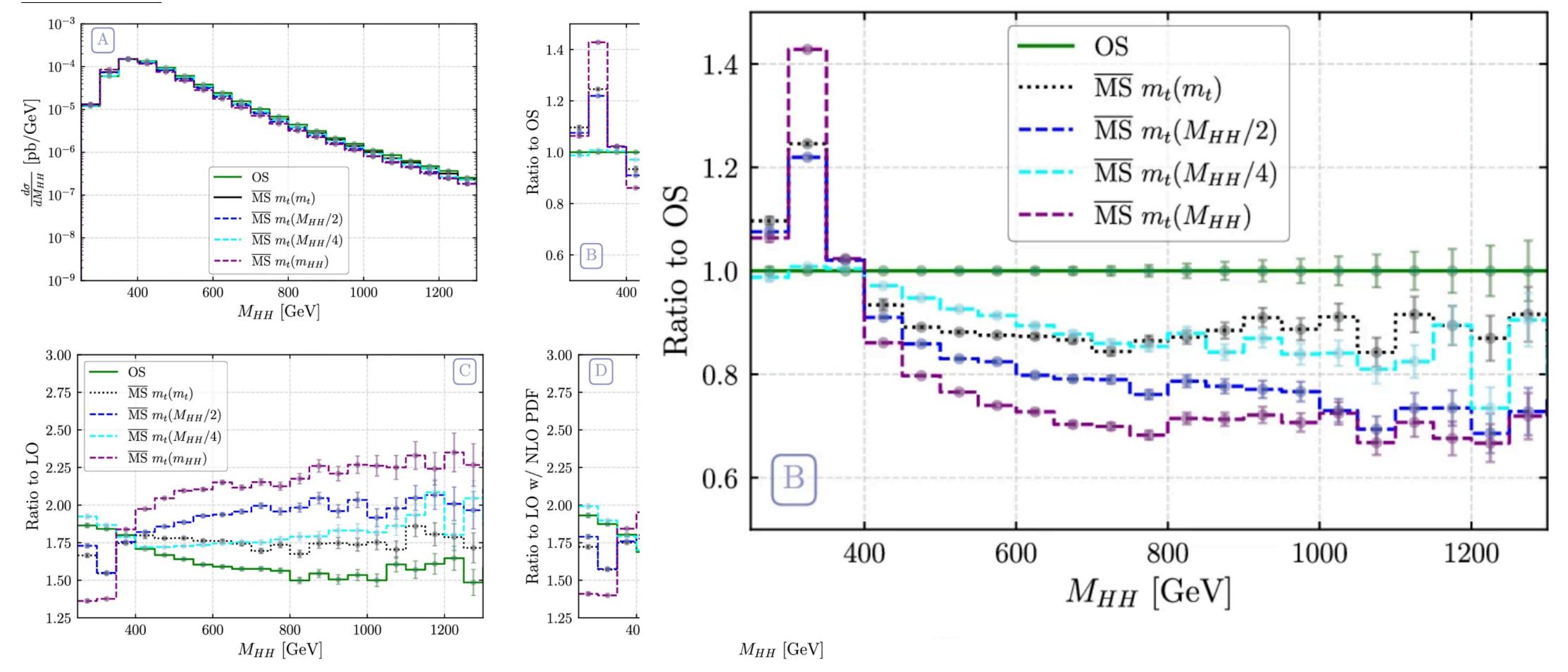
### From: <u>Higgs boson pair production at NLO in the POWHEG approach and the top quark mass</u> uncertainties



The invariant mass distribution of the two-Higgs system for different choices of the top-mass renormalization scheme: (A) absolute distributions at NLO+PS; (B) ratio between the  $\overline{\rm MS}$  predictions and the OS one; (C) ratio between the distributions computed at NLO+PS and their LO counterpart (*K*-factors); (D) same as C but with the LO distributions computed with NLO PDFs

# Top mass scheme and $m_{H\!H}$ distribution

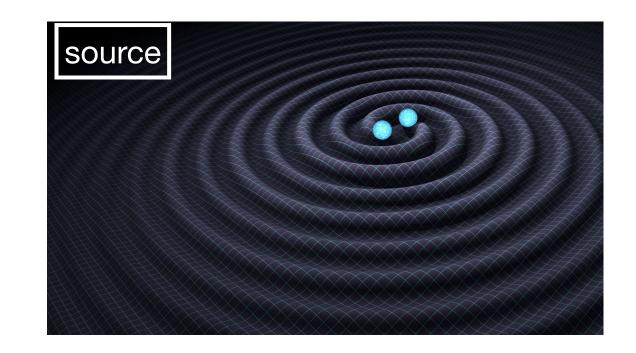
### From: <u>Higgs boson pair production at NLO in the POWHEG approach and the top quark mass</u> uncertainties



The invariant mass distribution of the two-Higgs system for different choices of the top-mass renormalization scheme: (**A**) absolute distributions at NLO+PS; (**B**) ratio between the  $\overline{\text{MS}}$  predictions and the OS one; (**C**) ratio between the distributions computed at NLO+PS and their LO counterpart (*K*-factors); (**D**) same as **C** but with the LO distributions computed with NLO PDFs

# e Hügli (DESY), Astroparticle and Particle Physics Workshop

# Gravitational Waves (GWs)



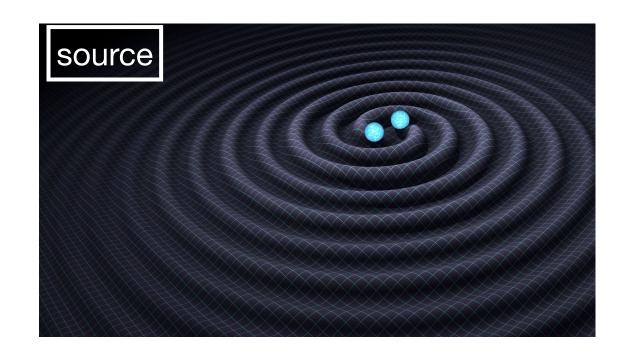
- are ripples in spacetime
- produced by violent cosmic events (e.g. black hole merges)
- can be detected with experiments like LIGO and Virgo





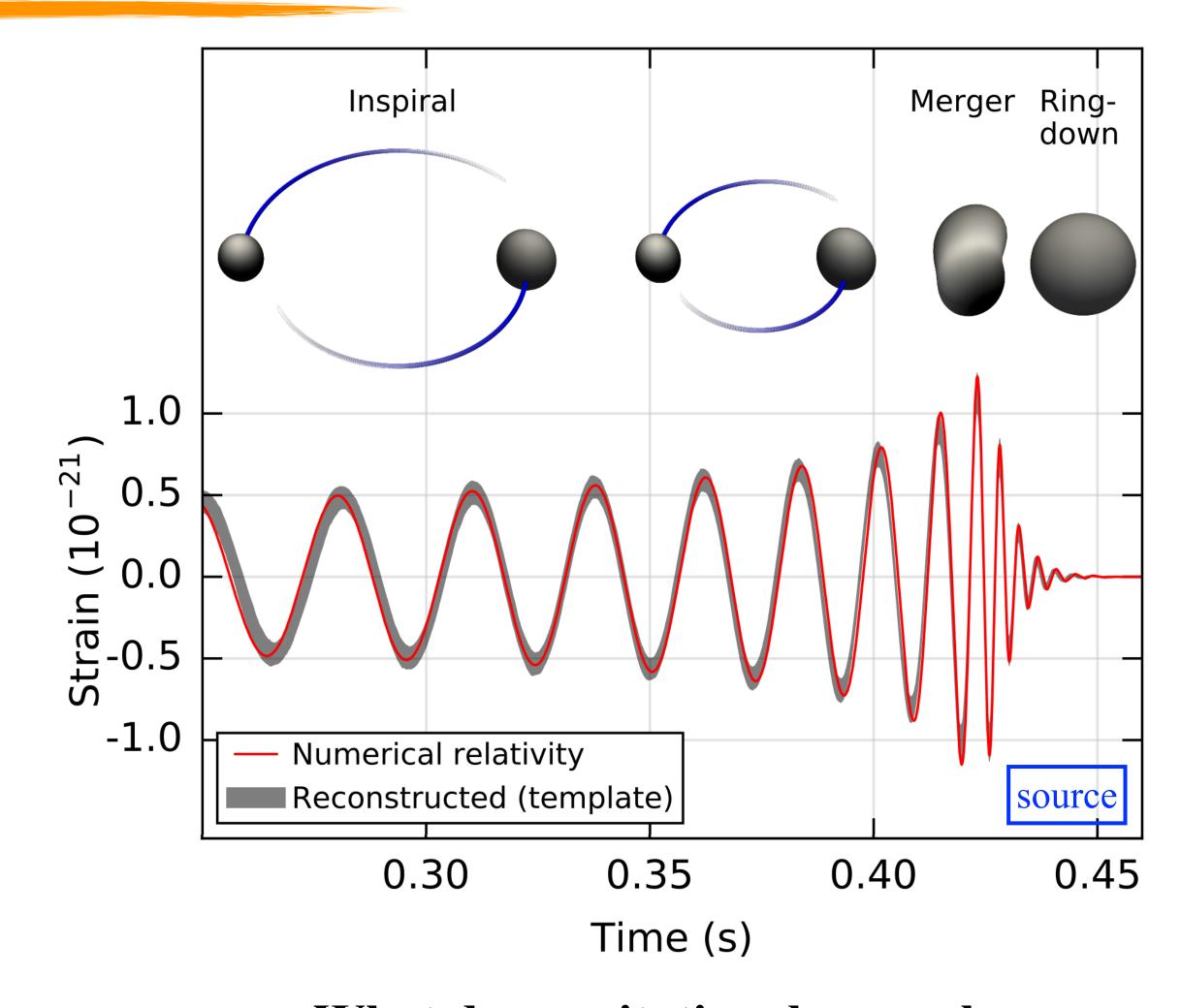
# Cédrine Hügli (DESY), Astroparticle and Particle Physics Workshop

### Gravitational Waves (GWs)



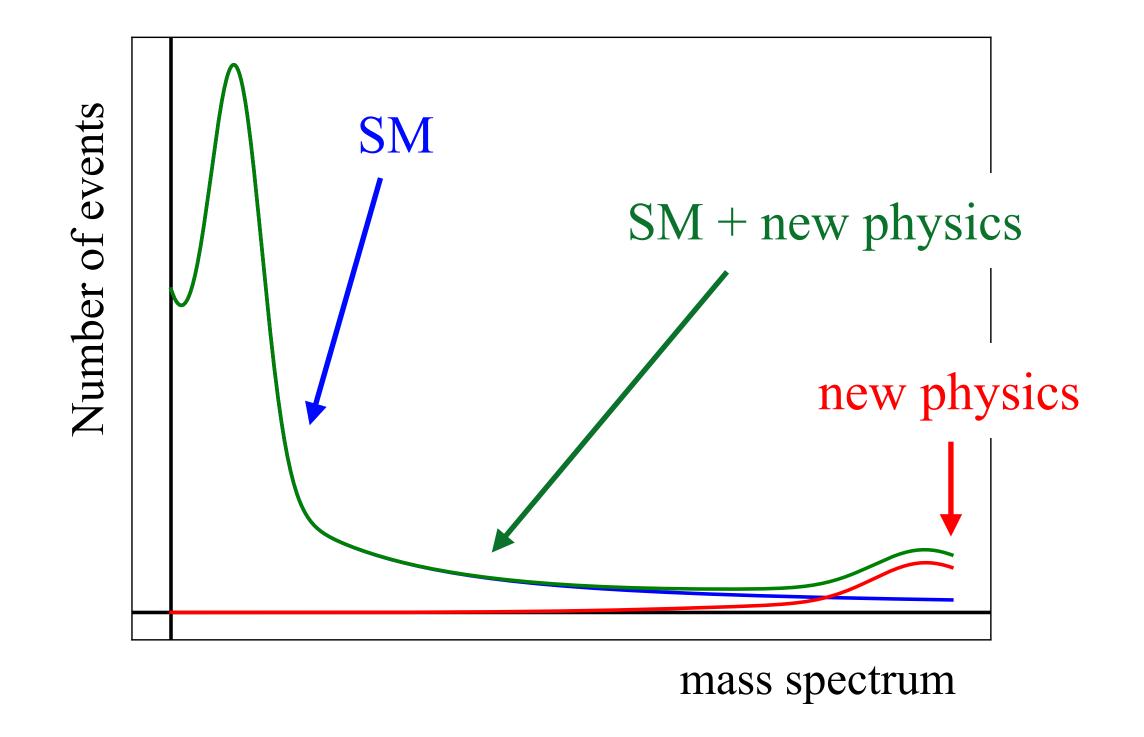
- are ripples in spacetime
- produced by violent cosmic events (e.g. black hole merges)
- can be detected with experiments like LIGO and Virgo





What do gravitational waves have to do with the Higgs bosons?

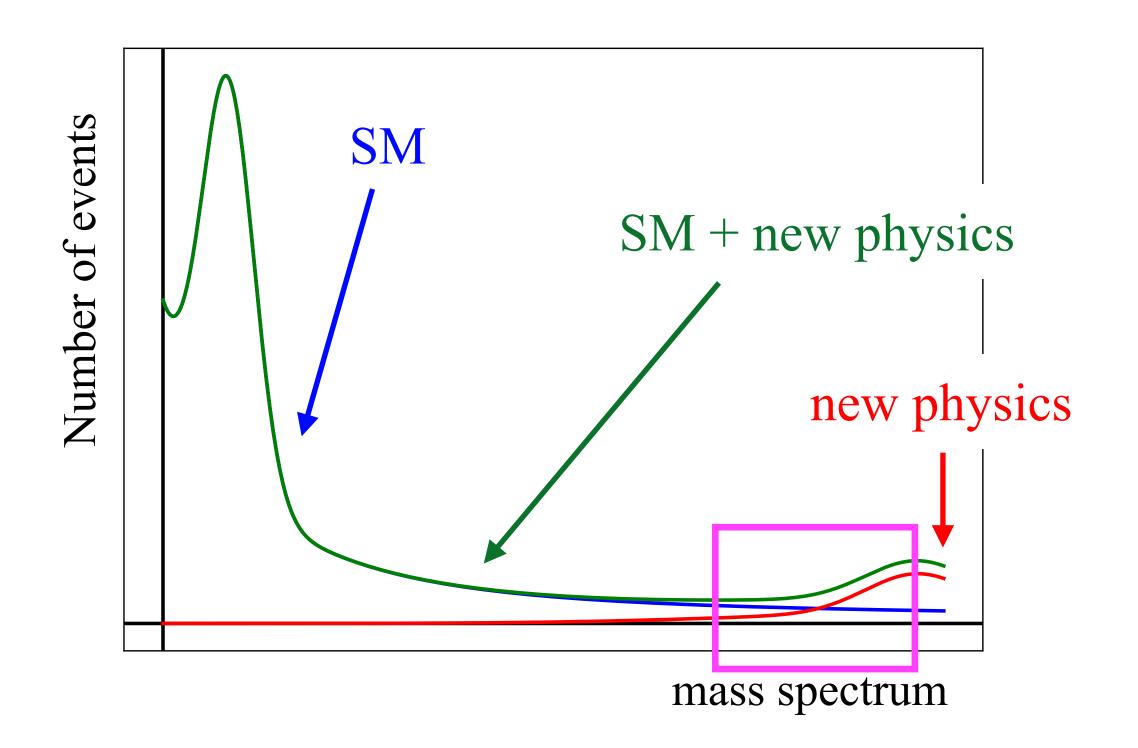
# Effective field theory (EFT) - Idea

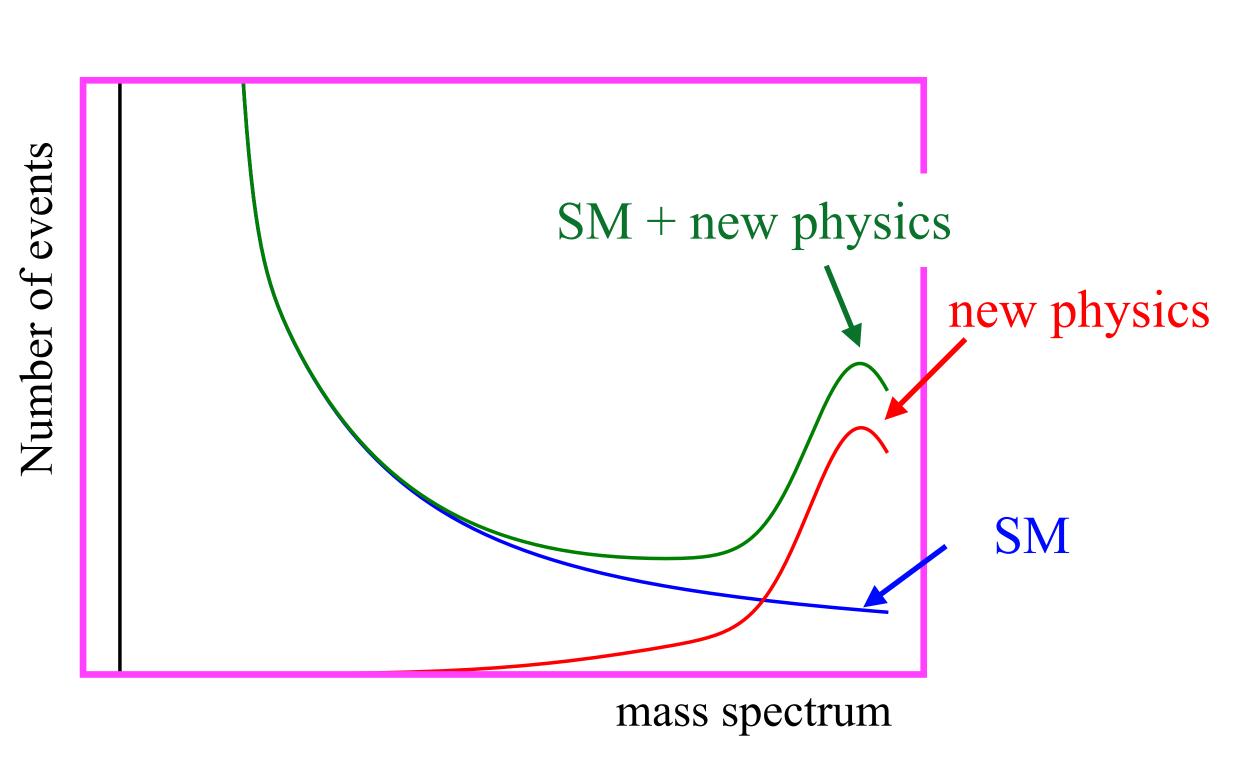


# Cédrine Hügli (DESY), Astroparticle and Particle Physics Workshop

# Effective field theory (EFT) - Idea



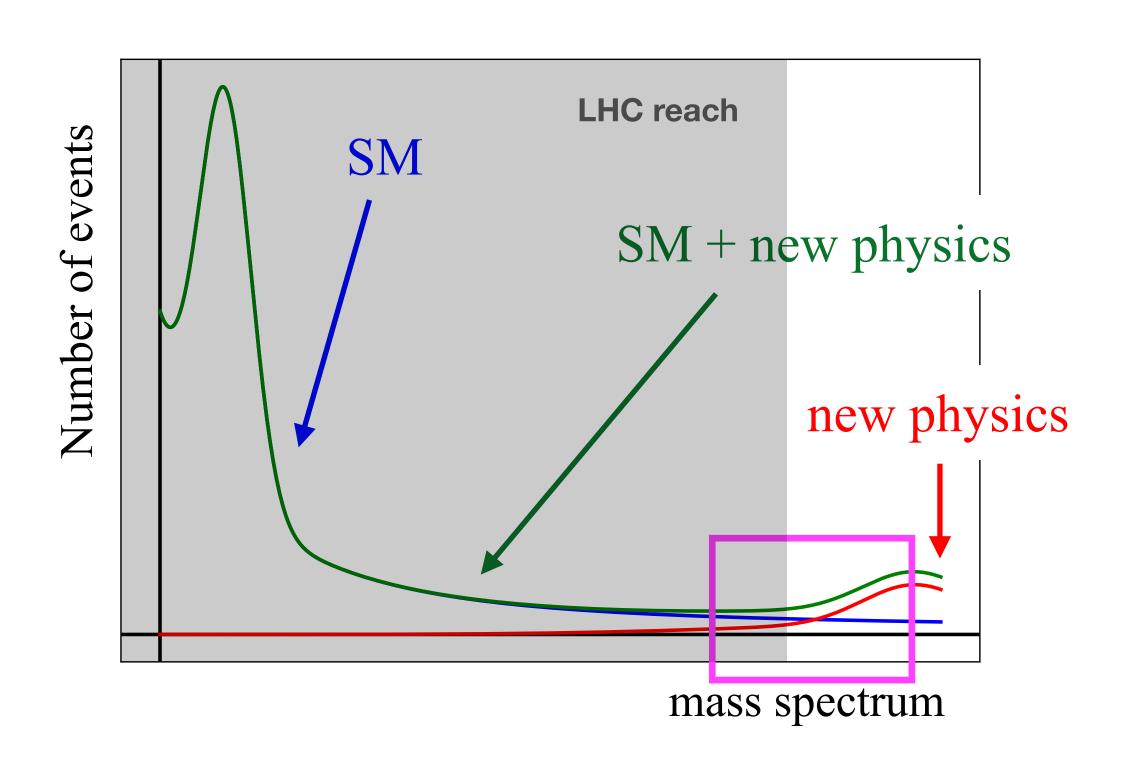


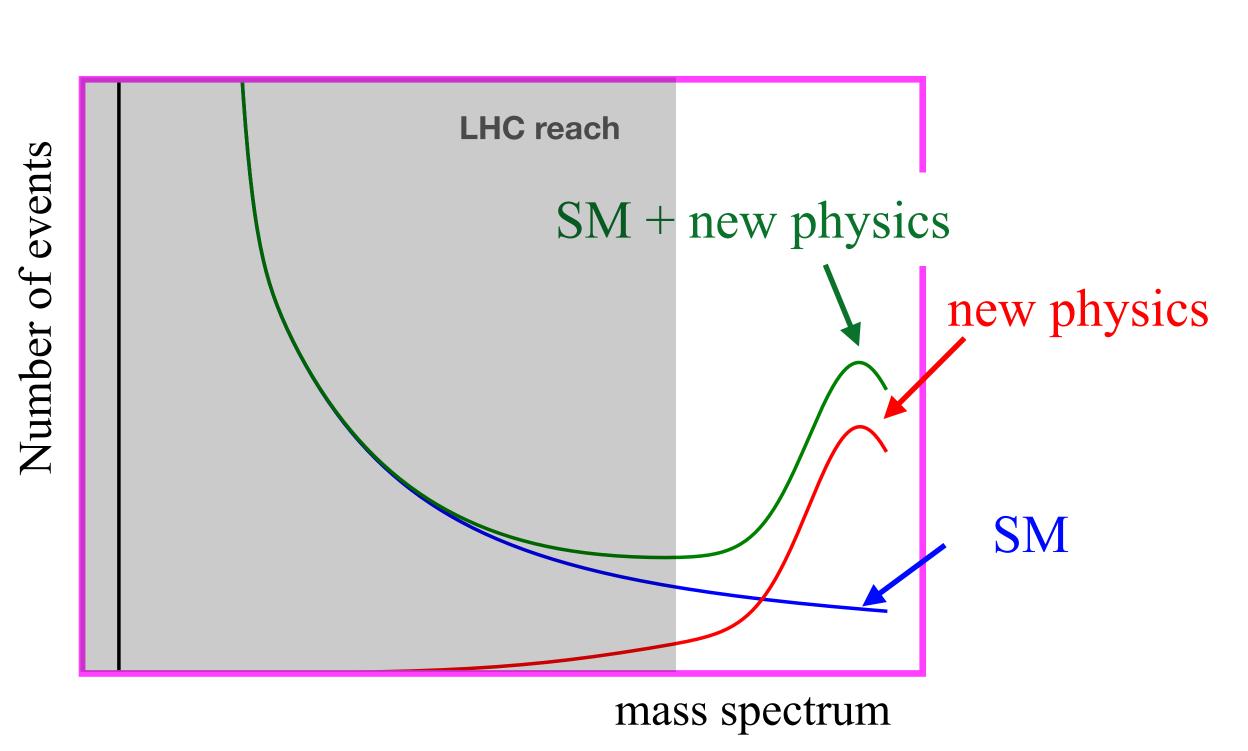


# Cédrine Hügli (DESY), Astroparticle and Particle Physics Workshop

# Effective field theory (EFT) - Idea







# le Hügli (DESY), Astroparticle and Particle Physics Workshop

# Effective field theory (EFT) - SMEFT lagrangian



Extend the Standard Model (SM) Lagrangian with higher orders:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$
Scale of new physics

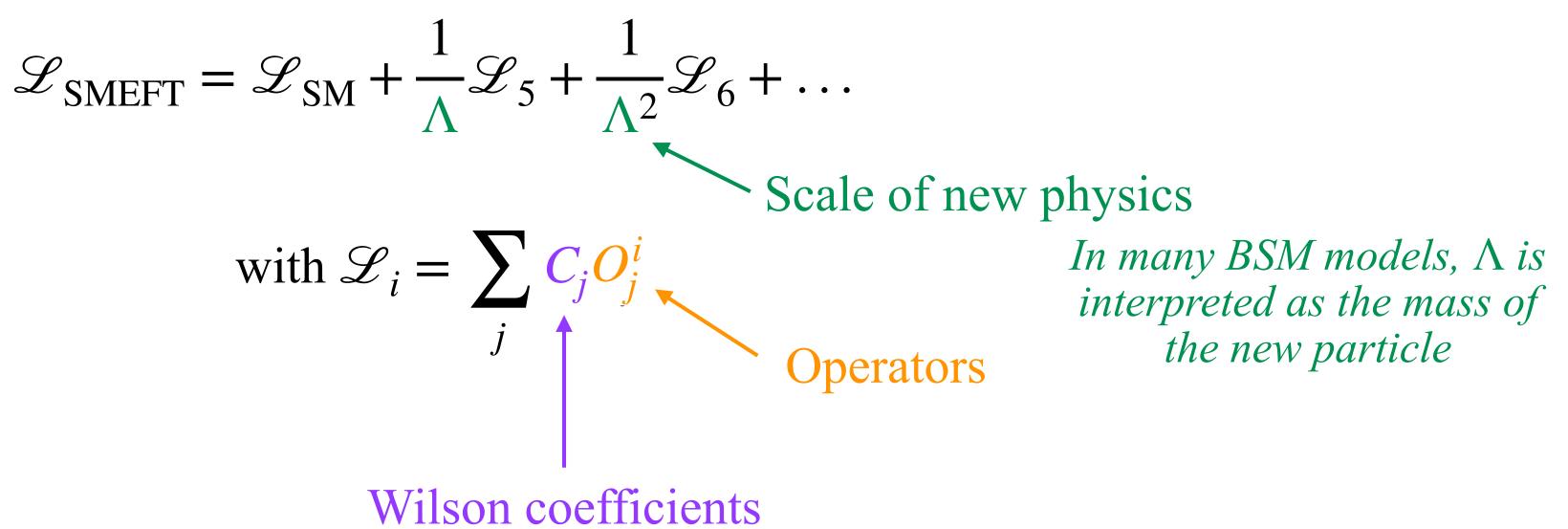
with 
$$\mathcal{L}_i = \sum_j C_j O_j^i$$

In many BSM models,  $\Lambda$  is interpreted as the mass of the new particle

# Effective field theory (EFT) - SMEFT lagrangian



Extend the Standard Model (SM) Lagrangian with higher orders:



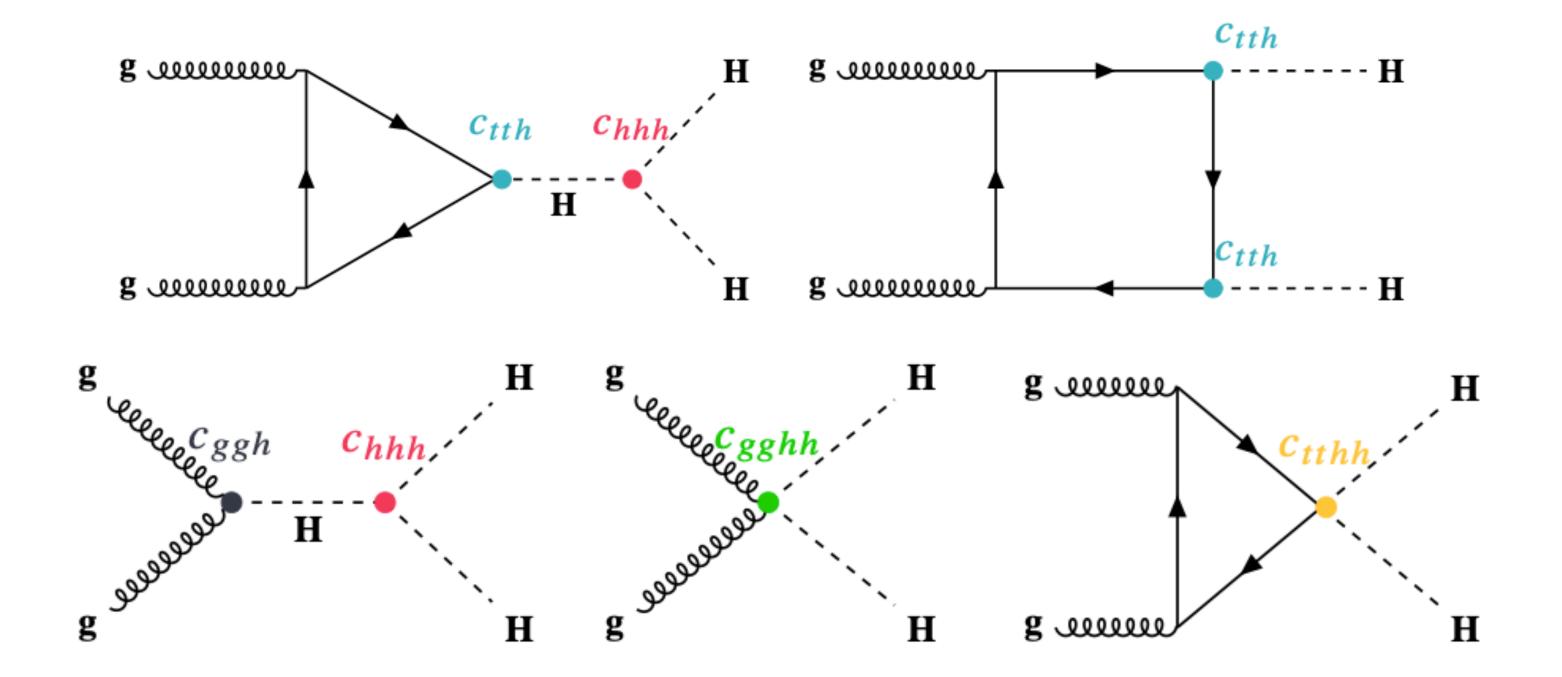
# Hügli (DESY), Astroparticle and Particle Physics Workshop

### Wilson coefficients



The Wilson coefficients are our free parameters in the EFT theories

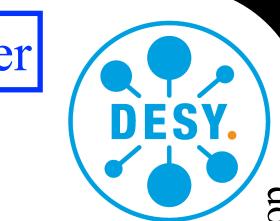
They can be imaginged as follows

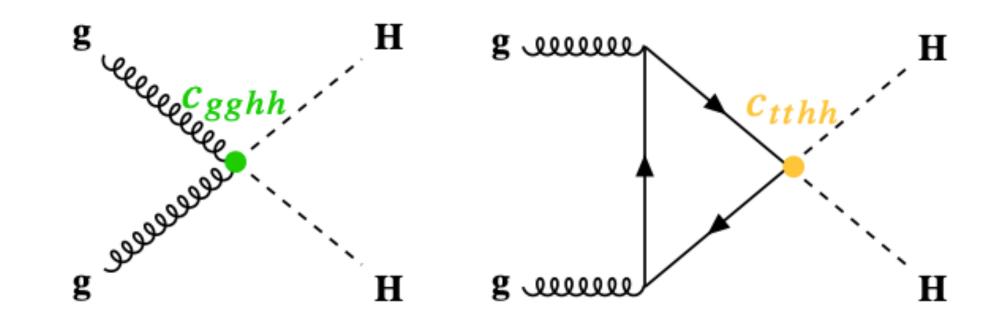


Standard Model is refound with the Wilson coefficients at zero. So any significant deviation from zero is interesting.

# paper

### Wilson coefficients - constraints

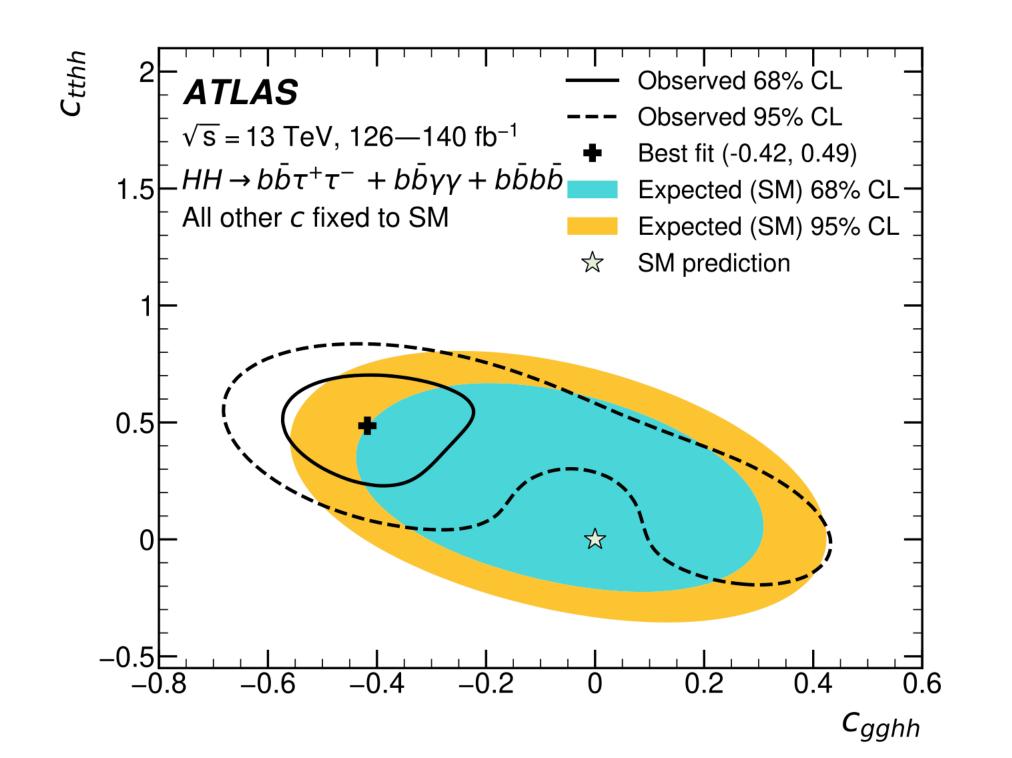




Observed 95% C.L. limits:

$$-0.38 < c_{gghh} < 0.49$$

$$-0.19 < c_{tthh} < 0.70$$



These represent the most stringent constraints to date on  $c_{gghh}$  and  $c_{tthh}$ 

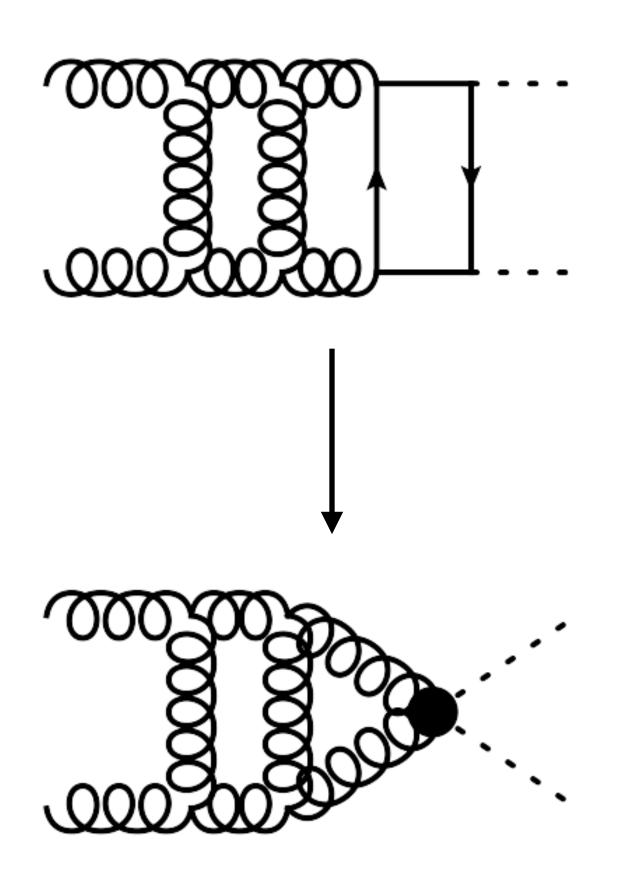
The results are compatible with the SM predictions

No new physics found yet

# le Hügli (DESY), Astroparticle and Particle Physics Workshop Cédrin

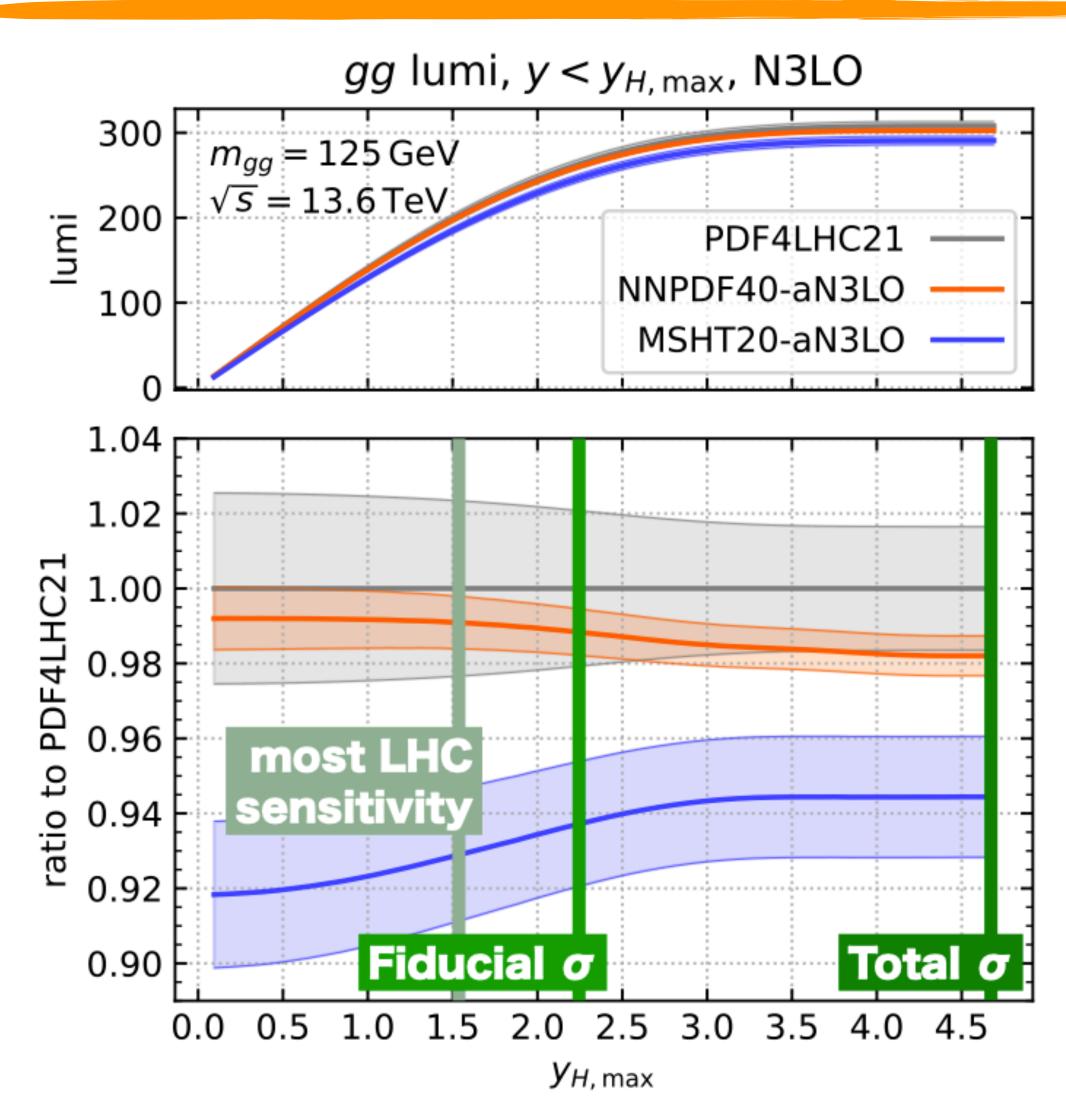
# **Heavy Top Limit**

This is the approximation made to compute it more simply



# Theroretical uncertainties - example: PDF issues





At NNLO: 1-2% difference between PDF4LHC

At N3LO: up to  $\sim 6\%$ 

Problematic for a measurement aiming to ~1% precision

### LO diagram interference

The effect of the trilinear Higgs self-coupling in the LO total cross section amounts to a reduction of about 50% with respect to the box-only contribution, due to the large destructive interference.

The QCD corrections increase the total cross section by about a factor of two with respect to the LO prediction,

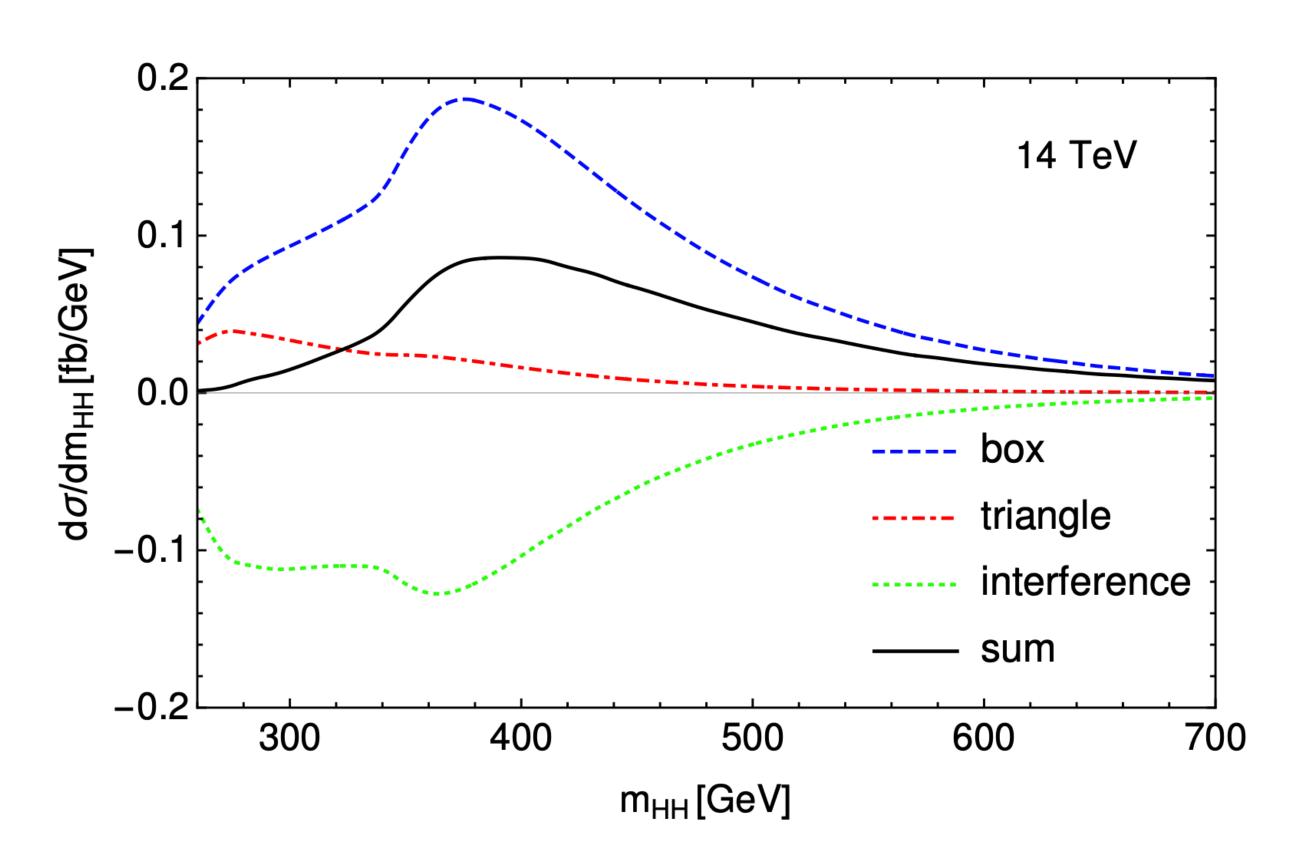
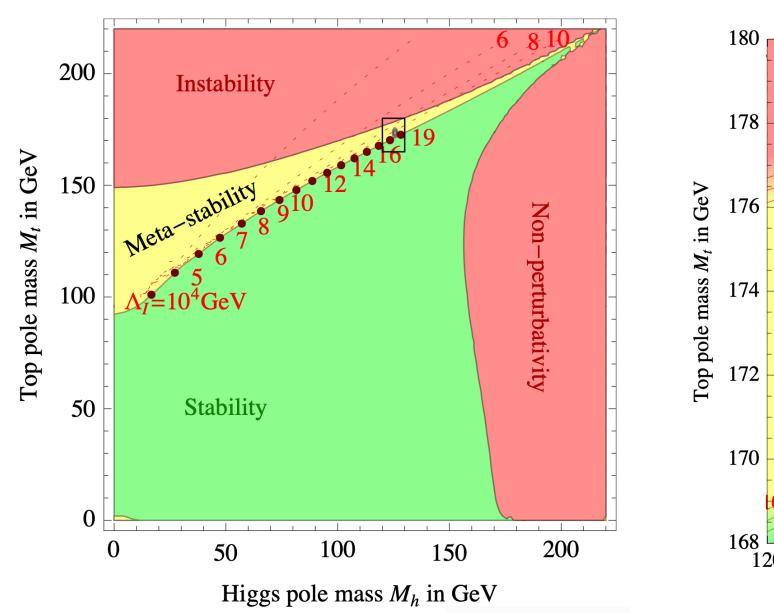
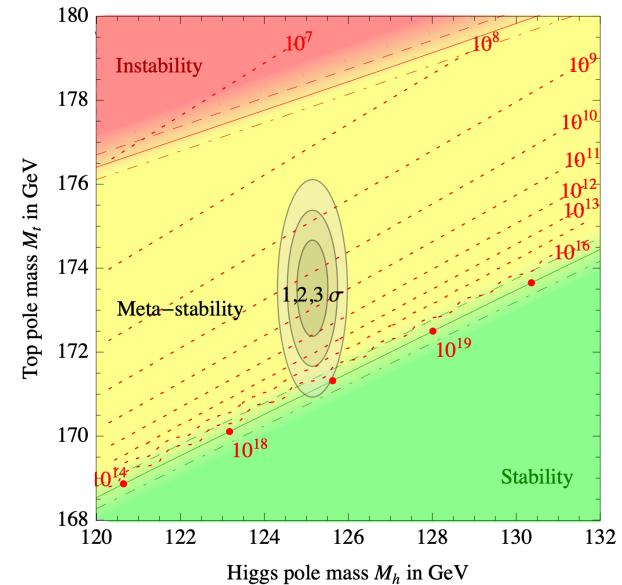


Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to the gluon fusion production mechanism and their interference.

# Stability of the universe - mass plot







The uncertainty from and from theoretical errors are indicated by the dashed lines and the colour shading along the borders.

Also shown are contour lines of the instability scale  $\Lambda$ 

a network of contour lines labeled by the instability scale

 $\Lambda$ \_I: the energy where  $\lambda$ \_eff( $\mu$ )=0

From this result we conclude that vacuum stability of the SM up to the Planck scale is excluded at 2.8σ (99.8% C.L. one-sided). Since the main source of uncertainty in eq. (64) comes from M, any refinement in the measurement of the top mass is of great importance for the question of EW vacuum stability.

### 2. Quantum corrections: from $V(\phi)$ to $V_{\mathrm{eff}}(\phi)$

In quantum field theory (QFT), particles interact via loops — virtual fluctuations that shift the energy levels.

So the true energy density for a given field configuration isn't just the classical  $V(\phi)$ , but the **effective** potential  $V_{\rm eff}(\phi)$ , which includes loop corrections.

Mathematically:

$$V_{ ext{eff}}(\phi) = V_{ ext{tree}}(\phi) + \Delta V_{ ext{1-loop}}(\phi) + \Delta V_{ ext{2-loop}}(\phi) + \cdots$$

Each  $\Delta V$  term accounts for higher-order quantum effects (Feynman diagrams with loops).

### 3. Why the effective potential matters

- The **vacuum state** of the universe is the field configuration that *minimizes*  $V_{ ext{eff}}(\phi)$ .
- Quantum corrections can **shift or even create new minima** at large field values. For example, due to the heavy top quark, the Higgs quartic coupling  $\lambda(\mu)$  can run negative at high energy scales.
- This means the SM potential may develop a **second, deeper minimum** at large  $\phi$ , making our electroweak vacuum only **metastable**.

That's what Buttazzo et al. study: how quantum corrections (encoded in  $V_{
m eff}$ ) change the vacuum structure.



### 4. The role of the renormalization group (RG)

The effective potential depends on the **renormalization scale**  $\mu$ .

To make physical predictions stable under changes in  $\mu$ , we use **renormalization group equations** (RGEs) to evolve the couplings  $(\lambda, g, y_t, \ldots)$  with energy:

$$rac{d\lambda}{d\ln\mu}=eta_\lambda(\lambda,g,y_t,\ldots)$$

The RG-improved effective potential is then:

$$V_{
m eff}(h) \simeq rac{1}{4} \lambda_{
m eff}(h) \, h^4$$

for large Higgs field values  $h \gg v$ .

This form shows that if  $\lambda_{\rm eff}(h) < 0$  at some scale h, the potential turns downward — indicating **vacuum** instability.



### 2. Quantum corrections make λ run with energy

Quantum loops (especially involving the **top quark**, W, Z, and the Higgs itself) modify how the parameters behave at different energy scales.

So  $\lambda$  becomes scale-dependent via Renormalization Group Equations (RGEs):

$$rac{d\lambda}{d\ln\mu}=eta_\lambda(\lambda,g_i,y_t,\ldots)$$

Here:

- $\bullet$   $\mu$  is the renormalization scale (the energy at which you probe the theory),
- $g_i$  are the gauge couplings,
- ullet  $y_t$  is the top Yukawa coupling.

This "running" of  $\lambda(\mu)$  is computed from the SM's  $\beta$ -functions — typically up to **3-loop precision** in modern analyses like Buttazzo et al. (2013).

$$V_{\mathrm{eff}}(h) = \lambda_{\mathrm{eff}}(h) \frac{h^4}{4}$$

$$h \gg v$$

### 6. How the instability scale links to lifetime qualitatively

| Instability scale $\Lambda_I$       | Behavior of $\lambda_{	ext{eff}}$ | Vacuum lifetime                                       |
|-------------------------------------|-----------------------------------|-------------------------------------------------------|
| $\Lambda_I > M_{ m Pl}$             | No zero crossing → stable         | Infinite (no decay)                                   |
| $\Lambda_I \sim 10^{17}{ m GeV}$    | Crosses just below Planck         | Extremely long (> 10 <sup>50</sup> × age of universe) |
| $\Lambda_I \sim 10^{10-12}{ m GeV}$ | Crosses moderately early          | Still enormous lifetime (metastable)                  |
| $\Lambda_I \lesssim 10^6  { m GeV}$ | Crosses low, λ very negative      | Lifetime shorter than universe (unstable)             |

So the **lower** the instability scale, the **faster** the potential decay — because  $\lambda$ \_eff turns negative sooner and more strongly.

### 2. "Perturbative" vs. "Non-perturbative"

In the SM, we compute the running of couplings ( $\lambda$ ,  $g_i$ ,  $y_t$ , ...) using **perturbation theory** — i.e. we expand observables in powers of small couplings:

$$\text{Observable} = \text{tree level} + c_1 \, g^2 + c_2 \, g^4 + \cdots$$

This works only when *all* the relevant couplings are small (< 1) so that higher-order terms are suppressed.

If a coupling grows too large, the perturbative expansion stops converging — the theory becomes **nonperturbative**, and our usual RGEs and loop calculations no longer give trustworthy results.



### ▲ 3. What causes that in the Higgs sector

For very large Higgs masses  $M_h$ , the quartic coupling  $\lambda$  must also be large, because:

$$\lambda(v)=rac{m_h^2}{2v^2}$$

So if  $M_h$  is, say, 500 GeV, then  $\lambda(v)\sim 0.5$ ; if  $M_h=1{
m TeV}$ ,  $\lambda(v)\sim 8$  — enormous.

Then, as we run  $\lambda(\mu)$  to higher scales using the RG equations, it increases even more and can **diverge** at a finite energy scale — the so-called **Landau pole**.

### That means:

- The perturbative calculation breaks down.
- We lose predictive control before reaching the Planck scale.
- The SM cannot be extrapolated reliably there.

### ∠ 5. The big picture

| Region           | Behavior of $\lambda_e ff(\mu)$                               | Interpretation                          |
|------------------|---------------------------------------------------------------|-----------------------------------------|
| Stable           | $\lambda_{e}ff > 0$ , small, up to Planck                     | SM vacuum absolutely stable             |
| Metastable       | $\lambda_{\text{e}}\text{ff}$ crosses 0 slightly, stays small | Long-lived false vacuum                 |
| Unstable         | $\lambda_{e}ff < 0$ , sizable                                 | Vacuum would have decayed               |
| Non-perturbative | $\lambda_e ff \gg 1$ or diverges (Landau pole)                | SM loses predictivity; need new physics |





### 4. What it tells us about our universe

Using the measured values

$$M_h \simeq 125$$
 GeV,  $M_t \simeq 173$  GeV, and  $lpha_s(M_Z)$ ,

the authors find:

$$\Lambda_I pprox 10^{10 ext{-}11} \, ext{GeV},$$

and the vacuum lifetime  $au\gg t_{
m Universe}.$ 

So our universe sits in the metastable region, extremely close to the boundary with absolute stability what they call near-criticality.

### Plank scale

| Quantity      | Definition           | Numerical Value                          |  |  |  |  |
|---------------|----------------------|------------------------------------------|--|--|--|--|
| Planck mass   | $\sqrt{\hbar c/G}$   | $\sim 2.2 	imes 10^{-8} 	ext{ kg}$       |  |  |  |  |
| Planck energy | $M_{ m Pl}c^2$       | $\sim 1.22 	imes 10^{19}~{ m GeV}$       |  |  |  |  |
| Planck length | $\sqrt{\hbar G/c^3}$ | $\sim 1.616 	imes 10^{-35} \ \mathrm{m}$ |  |  |  |  |
| Planck time   | $l_{ m Pl}/c$        | $\sim 5.39 	imes 10^{-44} \mathrm{\ s}$  |  |  |  |  |

### Connection:

$$E_{
m Pl} \sim M_{
m Pl} \sim rac{1}{l_{
m Pl}} \sim rac{1}{t_{
m Pl}}$$

### 1. What they did in Figure 3

In Figure 3, the phase diagram is drawn in terms of the low-energy, measured parameters:

- Higgs mass  $M_h$
- Top quark mass  $M_t$

These are **pole masses** measured near the electroweak scale ( $\sim 100$  GeV).

- From these masses, you infer the low-energy Higgs quartic coupling  $\lambda(v)$  and top Yukawa  $y_t(v)$ .
- Then you use **RGEs** to run them up to high energies ( $\mu \sim 10^{10-19}$  GeV) to see if the vacuum is stable, metastable, or unstable.

### 2. The idea behind Figure 4

In Figure 4, the authors reparametrize the phase diagram using the values of the couplings themselves at a high-energy scale:

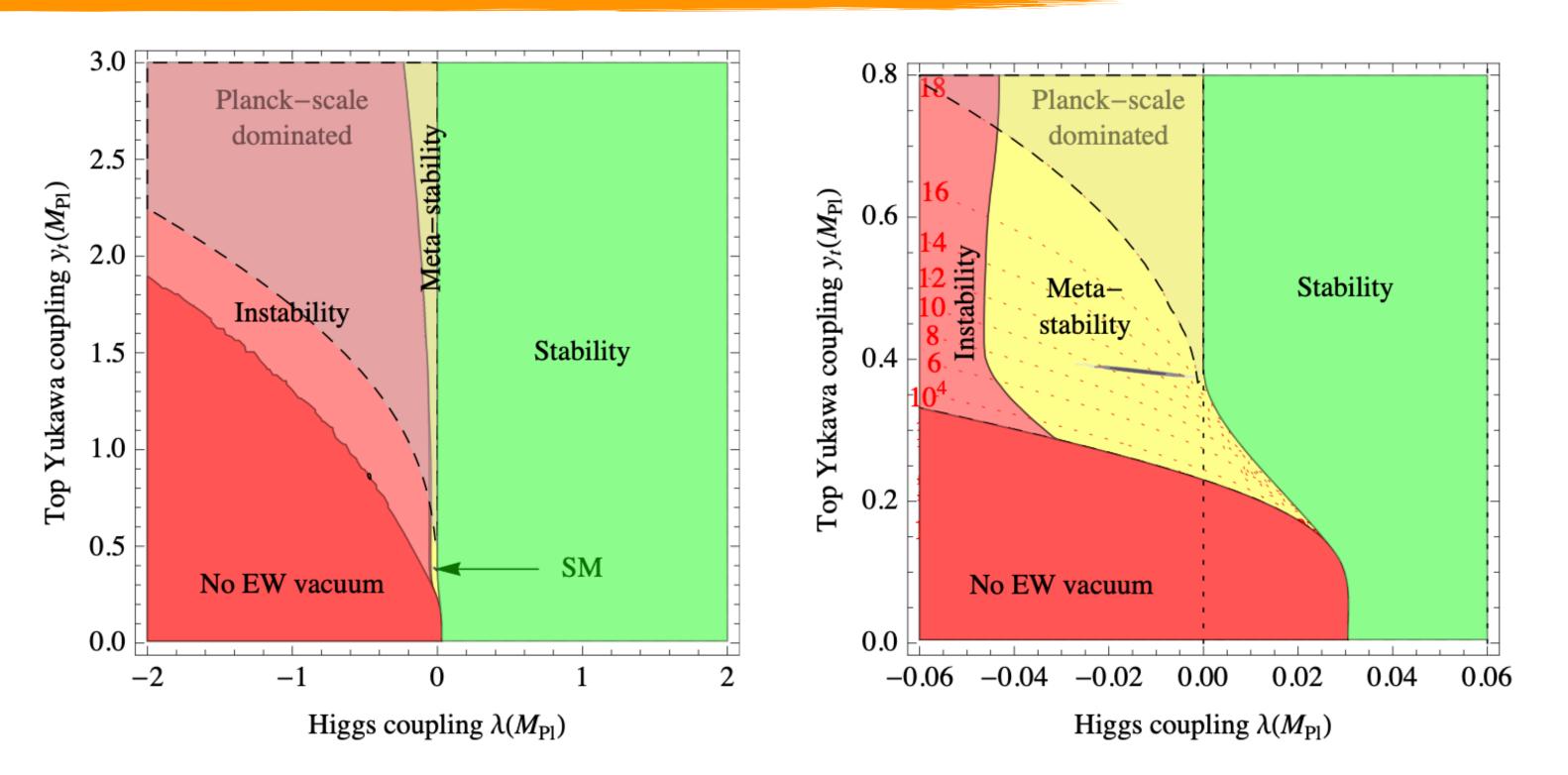
$$\lambda(\mu_{
m high}), \quad y_t(\mu_{
m high})$$

- Typically,  $\mu_{
  m high} \sim 10^{17-18}$  GeV, just below the Planck scale.
- This is where the potential is near its critical behavior i.e., near the scale where  $\lambda_{\rm eff}$  could cross zero.



## Stability - coupling plot





The area denoted as 'no EW vacuum' corresponds to a situation in which  $\lambda$  is negative at the weak scale, and therefore the usual Higgs vacuum does not exist.

In the region denoted as 'Planck-scale dominated' the instability scale  $\Lambda I$  is larger than  $10^{18}$  GeV.

In this situation we expect that both the Higgs potential and the tunnelling rate receive large gravitational corrections and any assessment about vacuum stability becomes unreliable.

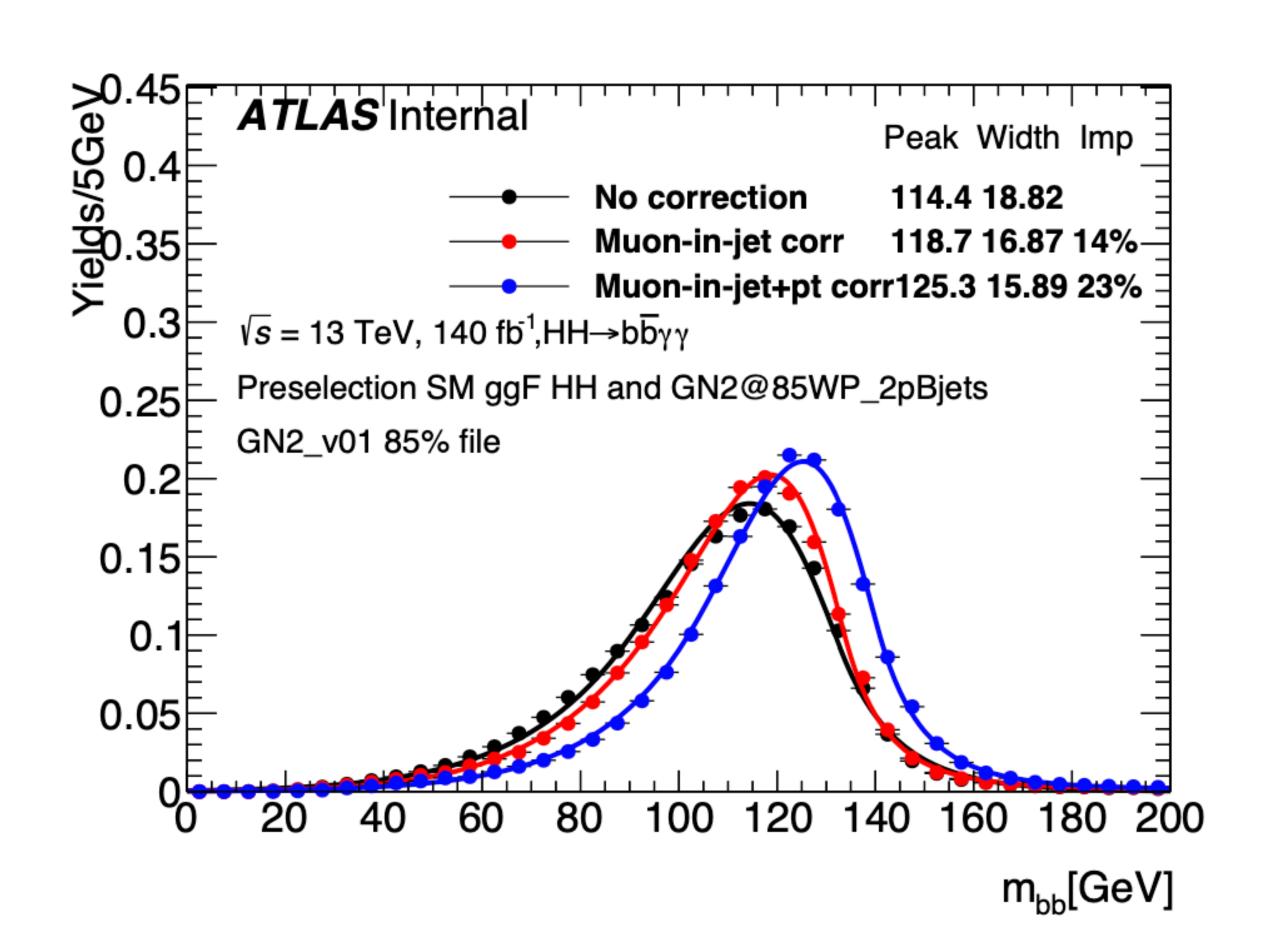
### **BJetCalibration correction**

DESY.

Improve the  $m_{bb}$  resolution by correction for

- muons escaping the cone
- neutrinos
- other out-of-cone effects

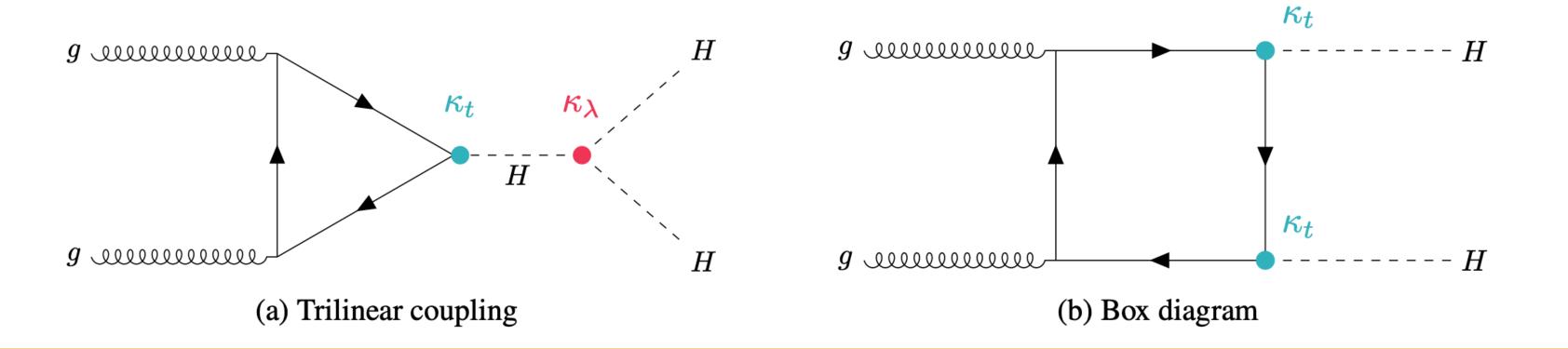
Improve by  $\sim 23\%$  the  $m_{bb}$  resolution



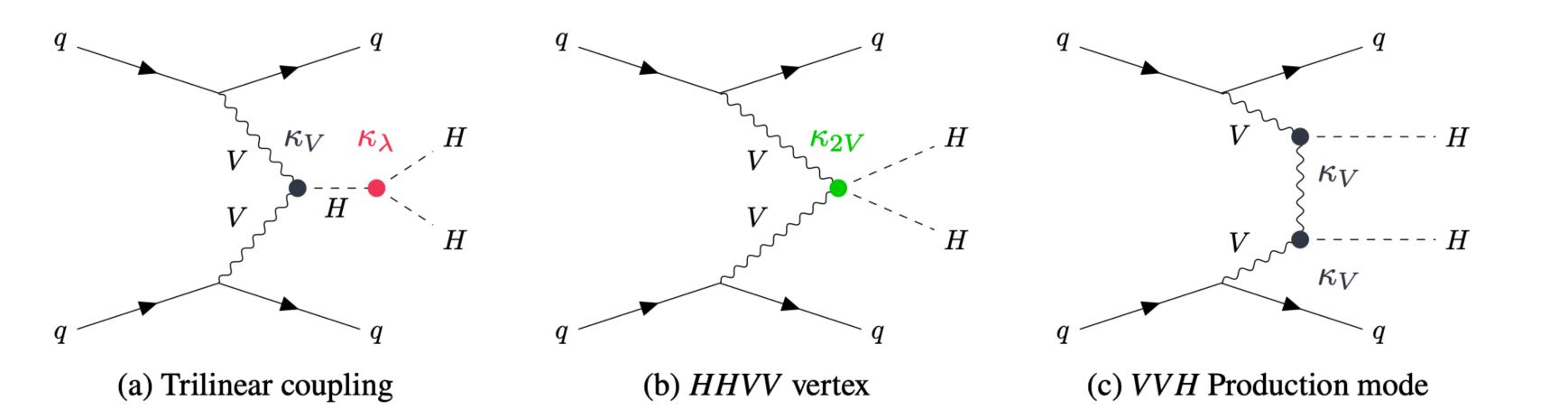
# $\kappa_{\lambda}$ and $\kappa_{2V}$



ggF production



VBF production



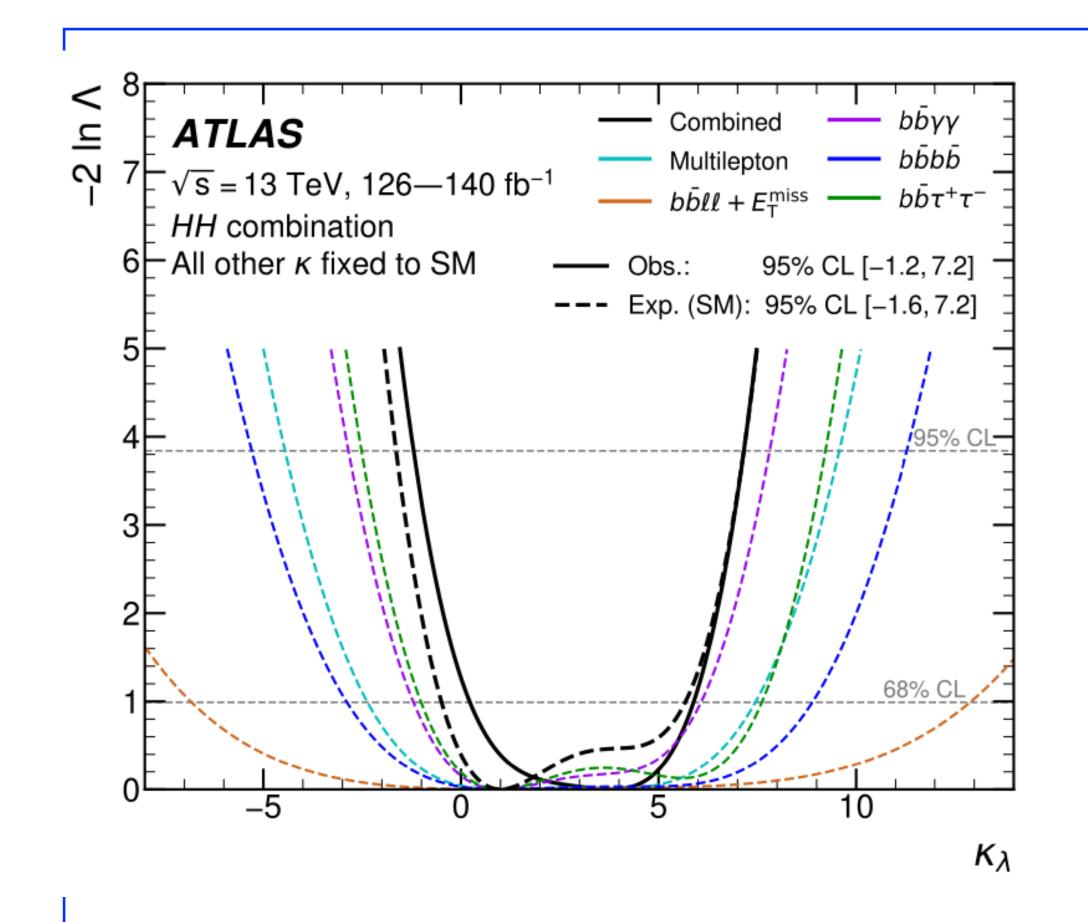
## Systematic uncertainties

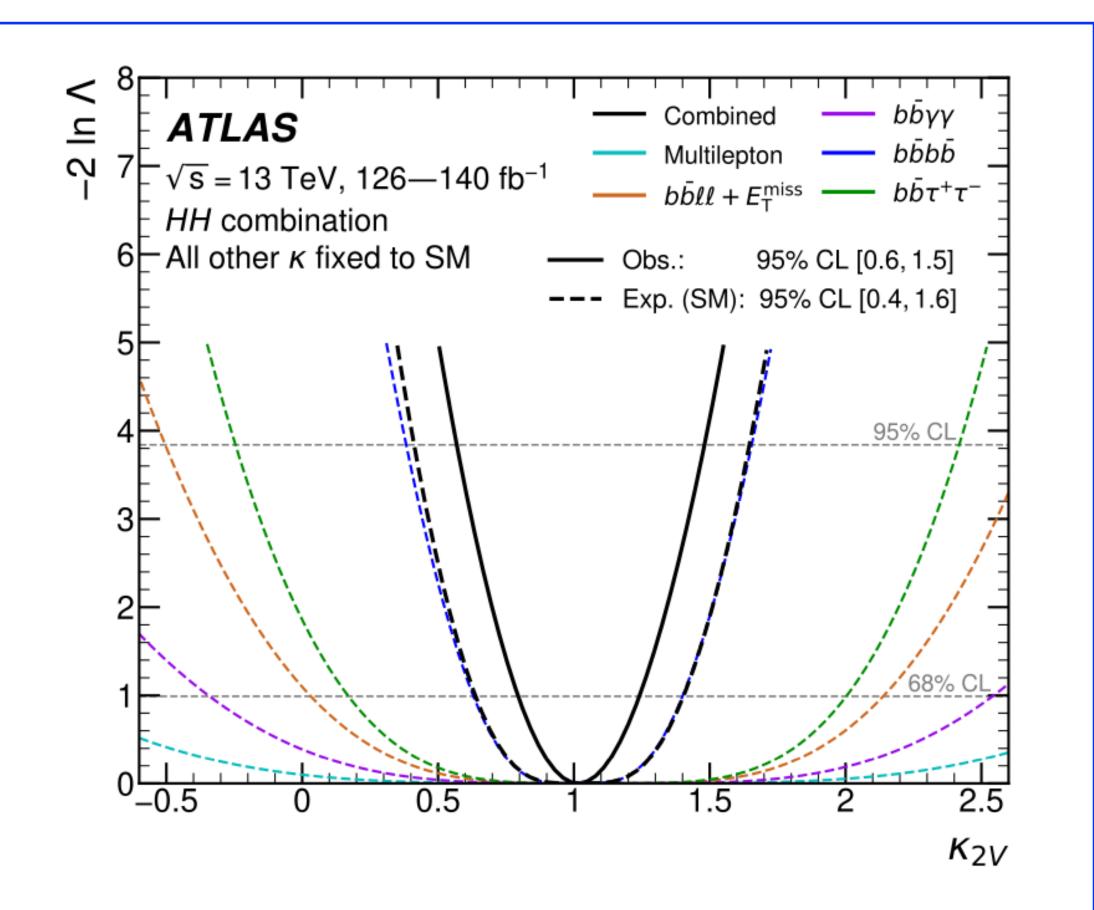
Systematic uncertainties affect the shape and normalisation of the diphoton invariant mass distributions of the Higgs boson pair signal and single Higgs boson backgrounds. Nevertheless, due to the limited number of events and the small signal-to-background ratio, the impact of the systematic uncertainties is small compared with that of the statistical uncertainties.

| Systematic uncertainty source                | Relative impact [%] |  |  |  |  |
|----------------------------------------------|---------------------|--|--|--|--|
| Experimental                                 |                     |  |  |  |  |
| Photon energy resolution                     | 0.4                 |  |  |  |  |
| Photon energy scale                          | 0.1                 |  |  |  |  |
| Flavour tagging                              | 0.1                 |  |  |  |  |
| Theoretical                                  |                     |  |  |  |  |
| Factorisation and renormalisation scale      | 4.8                 |  |  |  |  |
| $\mathcal{B}(H 	o \gamma \gamma, b \bar{b})$ | 0.2                 |  |  |  |  |
| Parton showering model                       | 0.2                 |  |  |  |  |
| Heavy-flavour content                        | 0.1                 |  |  |  |  |
| Background model (spurious signal)           | 0.1                 |  |  |  |  |

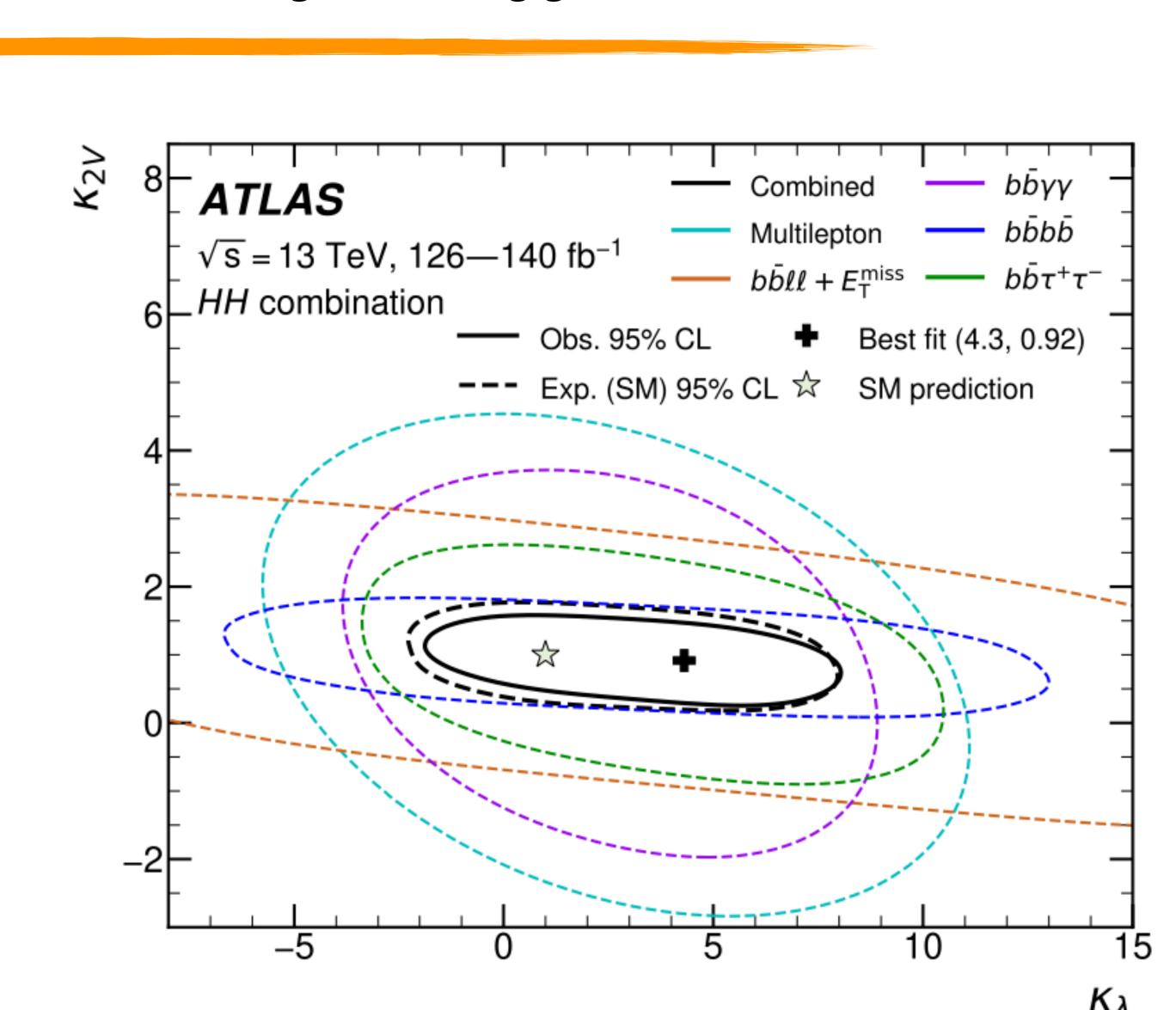
## Complementarity of bbyy and 4b



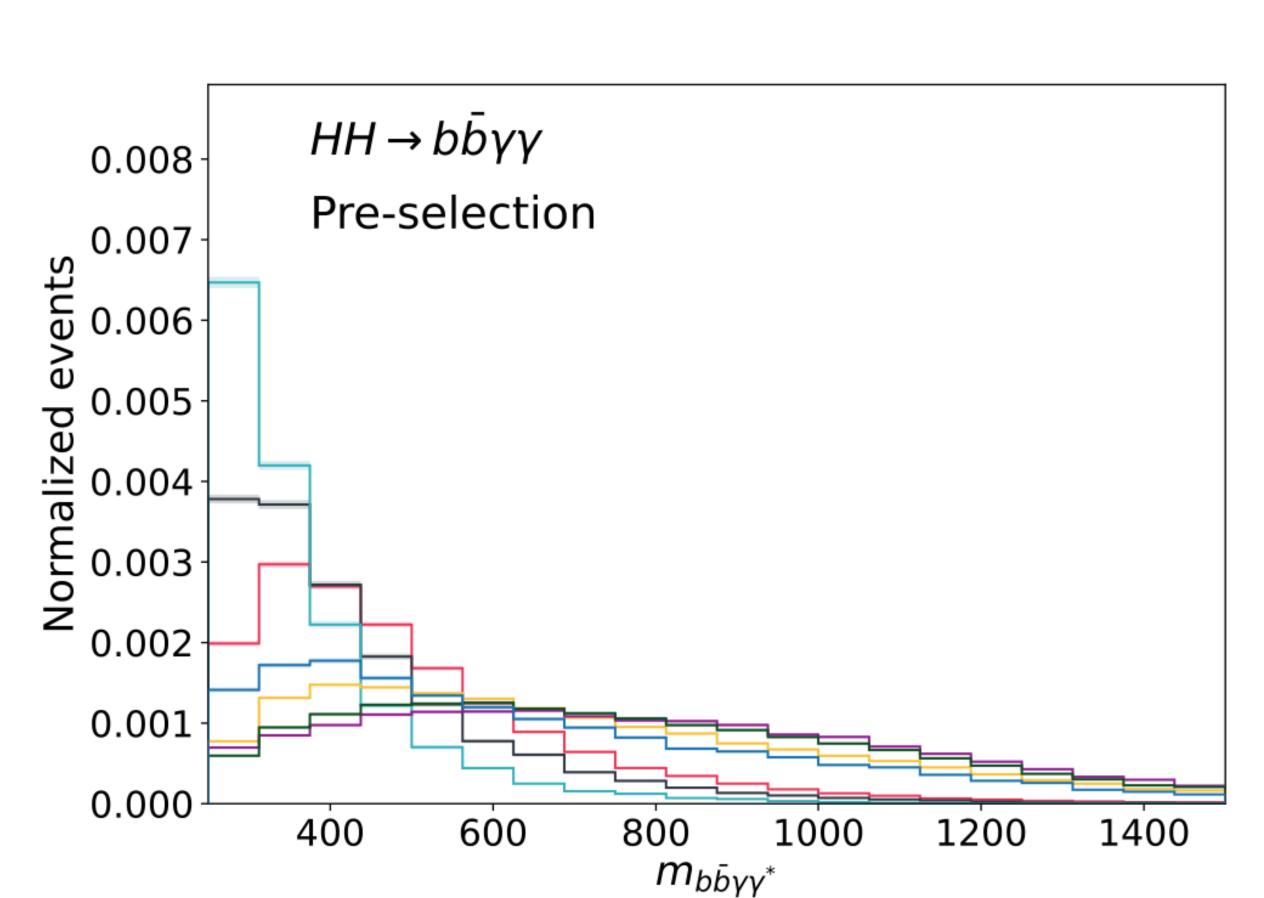


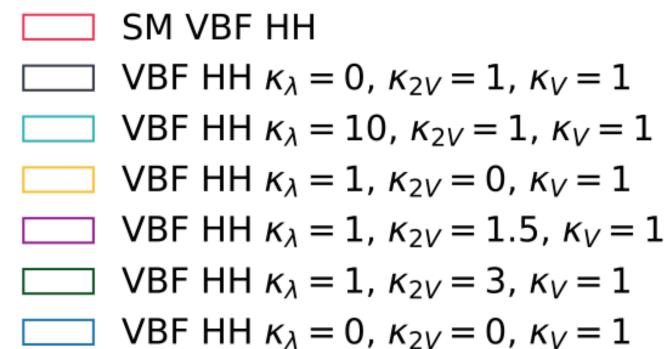


## Complementarity of bbyy and 4b



## VBF parameter dependency





### **Parametrisations**

$$\frac{d\sigma_{ggF}}{d\Phi}(\kappa_{\lambda}) = \kappa_{\lambda}^{2} \cdot \left[ \frac{1}{380} \cdot \left( 19 \cdot \frac{d\sigma_{ggF}}{d\Phi}(0) - 20 \cdot \frac{d\sigma_{ggF}}{d\Phi}(1) + \frac{d\sigma_{ggF}}{d\Phi}(20) \right) \right] 
+ \kappa_{\lambda} \cdot \left[ \frac{1}{380} \cdot \left( -399 \cdot \frac{d\sigma_{ggF}}{d\Phi}(0) + 400 \cdot \frac{d\sigma_{ggF}}{d\Phi}(1) - \frac{d\sigma_{ggF}}{d\Phi}(20) \right) \right] 
+ \frac{d\sigma_{ggF}}{d\Phi}(0)$$

$$\frac{d\sigma_{VBF}}{d\Phi}(\kappa_{\lambda},\kappa_{2V},\kappa_{V}) = \left(\kappa_{2V}^{2} - \frac{373\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{594} - \frac{1150\kappa_{2V}\kappa_{V}^{2}}{297} - \frac{\kappa_{\lambda}^{2}\kappa_{V}^{2}}{9} + \frac{1033\kappa_{\lambda}\kappa_{V}^{3}}{594} + \frac{853\kappa_{V}^{4}}{297}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(1,1,1)$$

$$+ \left(\frac{2\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{3} - \frac{2\kappa_{2V}\kappa_{V}^{2}}{3} + \frac{\kappa_{\lambda}^{2}\kappa_{V}^{2}}{10} - \frac{53\kappa_{\lambda}\kappa_{V}^{3}}{30} + \frac{5\kappa_{V}^{4}}{3}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(0,1,1)$$

$$+ \left(\frac{\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{27} - \frac{\kappa_{2V}\kappa_{V}^{2}}{27} + \frac{\kappa_{\lambda}^{2}\kappa_{V}^{2}}{90} - \frac{13\kappa_{\lambda}\kappa_{V}^{3}}{270} + \frac{\kappa_{V}^{4}}{27}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(10,1,1)$$

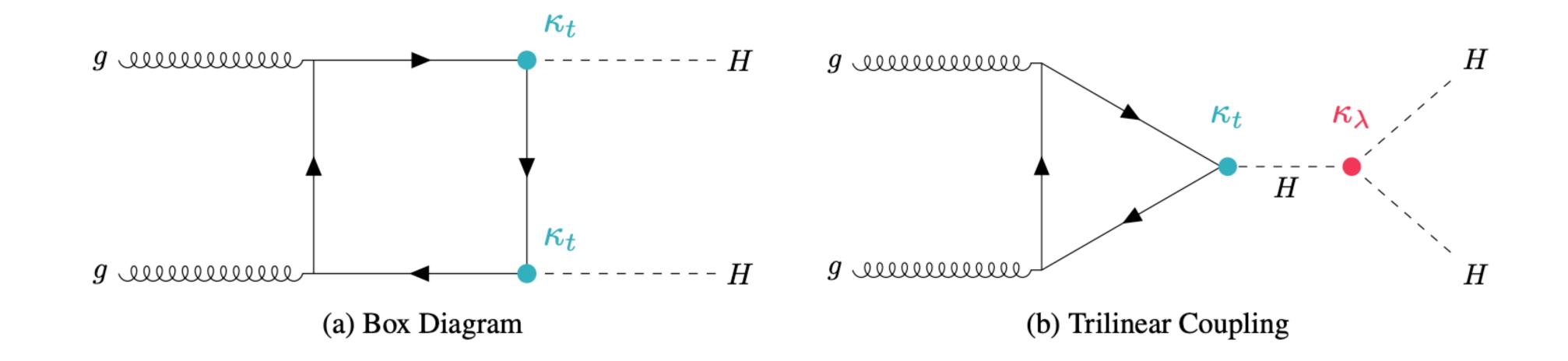
$$+ \left(-\frac{4\kappa_{2V}^{2}}{3} - \frac{4\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{33} + \frac{60\kappa_{2V}\kappa_{V}^{2}}{11} + \frac{4\kappa_{\lambda}\kappa_{V}^{3}}{33} - \frac{136\kappa_{V}^{4}}{33}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(1,1,5,1)$$

$$+ \left(\frac{\kappa_{2V}^{2}}{3} + \frac{5\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{66} - \frac{10\kappa_{2V}\kappa_{V}^{2}}{11} - \frac{5\kappa_{\lambda}\kappa_{V}^{3}}{66} + \frac{19\kappa_{V}^{4}}{33}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(1,3,1)$$

$$+ \left(-\frac{16\kappa_{2V}\kappa_{\lambda}\kappa_{V}}{33} + \frac{16\kappa_{2V}\kappa_{V}^{2}}{33} + \frac{16\kappa_{\lambda}\kappa_{V}^{3}}{33} - \frac{16\kappa_{V}^{4}}{33}\right) \cdot \frac{d\sigma_{VBF}}{d\Phi}(-5,1,0.5)$$

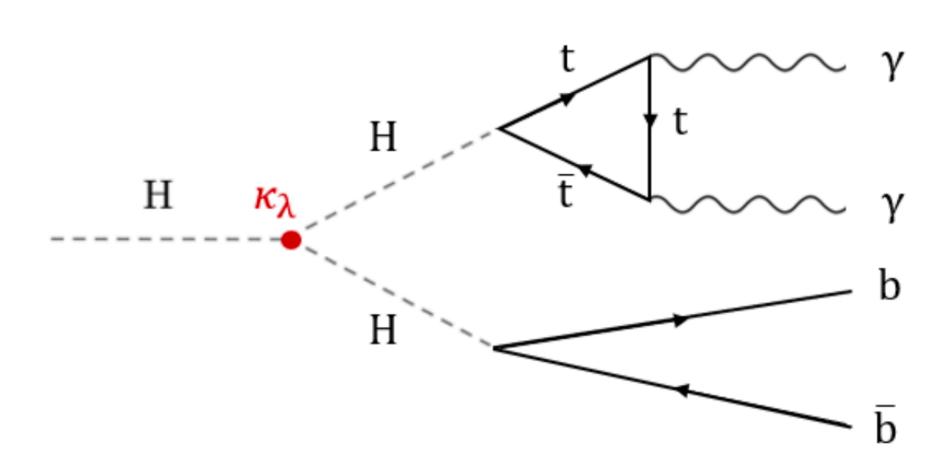
# The non-resonant $bb\gamma\gamma$ channel





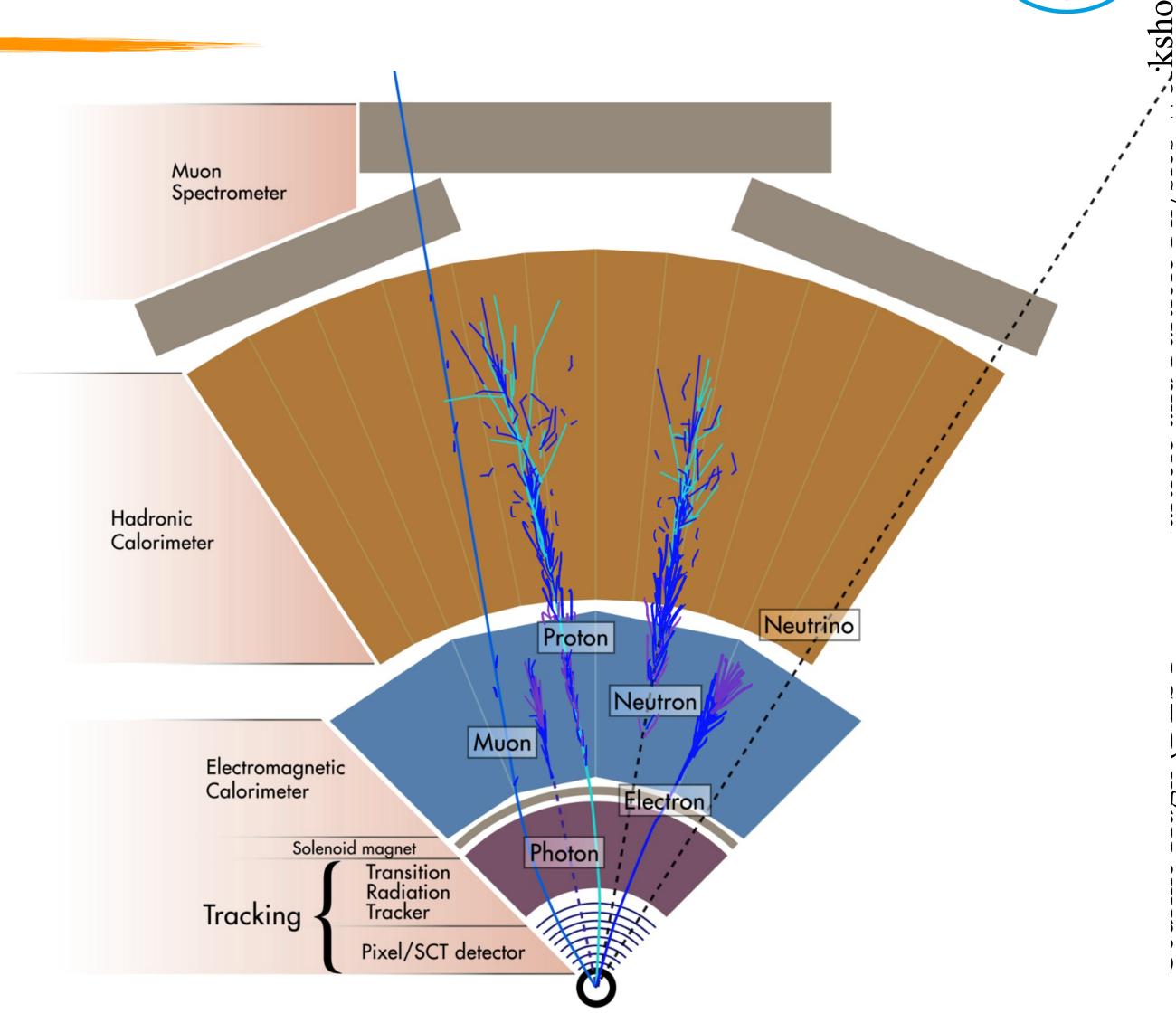
DiHiggs production with one Higgs decaying to two photons and one to two b-quarks

# The non-resonant $bb\gamma\gamma$ channel



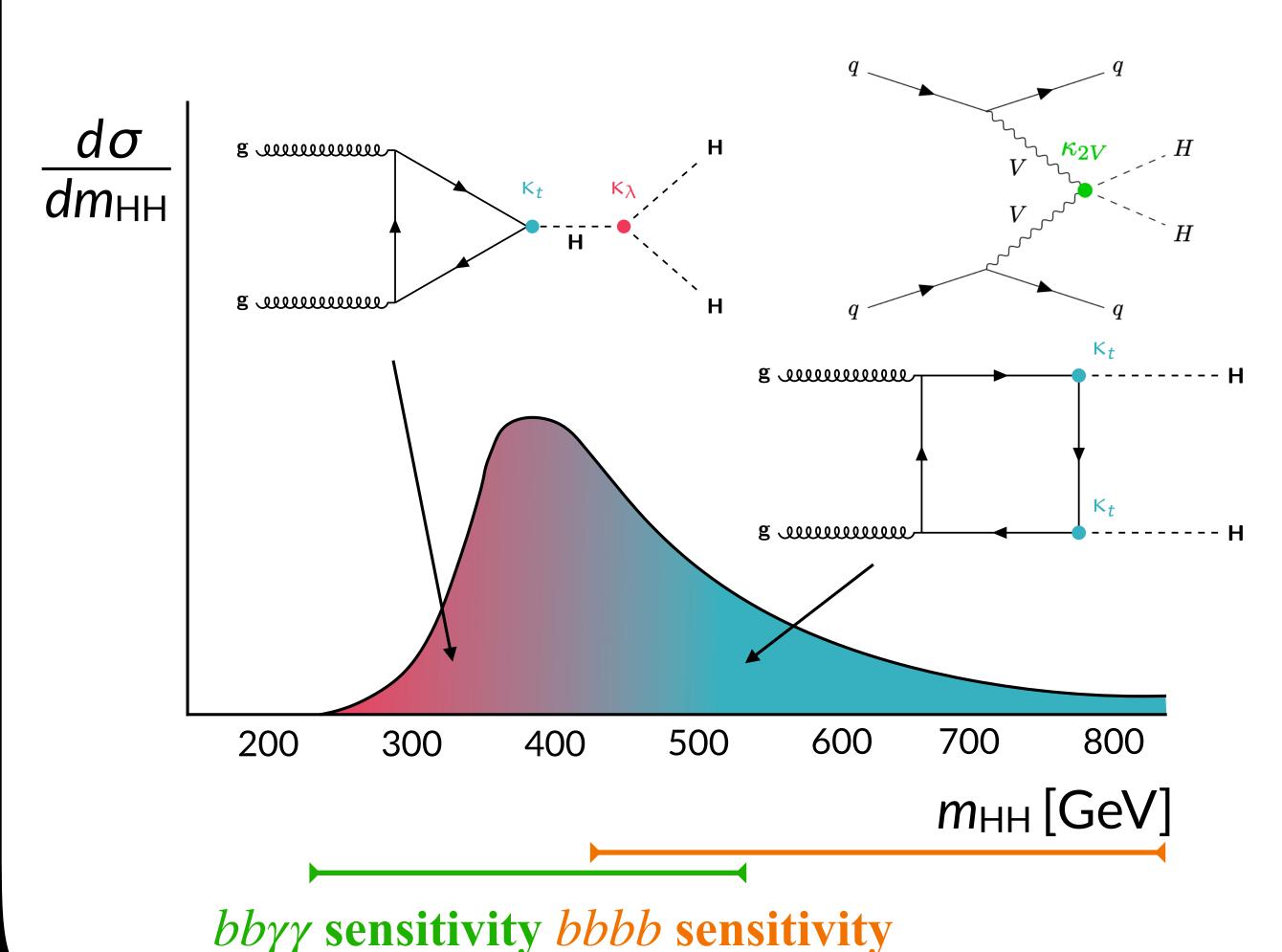
Final state particles observed in the ATLAS detector: photons and *b*-jets

- ⇒ photon reconstruction and calibration
- $\Rightarrow$  *b*-jet reconstruction and calibration



# Motivation to use the $bb\gamma\gamma$ channel





The low  $m_{HH}$  region is essential to constrain the trilinear coupling

The diphoton signature has the advantages:

- efficient photon reconstruction
- low energy resolution
- diphoton trigger is able to get the Higgs at rest

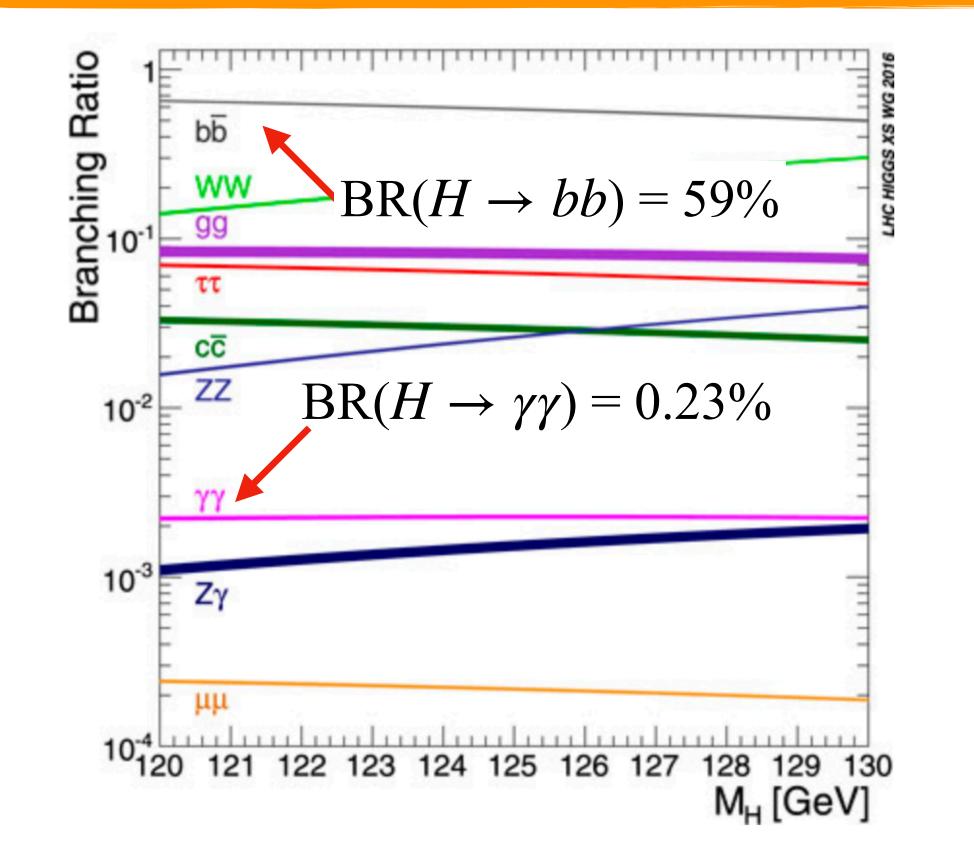
This ensures good sensitivity to low  $m_{HH}$ 

We would love to do HH to γγγγ

However,....

## Higgs decay modes





|    | bb    | WW    | ττ     | ZZ     | ΥΥ      |
|----|-------|-------|--------|--------|---------|
| bb | 34%   |       |        |        |         |
| WW | 25%   | 4.6%  |        |        |         |
| ττ | 7.3%  | 2.7%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.1%  | 0.33%  | 0.069% |         |
| ΥΥ | 0.26% | 0.10% | 0.028% | 0.012% | 0.0005% |

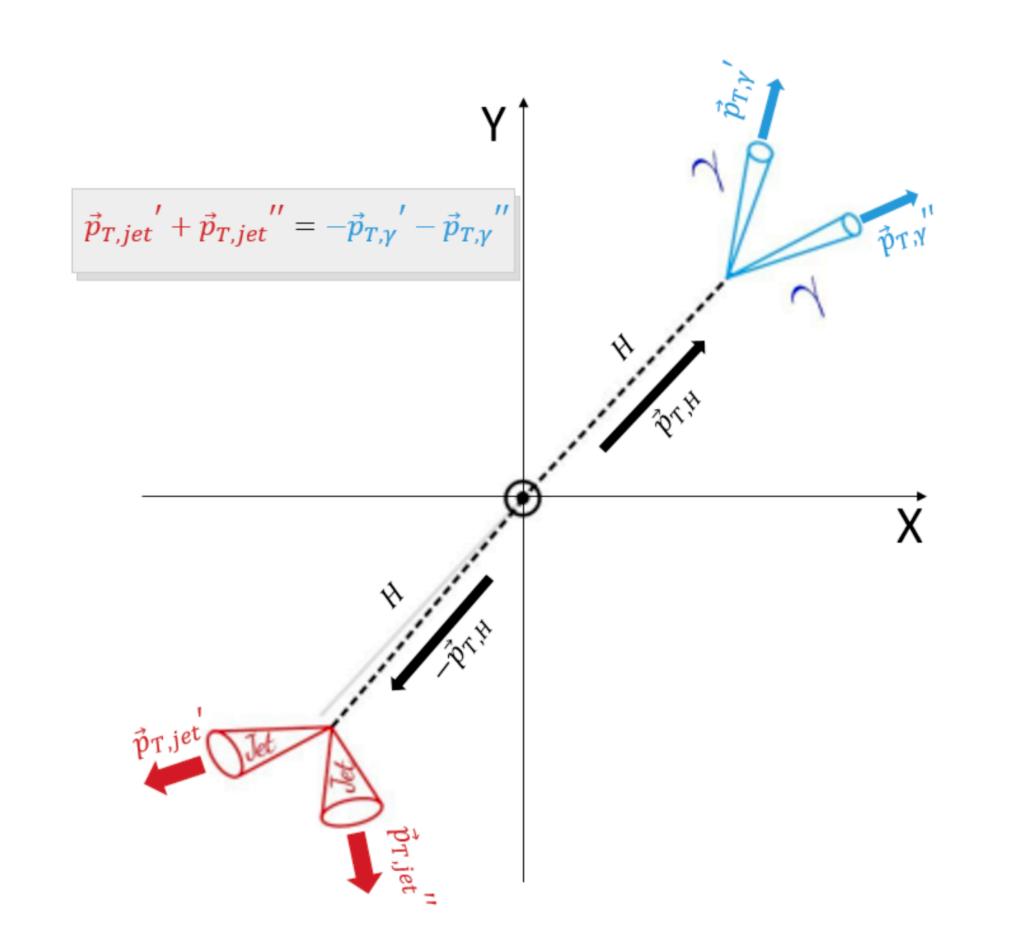
 $H \rightarrow \gamma \gamma$  has a very low branching ratio

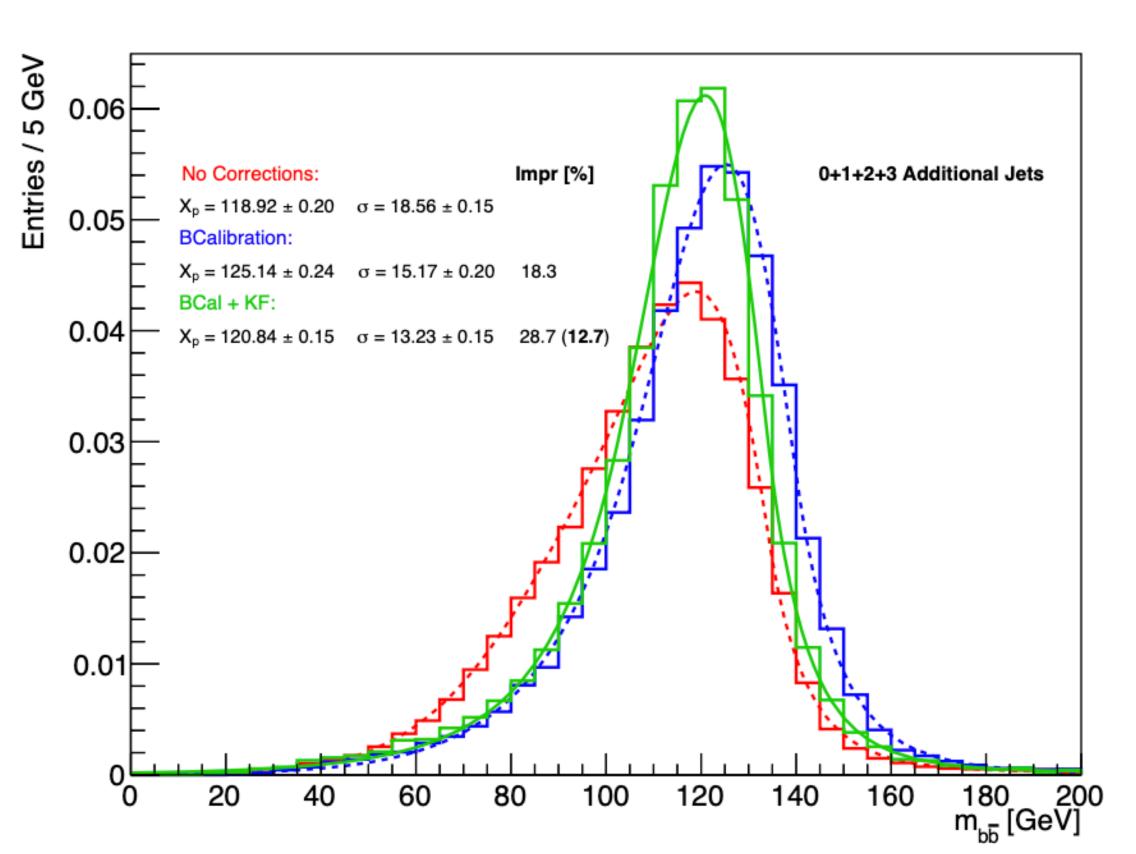
At the moment DiHiggs searches are limited by statistics  $\Rightarrow bb\gamma\gamma$ 

 $\Rightarrow bb\gamma\gamma$  is thus great to access low  $m_{HH}$  region and still have a reasonable statistics

### Kinematic fit



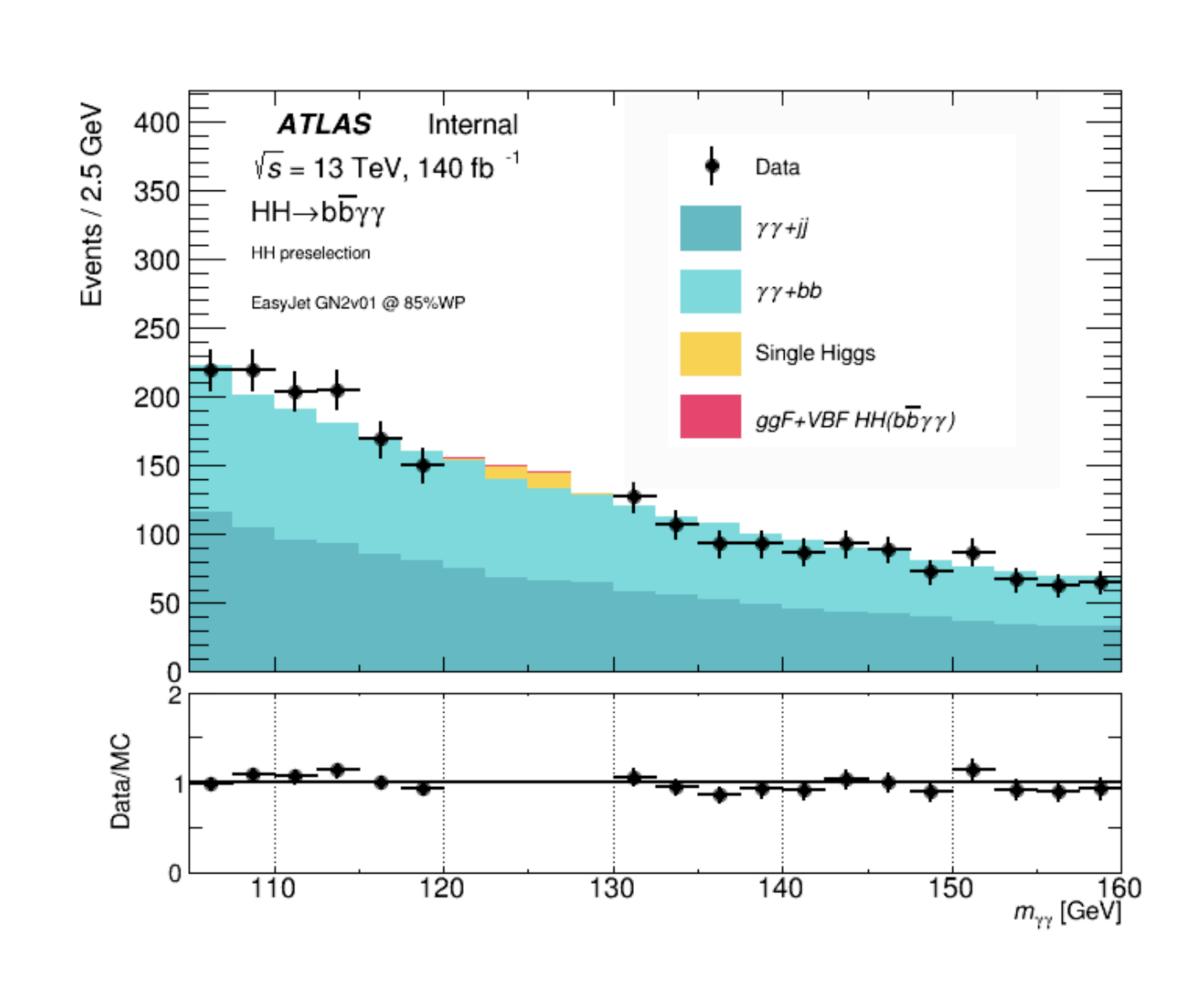




Improve the  $m_{bb}$  resolution by an additional 16% compared to the BCalibration correction

# $m_{\gamma\gamma}$ distribution





 $m_{\gamma\gamma}$  is the distribution we want to fit to extract  $\kappa_{\lambda}$ 

The main background is  $\gamma\gamma$ +jets

|                               | SM ggF HH | SM VBF HH |
|-------------------------------|-----------|-----------|
| $\sqrt{s} = 13 \text{ TeV}$   | 30.77 fb  | 1.687 fb  |
| $\sqrt{s} = 13.6 \text{ TeV}$ | 34.13 fb  | 1.874 fb  |

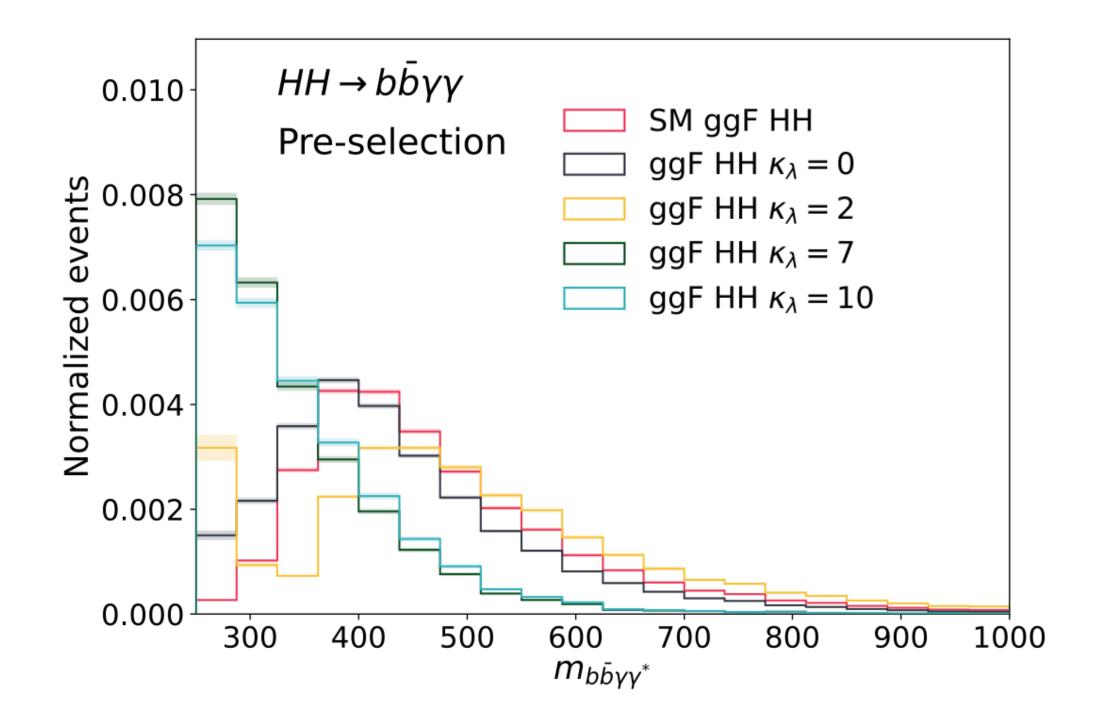
## **Boosted Decision Tree (BDT) training**



$$m_{bbyy}^* = m_{bbyy} - m_{bb} - m_{yy} + 250 \text{ GeV}$$

HM (high mass) region = SM-like region:  $m_{bbyy}^* \ge 350 \text{ GeV}$ 

LH (low mass) region = BSM-like region:  $m_{bbyy}^* < 350 \text{ GeV}$ 



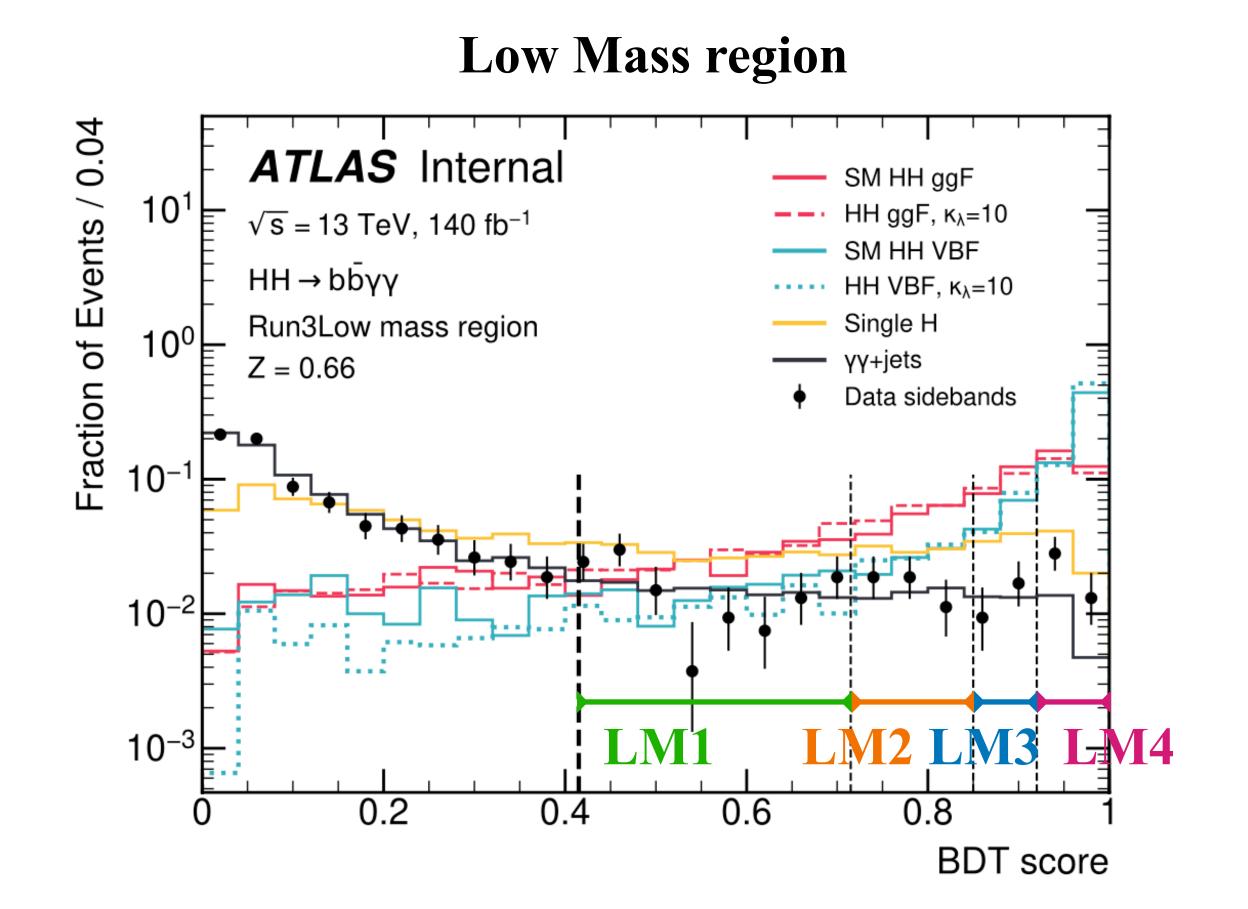
m\* is preferred over simply m<sub>bbyy</sub> since it improves the signal mass resolution due to the cancellation of detector effects

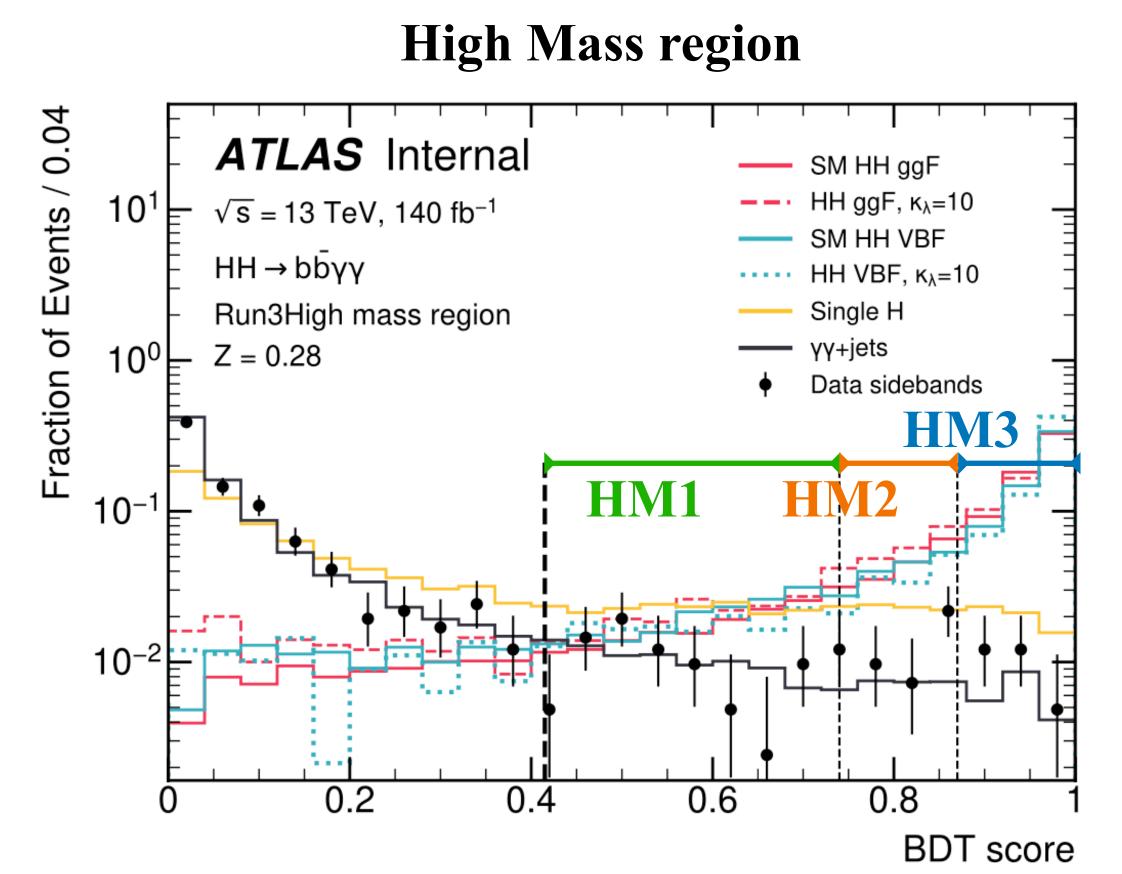
A BDT is trained for each region to distinguish signal from backgrounds

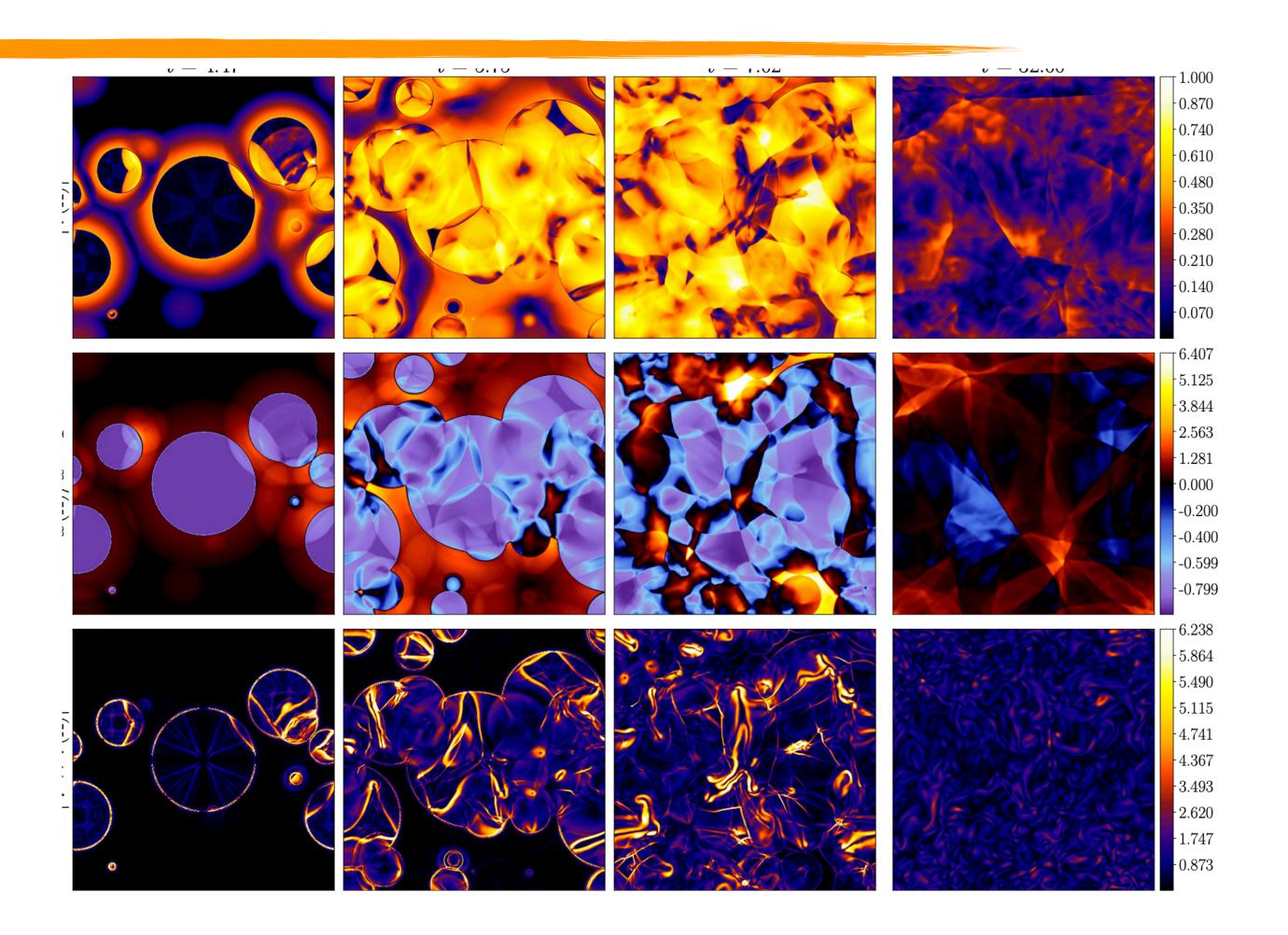
## **Event categories**



3 categories for HM region and 4 for LM region are defined based on the BDT scores

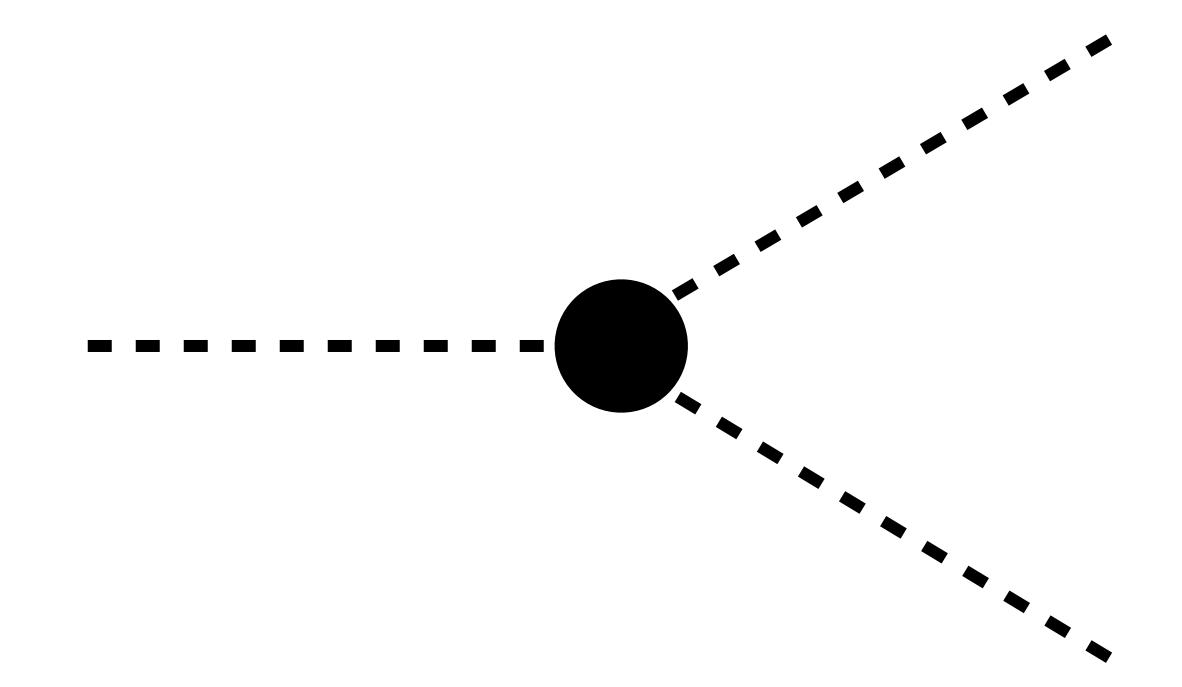


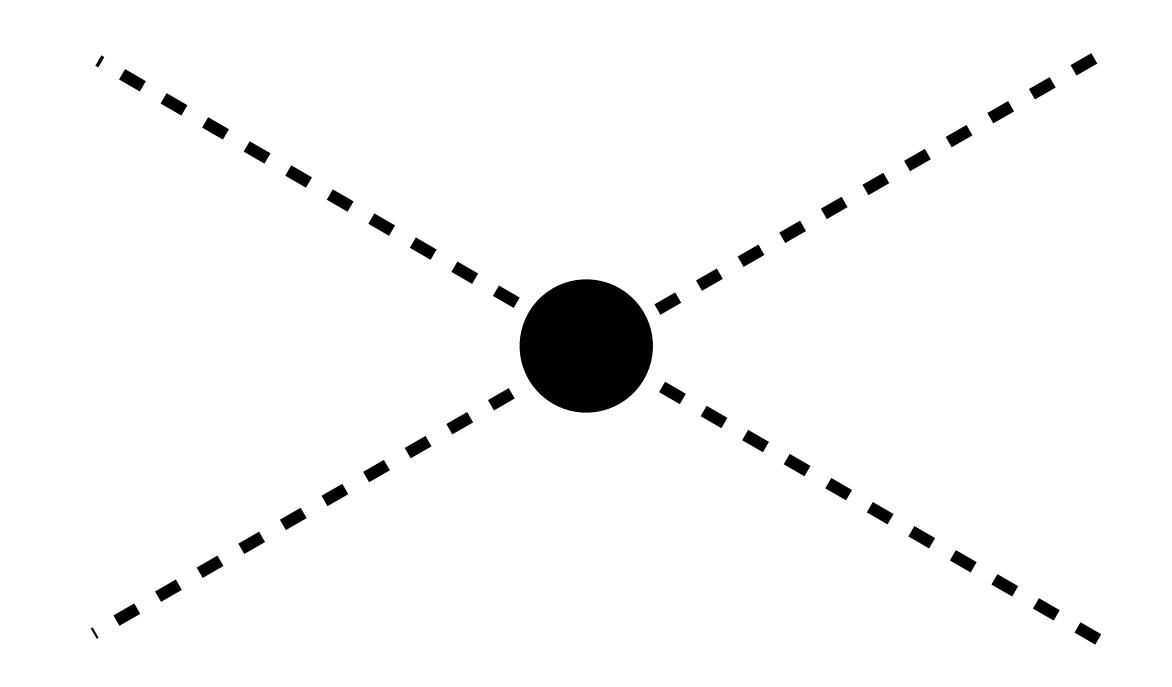




https://arxiv.org/pdf/2409.03651

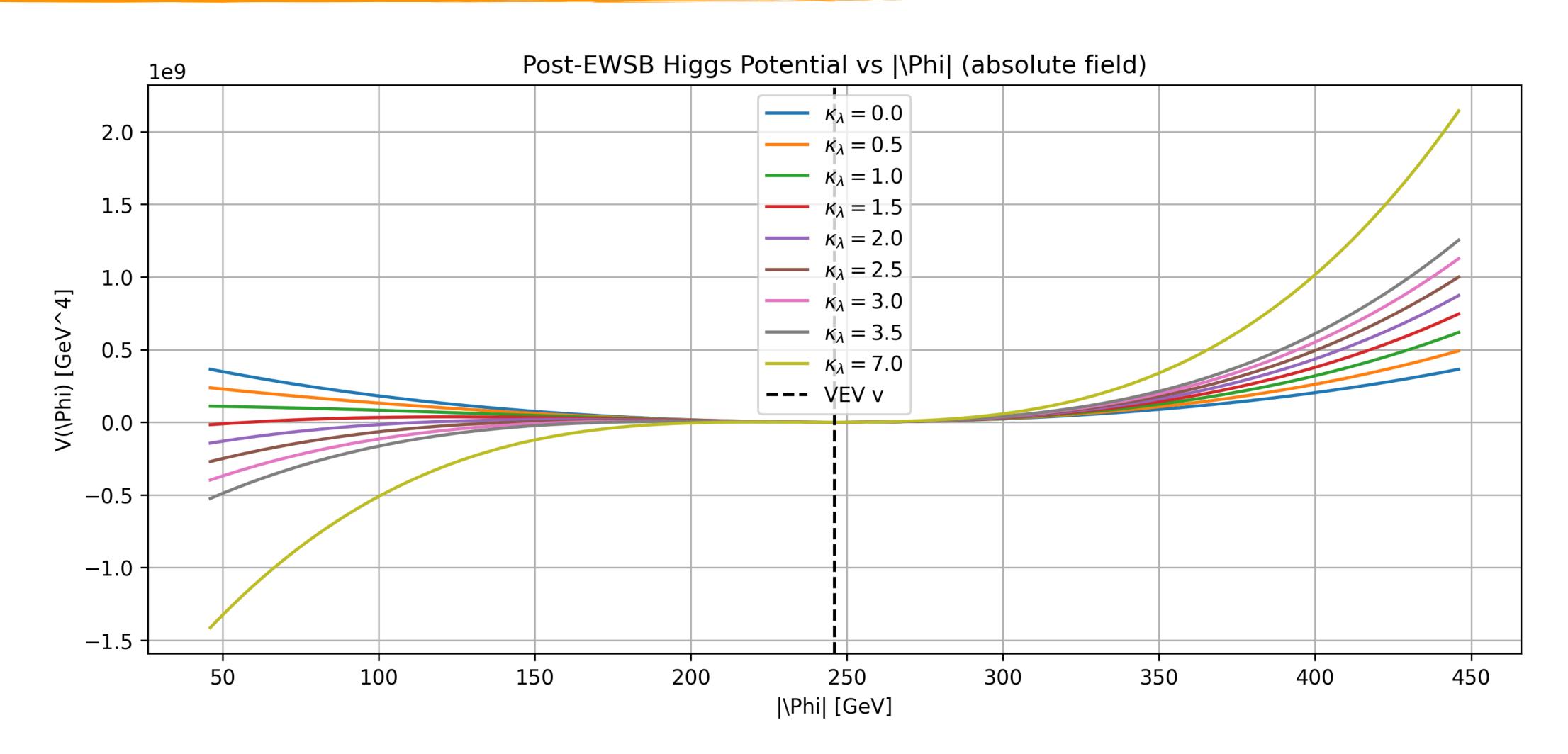
# To delete





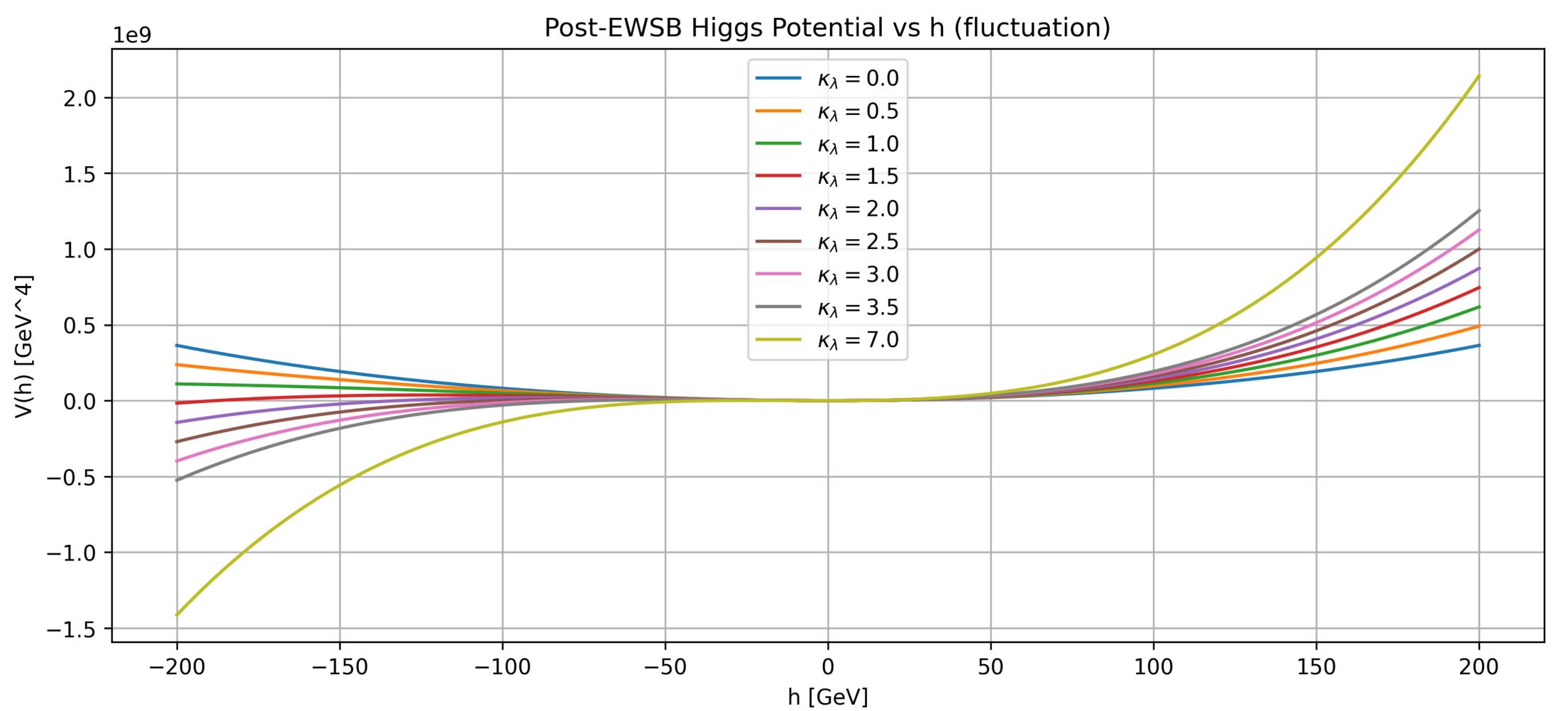
# Higgs potential shape and kl



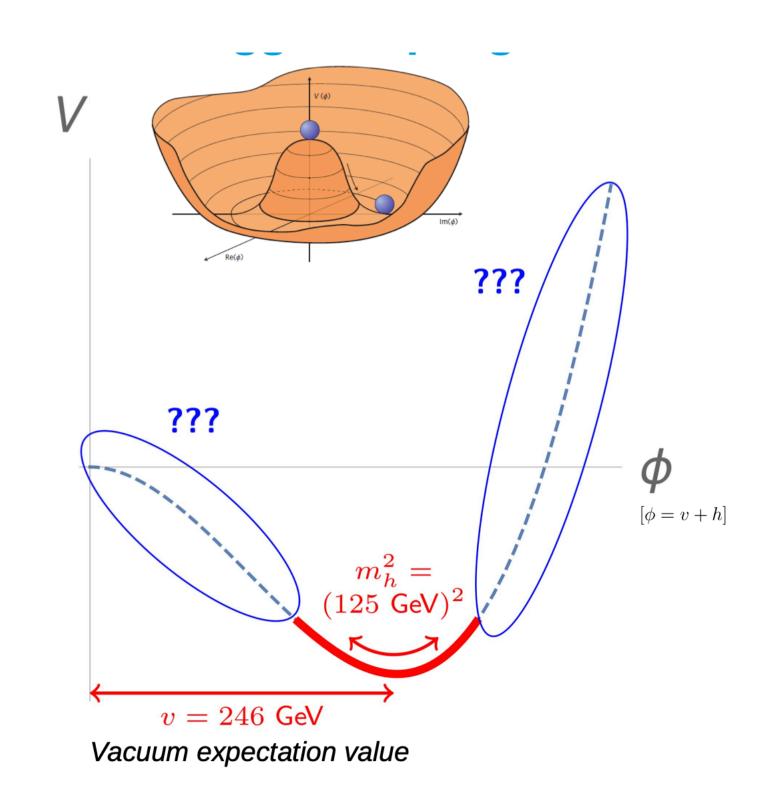


# Higgs potential shape and kl







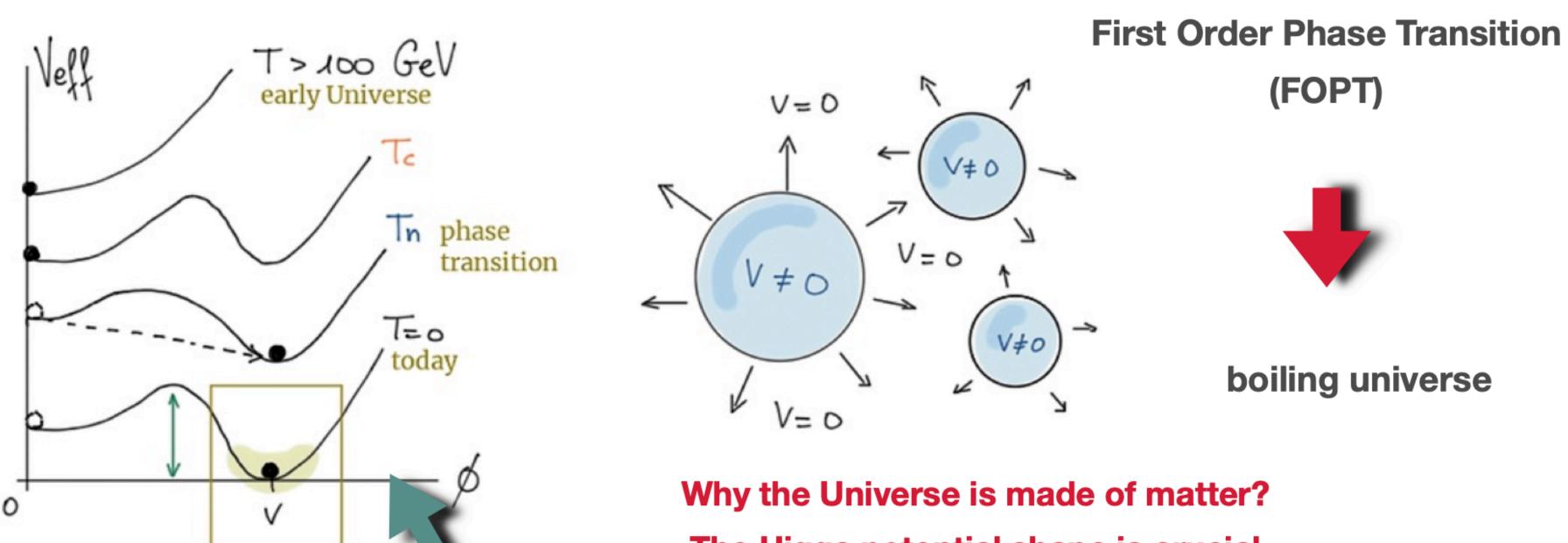




### Understanding the beginning of Universe

A violent EW symmetry breaking

First Order Phase Transition

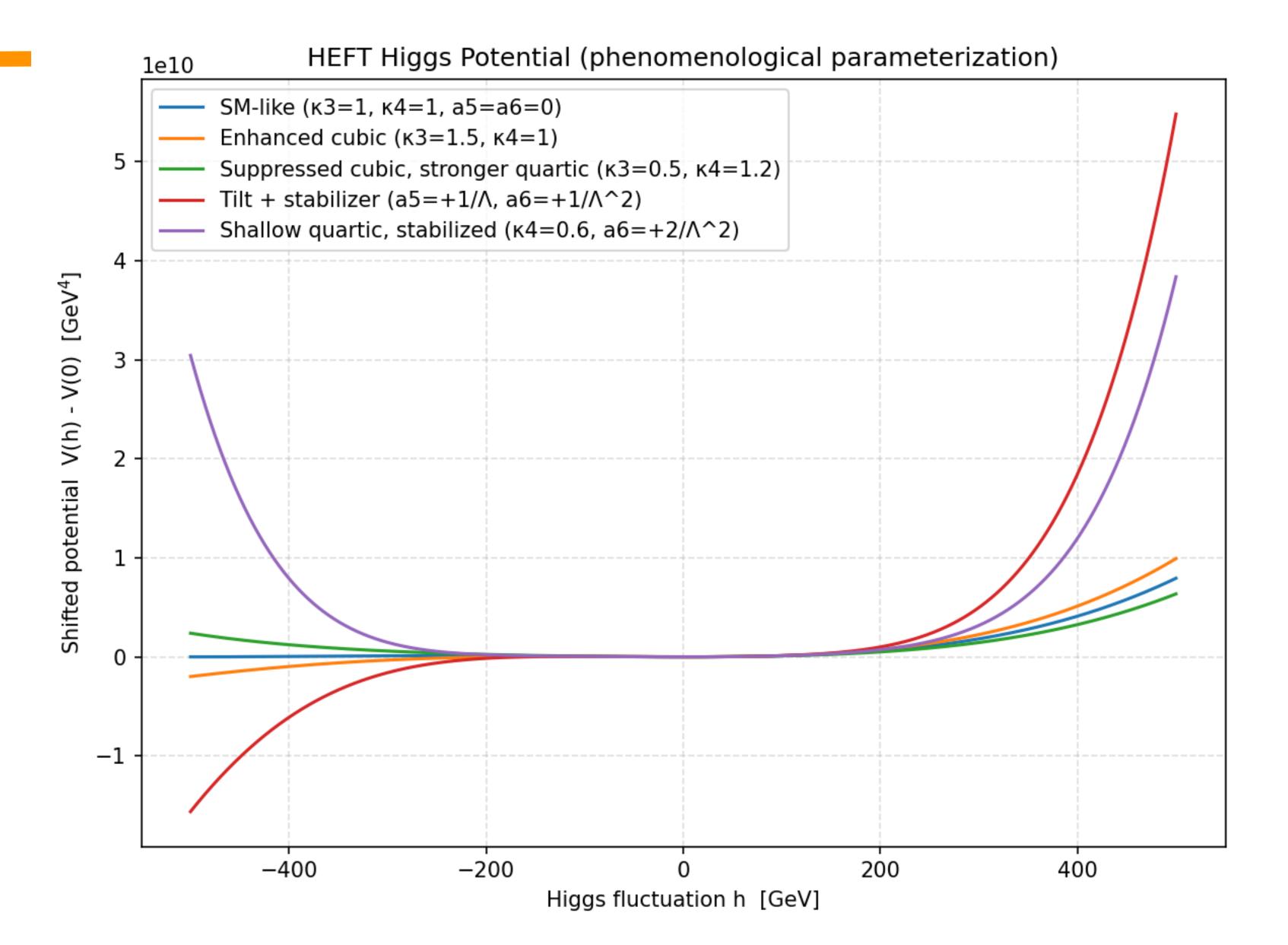


The Higgs potential shape is crucial

Ph

ONLY a Strong FOPT can explain a boiling universe

current knowledge



## Primordial GWs frequency ranges?



Primordial gravitational wave frequencies span a broad range, with current and future observatories targeting specific bands: Pulsar Timing Arrays (PTAs) probe the nanohertz (nHz) to microhertz (µHz) range, space-based interferometers like LISA target the millihertz (mHz) to 1 Hz range, and ground-based detectors like the Einstein Telescope (ET) and Cosmic Explorer (CE) aim for the 1 Hz to 10 kHz band. Scientists also look for even higher frequencies, from kilohertz to 100 gigahertz (GHz), though these frequencies are primarily associated with sources like cosmic strings that have left no imprint on current detectors

- The strength and nature of the electroweak phase transition depend partly on the Higgs potential and thus on the **Higgs self-coupling**.
- The mexican hat SM is a smooth transition from 0 to VEV thus not first order
- The higgs selcoupling gives us information about the shape of the higgs potential and thus consequently on how the Higgs did "roll" into that minima
- for a first-order phase transition the frequency range would depend on the temperature of the universe when it happened
- A first order phase transition higgs potential would have a secondary minima that can be reached suddenly through tunneling for example
- First connection between the very small and the very big? (SM and gravity?)



# HL-LHC results will stay for years to come and some will be reference until Fcc-hh

[De Blas et al., 2020]

| kappa-0                | HL-LHC | LHeC | HE- | -LHC |      | ILC  |      |      | CLIC  |      | CEPC | FC   | C-ee        | FCC-ee/eh/hh |
|------------------------|--------|------|-----|------|------|------|------|------|-------|------|------|------|-------------|--------------|
|                        |        |      | S2  | S2'  | 250  | 500  | 1000 | 380  | 15000 | 3000 |      | 240  | 365         |              |
| κ <sub>W</sub> [%]     | 1.7    | 0.75 | 1.4 | 0.98 | 1.8  | 0.29 | 0.24 | 0.86 | 0.16  | 0.11 | 1.3  | 1.3  | 0.43        | 0.14         |
| $\kappa_{Z}$ [%]       | 1.5    | 1.2  | 1.3 | 0.9  | 0.29 | 0.23 | 0.22 | 0.5  | 0.26  | 0.23 | 0.14 | 0.20 | 0.17        | 0.12         |
| $\kappa_a$ [%]         | 2.3    | 3.6  | 1.9 | 1.2  | 2.3  | 0.97 | 0.66 | 2.5  | 1.3   | 0.9  | 1.5  | 1.7  | 1.0         | 0.49         |
| κ <sub>γ</sub> [%]     | 1.9    | 7.6  | 1.6 | 1.2  | 6.7  | 3.4  | 1.9  | 98∗  | 5.0   | 2.2  | 3.7  | 4.7  | 3.9         | 0.29         |
| $\kappa_{Z\gamma}$ [%] | 10.    | _    | 5.7 | 3.8  | 99*  | 86*  | 85∗  | 120∗ | 15    | 6.9  | 8.2  | 81*  | <i>75</i> ★ | 0.69         |
| K <sub>c</sub> [%]     | _      | 4.1  | _   | _    | 2.5  | 1.3  | 0.9  | 4.3  | 1.8   | 1.4  | 2.2  | 1.8  | 1.3         | 0.95         |
| $\kappa_t$ [%]         | 3.3    | _    | 2.8 | 1.7  | _    | 6.9  | 1.6  | _    | -     | 2.7  | _    | _    | _           | 1.0          |
| $\kappa_b  [\%]$       | 3.6    | 2.1  | 3.2 | 2.3  | 1.8  | 0.58 | 0.48 | 1.9  | 0.46  | 0.37 | 1.2  | 1.3  | 0.67        | 0.43         |
| κ <sub>μ</sub> [%]     | 4.6    | _    | 2.5 | 1.7  | 15   | 9.4  | 6.2  | 320★ | 13    | 5.8  | 8.9  | 10   | 8.9         | 0.41         |
| κ <sub>τ</sub> [%]     | 1.9    | 3.3  | 1.5 | 1.1  | 1.9  | 0.70 | 0.57 | 3.0  | 1.3   | 0.88 | 1.3  | 1.4  | 0.73        | 0.44         |

 $k_{\gamma}$ ,  $k_{Z_{\gamma}}$  will be the most precise measurements for a long time

## Higgs potential shape and kl

### 2. Where a secondary minimum comes from

To have a second minimum at large field values, you need the **full Higgs potential** at large h, including:

- Higher-order terms beyond  $h^4$
- Radiative corrections (Coleman–Weinberg potential)
- Possible new physics contributions

### For example:

- In the SM, RG running of  $\lambda(\mu)$  can make it negative at high scale  $\rightarrow$  metastability
- In BSM, extra terms can create another local minimum

### 3. Link between $\kappa_{\lambda}$ and secondary minima

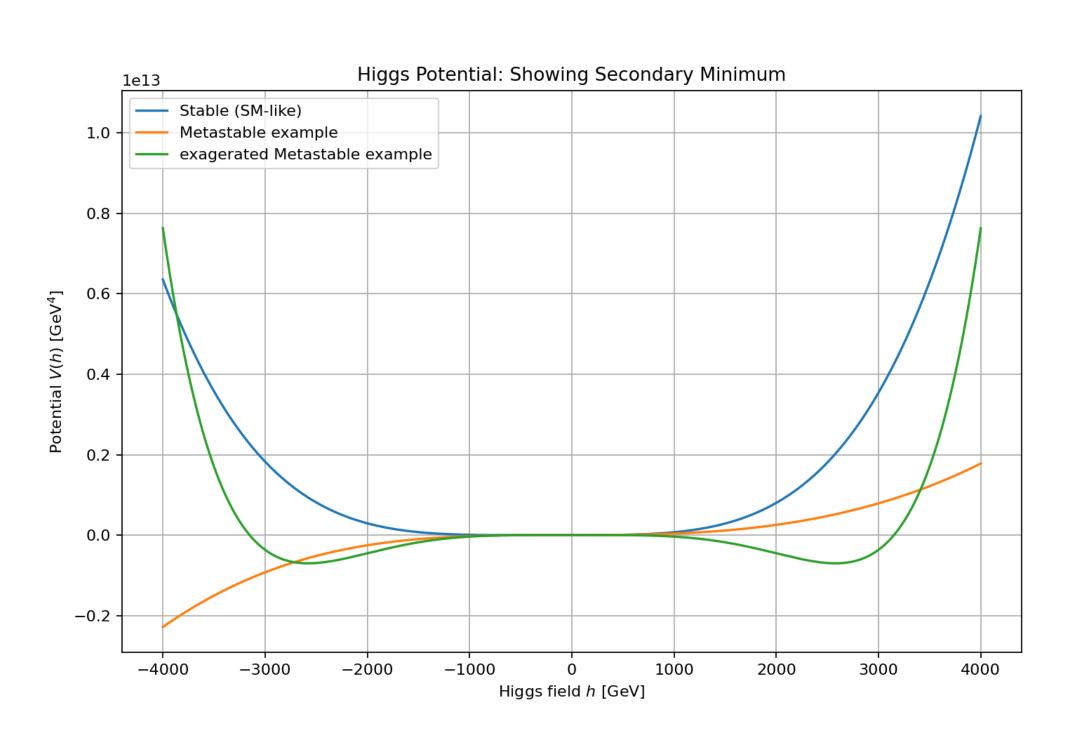
Here's the subtlety:

• Measuring  $\kappa_\lambda$  tells you **about the third derivative of** V(h) **at** h=v:

$$\kappa_{\lambda} \propto rac{1}{v} \left. V'''(h) 
ight|_{h=0}$$

- ullet A secondary minimum, however, depends on the *integrated shape* of V(h) far from h=v.
- A wildly different  $\kappa_{\lambda}$  can be a sign that the quartic (and higher) terms are also different, which might allow for a second minimum but  $\kappa_{\lambda}$  alone doesn't prove or rule it out.





## Effective field theory (EFT) - Warsaw basis

if you start from "all operators of dimension 6," you get a very redundant set

Why do we need to chose a basis? Because there is no *unique* way to remove redundancies

We need to chose a basis.

A basis is the minimal set of independent operators (parameters) for the most general classification of BSM effects.

We pick by convention the Warsaw basis

The Warsaw basis (Grzadkowski et al. 2010, *JHEP* 10 (2010) 085) is the most widely used complete and nonredundant set of dimension-6 SMEFT operators in the linear realization of EWSB

## deforming SM correlations

### **SMEFT** SU(2)xU(1)/U(1)

"SM is a good IR reference point"

- clear power counting
- comparably few (bosonic) parameters

e.g. [Gröber et al. `15]

- tight correlations across Higgs multiplicities
- non-linear elw vacuum: non-trivial technical implications...

### HEFT SU(2)xSU(2)/SU(2)

"SM EWSB perhaps too limiting"

- power counting debatable
- large number of parameters
- data informs Higgs multiplicity correlations
- elw vacuum coarse-grained: technical simplifications...







- Good for model independent searches +
- Can be matched to UV complete theories +
- Allows to scan a wide range of BSM +
- Depending on the scenario, number of willson coefficients to test can be huge —
- Choices need to be made how to scan in these cases and also deal with degeneracies e.g. Eigenvector decompositions —
- Based on this, all results include baked in assumptions such as other coefficients fixed to SM case —
- → Looking for some (benchmark) UV complete models directly?



