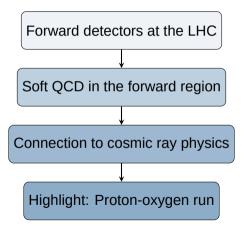
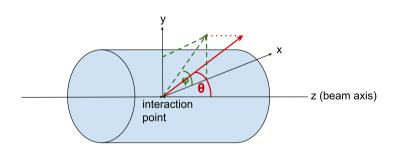
Forward Physics at the LHC


... and what we can learn from it

Clara Leitgeb


AP-PP Workshop 2025, DESY Zeuthen, 08.10.2025

What I will cover...

What does "forward" mean?

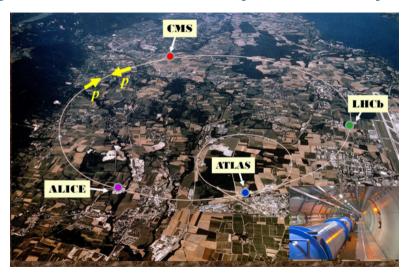
Pseudorapidity:

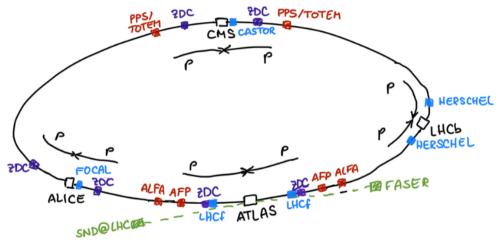
$$oldsymbol{\eta} = \operatorname{In}\left[an\left(rac{oldsymbol{ heta}}{2}
ight)
ight]$$

$$\eta=0$$

$$\eta=0.88$$

$$\theta=90^{\circ}$$

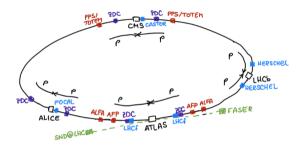

$$\theta=45^{\circ}$$


$$\theta=10^{\circ} \rightarrow \eta=2.44$$

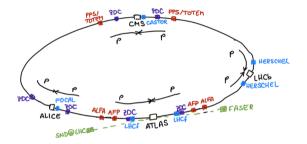
$$\theta=0^{\circ} \rightarrow \eta=\infty$$

- > "Central region": Around 0, e.g. $|\eta| < 2.5$
- > "Forward region": Close to beam axis, at large positive or negative η , e.g. $|\eta| > 8$

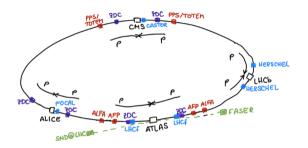
The Large Hadron Collider: What you are usually shown...



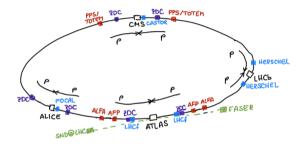
 \longrightarrow not exhaustive!


Central Detectors:

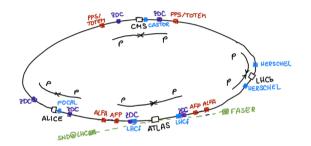
- > Usually rapidity coverages of about $-2.5 < \eta < 2.5$ for tracking detectors
- > Exception LHCb: $2 < \eta < 5$


Forward Proton Detectors:

- Measure trajectories of intact protons
- Protons with energy close to beam energy are transported along LHC beam line
- > Use cases: Total cross section, diffractive cross sections, axion-like particles, τ g-2 etc.


Forward Neutrino/LLP Detectors:

- Measure neutrinos and long lived neutral particles from interaction point
- > Use cases: BSM LLPs, neutrinos from charm decays, LFU in neutrino sector etc.


Zero Degree Calorimeters:

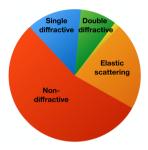
- Part of multiple experiments, located at beam pipe splitting
- Charged particles deflected by beam optics, only neutral particles reach ZDCs
- Number of forward neutrons as measure of collision centrality in heavy ion collisions

Other forward detectos:

- Different physics purposes and technologies
- > Example: LHCf experiment
 - Calorimeters $\pm 140\,\mathrm{m}$ from ATLAS
 - Detection of forward photons and neutrons
 - Reconstruction of forward neutral pions

Other forward detectos:

- Different physics purposes and technologies
- > Example: LHCf experiment
 - Calorimeters $\pm 140\,\mathrm{m}$ from ATLAS
 - Detection of forward photons and neutrons
 - Reconstruction of forward neutral pions

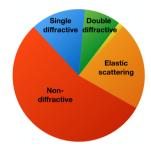

Rich variety of physics cases to be probed in the forward region!

→ Focus of this talk: "Soft OCD"

Why should we care?

Why should we care?

- > Dominates LHC cross section
- Non-perturbative QCD regime, poorly modelled

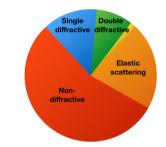


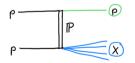
Why should we care?

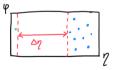
- > Dominates LHC cross section
- Non-perturbative QCD regime, poorly modelled

What can we measure?

Total cross section, elastic cross section




Why should we care?


- Dominates LHC cross section
- Non-perturbative QCD regime, poorly modelled

What can we measure?

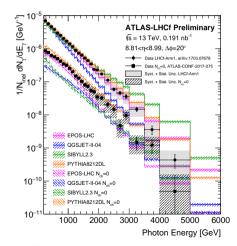
- Total cross section, elastic cross section
- Diffractive cross sections, rapidity gaps
- > Forward particle energy spectra
- > Central-forward correlations
- > ...

ATLAS-CONF-2017-075

Event Selection:

- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - ightarrow Region B: $\eta(\gamma) > 10.94$

ATLAS-CONF-2017-075

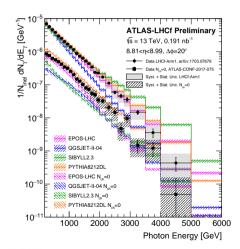

Event Selection:

- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$
- > Track reconstruction in ATLAS:
 - $\rightarrow |\eta(\text{track})| < 2.5$
 - $\rightarrow p_T(\text{track}) > 100 \, \text{MeV}$
 - \rightarrow Veto such tracks! (Rapidity gap)

ATLAS-CONF-2017-075

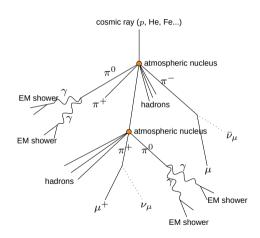
Event Selection:

- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$
- > Track reconstruction in ATLAS:
 - $\rightarrow |\eta(\text{track})| < 2.5$
 - $\rightarrow p_T(\text{track}) > 100 \, \text{MeV}$
 - \rightarrow Veto such tracks! (Rapidity gap)



ATLAS-CONF-2017-075

Event Selection:


- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$
- > Track reconstruction in ATLAS:
 - $\rightarrow |\eta(\text{track})| < 2.5$
 - $\rightarrow p_T(\text{track}) > 100 \, \text{MeV}$
 - → Veto such tracks! (Rapidity gap)
- > Possible future direction: Measure intact proton in AFP!

(ATL-PHYS-PUB-2023-024)

Relevance to astroparticle physics

- > Hadronic interaction modeling \rightarrow cosmic ray air shower reconstruction
 - Uncertainties on cosmic ray particle identification
 - Muon puzzle (high energies)
 - Background estimation for gamma-ray telescopes

Relevance to astroparticle physics

- Hadronic interaction modeling \rightarrow cosmic ray air shower reconstruction
 - Uncertainties on cosmic ray particle identification
 - Muon puzzle (high energies)
 - Background estimation for gamma-ray telescopes
- Interdisciplinary group project of HU and DESY AP and PP groups
- Paper accepted by PRD

Probing the Cosmic Ray Background of Gamma-Ray Astronomy with Hadron Colliders

Clara E. Leitreh and Robert D. Parsons Hamboldt-Universität zu Reelin, Unter den Linden 6. D-10099 Reelin, Germanell

DESY. Platonenallee 6. D-15738 Zeuthen, Germand

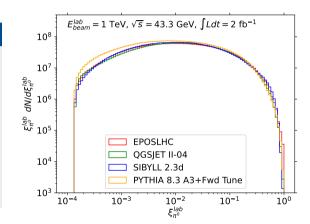
Kenneth J. Ragan

Department of Physics, McGill University, Montreal, Québec H3A 2T8, Canada and DESY. Platanenallee 6. D-15738 Zeuthen. Germaniff

David Berge and Cigdem Issever

DESY. Platanenallee 6. D-15738 Zeuthen. Germaniff and Hamboldt-Universität zu Rerlin, Unter den Linden 6. D. 18099 Rerlin, Germans 1

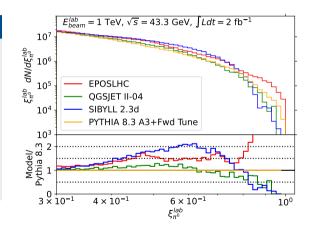
Harbonic countries (countries (countries and) and manner are one constantly shoulded in the Earth's atmosphere and result in air showers of secondary particles. Cherenkov radiation from these here on the dominant hadronic cosmic-ray-initiated background events in the atmosphere, which give size to common one like air showers for common ray teleproper. It is shown that only a small subset of hadronic countries as interactions. How which produce a been ensure neutral pion, and responsible for this background. We subsequently address how the predictions of this background vary depending on the hadronic interaction model adopted. The pseudorapidity range of the energetic pions, with respect to the shower axis produced in these background events, is shown to be large. We show that collider experiments, specifically LHCf and RHICf, probe cosmic ray interactions precisely within this pseudorapidity range. Present and future measurements with these instruments are shown to be able to test the ability for current hadronic interaction models

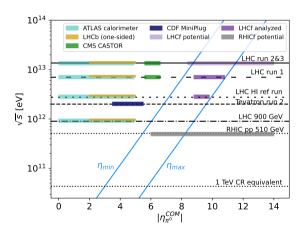


rXiv:2509.04040v1

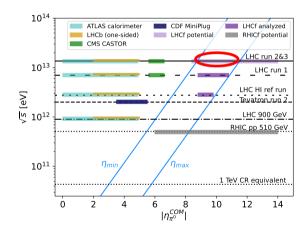
Event generator predictions

High-Energy π^0 production in pp collisions

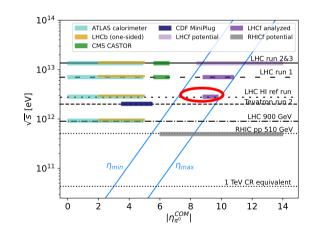

- > Dominant source for p-CR backgrounds
- > $\xi_{\pi^0} = \frac{E_{\pi^0}}{E_{\text{beam}}}$
- Lab frame in this example:
 1 TeV proton → resting proton

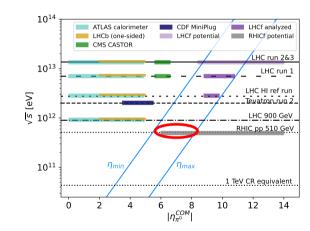


Event generator predictions

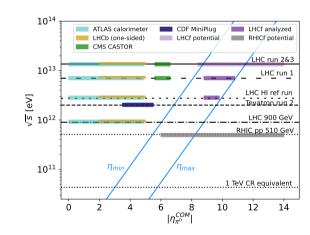

High-Energy π^0 production in pp collisions

- > Dominant source for *p*-CR backgrounds
- > $\xi_{\pi^0} = \frac{E_{\pi^0}}{E_{\text{beam}}}$
- Lab frame in this example:
 1 TeV proton → resting proton
- > $\sim 100\%$ event generator differences in predicted π^0 energy fraction at very high energies!



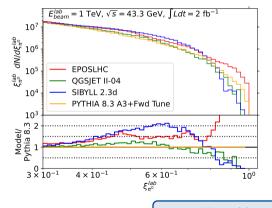

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)

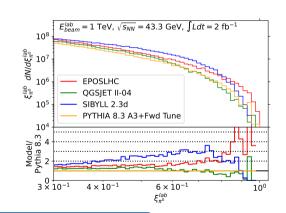
- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - → Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π^0 energy spectrum in bins of η (so far only $p_{\rm T}$)



- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - → Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π^0 energy spectrum in bins of η (so far only $p_{\rm T}$)
 - RHICf dataset available! :)

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π^0 energy spectrum in bins of η (so far only $p_{\rm T}$)
 - RHICf dataset available! :)

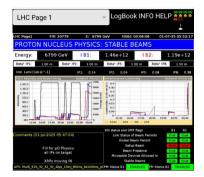

Proton-oxygen collision run at LHC!



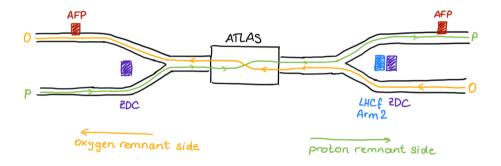
Generator predicitons for proton-oxygen

1 TeV p \longrightarrow resting p:

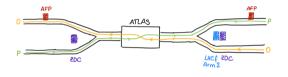
1 TeV p \longrightarrow resting O¹⁶:

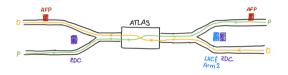


⇒ Even bigger discrepancies in pO!


Light ions at the LHC

- > LHC premiere: proton-oxygen, oxygen-oxygen, neon-neon collisions
- > Special run period in July 2025
- > Challenging run for LHC machine experts
- > Smooth running → luminosity targets for all experiments surpassed!
- Proton-oxygen was long requested by AP community
- > Recent LHC seminar

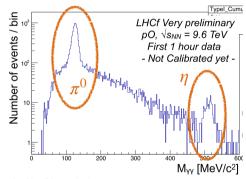

Hadronic interaction (soft QCD)


ATLAS:

- > Central track analysis
- Combinations with forward detector data
- Important input for event generator tuning!

AFP:

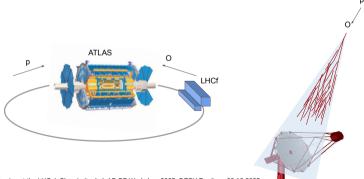
- Installed on both proton- and oxygen-remnant side
- Forward proton spectra
- Forward oxygen-fragment reconstruction



LHCf+ZDC:

- Covering forward region of proton-remnant side
- Oxygen-remnant side not possible (too high radiation)
- Forward photon and pion spectra
- > Installed together with ZDC \rightarrow improved neutron reconstruction

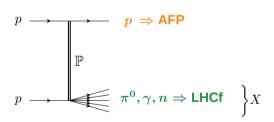
LHCf in proton-oxygen


- Arm 2 detector installed with ZDC on proton remnant side
- Total of 73M events recorded by LHCf
- > All LHCf triggers were accepted by ATLAS DAQ
- > Clear peaks of π^0 and η visible, good statistics for analyses

M.Hiroaki's slides at ICRC

Conclusion

- > Rich forward physics program at LHC
- > Data in forward region important for hadronic interaction modelling
- > Conncetion to cosmic ray induced air shower modelling
- > Valuable data taken in proton-oxygen collisions at LHC in central and forward region

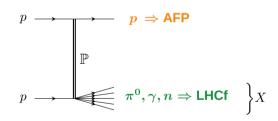

Backup

LHCf+AFP: Diffractive dissociation

ATL-PHYS-PUB-2023-024

Event Selection Strategy:

- $> \ge 1 \gamma$ or = 1 neutron in LHCf
- > $E_{\gamma,n} > 200 \, \text{GeV}$
- > Proton in AFP (opposite side)



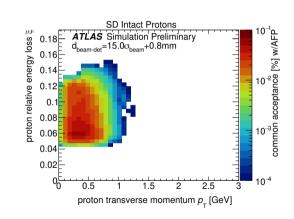
LHCf+AFP: Diffractive dissociation

ATL-PHYS-PUB-2023-024

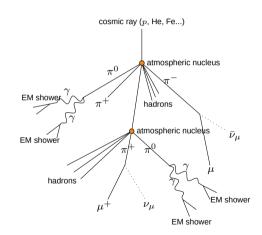
Event Selection Strategy:

- $> \ge 1 \, \gamma \; {
 m or} = 1 \; {
 m neutron} \; {
 m in} \; {
 m LHCf}$
- > $E_{\gamma,n} > 200 \,\text{GeV}$
- > Proton in AFP (opposite side)
- > (+ ATLAS central track veto)
- > (+ ZDC information)

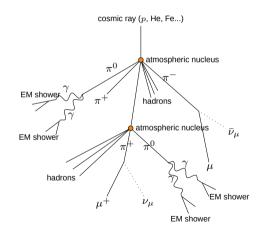
LHCf+AFP: Diffractive dissociation

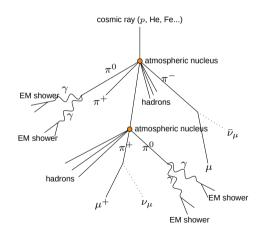

ATL-PHYS-PUB-2023-024

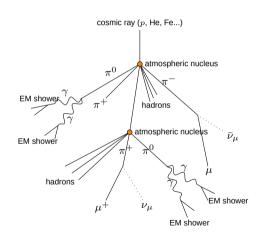
Event Selection Strategy:

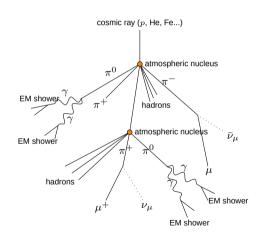

- $> \ge 1 \, \gamma \; {
 m or} = 1 \; {
 m neutron} \; {
 m in} \; {
 m LHCf}$
- > $E_{\gamma,n} > 200 \, \text{GeV}$
- > Proton in AFP (opposite side)
- > (+ ATLAS central track veto)
- > (+ ZDC information)

Advantages wrt single-detector analysis:


- Improved discrimination against other processes
- > Better kinematic reconstruction


- Cosmic proton hits atmospheric nucleus
 - \rightarrow Particle shower


- Cosmic proton hits atmospheric nucleus
 - \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- ightarrow Non-perturbative ightarrow phenomenological models

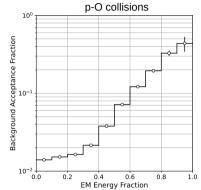

- Cosmic proton hits atmospheric nucleus
 - \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative → phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities

- Cosmic proton hits atmospheric nucleus
 - \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative → phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities
- Identification of initial cosmic particle: Large uncertainties

- Cosmic proton hits atmospheric nucleus
 - \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative → phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities
- Identification of initial cosmic particle: Large uncertainties
- ⇒ Tuning based on accelerator data

Proton Cosmic Ray Rejection

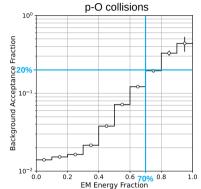
- > Problem for big and diffuse sources
 - → No side-band estimation possible
 - → Dependent on event generator predictions
- MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)


Proton Cosmic Ray Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - → Dependent on event generator predictions
- > MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)

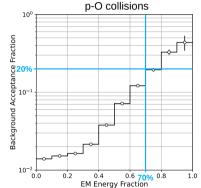
> But: Typically $\#p / \#\gamma \sim 10^3$ - 10^4 !

Proton Cosmic Ray Rejection


- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - → Dependent on event generator predictions
- > MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)

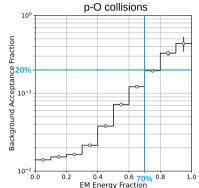
> But: Typically # $p/\#\gamma \sim 10^3$ - 10^4 !

Proton Cosmic Ray Rejection

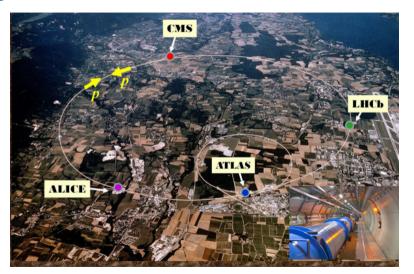

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - → Dependent on event generator predictions
- MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)

> But: Typically $\#p / \#\gamma \sim 10^3$ - 10^4 !

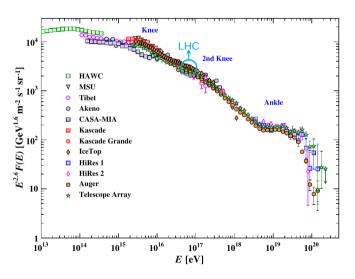
Proton Cosmic Ray Rejection


- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - → Dependent on event generator predictions
- > MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)

- > But: Typically # $p/\#\gamma \sim 10^3$ 10^4 !
- > Source: Production of high energy $\pi^0 o$ EM-shower development

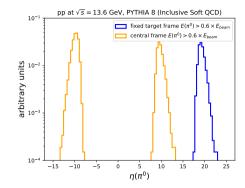

Proton Cosmic Ray Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - → Dependent on event generator predictions
- > MVA discrimination based on image shapes
- > Small fraction of proton CR events passes γ -cuts (\sim 99% rejection)

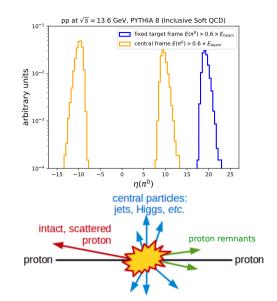


- > But: Typically # $p\,/\,\#\gamma\sim 10^3$ 10^4 !
- > Source: Production of high energy $\pi^0 \to \text{EM-shower development}$
- > Problem: Large uncertainties for this kind of showers!

The Large Hadron Collider

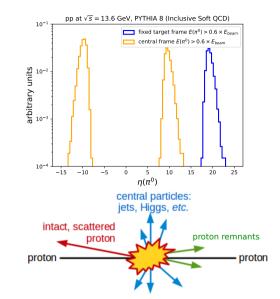


The Large Hadron Collider


Soft QCD at the LHC

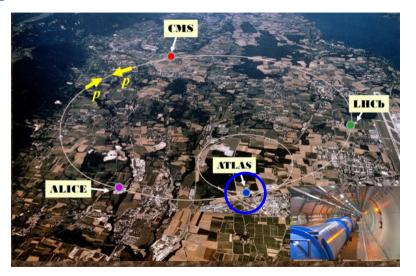
- > Low momentum transfer scattering
 - \rightarrow Particles in forward region

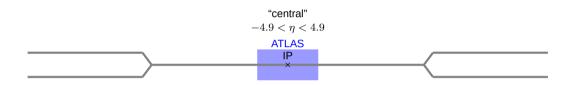

Soft QCD at the LHC


- > Low momentum transfer scattering
 - → Particles in forward region
 - ightarrow Experiments at high $|\eta| = |-\ln\left(\tan\left(rac{ heta}{2}
 ight)
 ight)|$

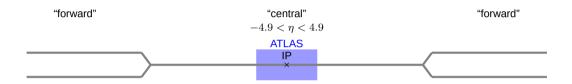

Soft QCD at the LHC

- > Low momentum transfer scattering
 - ightarrow Particles in forward region
 - ightarrow Experiments at high $|\eta| = \left|-\ln\left(\tan\left(rac{ heta}{2}
 ight)
 ight|$
- > Large fraction of the total pp cross section
- High relevance for pileup modelling (pileup = # of interactions per bunch crossing)



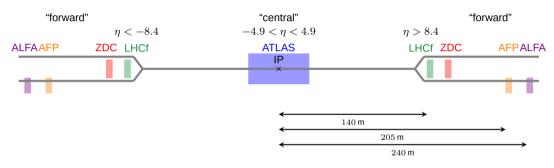


The Large Hadron Collider


The Large Hadron Collider

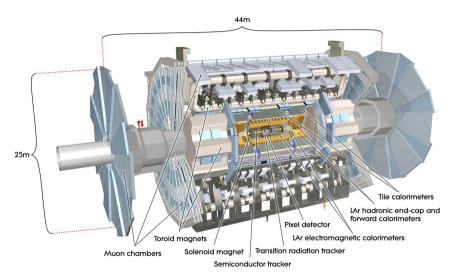
> Multi-purpose detector: ATLAS

HUMBOLDT-UNIVERSITÄT


> Multi-purpose detector: ATLAS

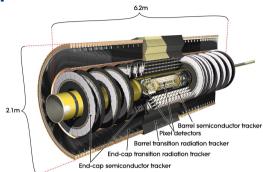
Multi-purpose detector: ATLAS

> Calorimeters: LHCf, ZDC

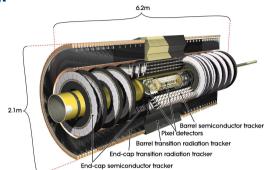


> Multi-purpose detector: ATLAS

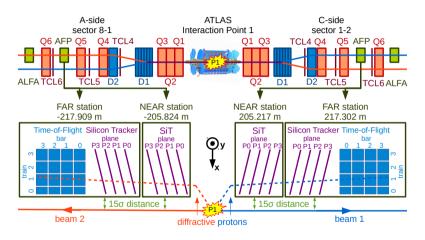
> Calorimeters: LHCf, ZDC


> Proton detectors: AFP, ALFA

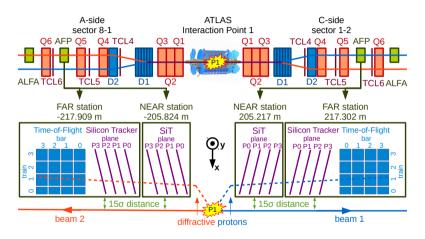
ATLAS Detector


ATLAS: Inner Tracking Detector

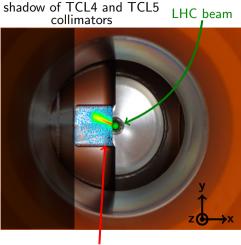
- > Covers central rapidities ($|\eta| < 2.5$)
- Different sensor systems to detect charged particles
- > Inside solenoid magnet


ATLAS: Inner Tracking Detector

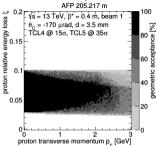
- > Covers central rapidities ($|\eta| < 2.5$)
- Different sensor systems to detect charged particles
- Inside solenoid magnet
- > Reconstruct:
 - Hits ⇒ tracks
 - Deflection in B-field
 - ⇒ charge, momentum
 - > 2 tracks
 - ⇒ primary interaction vertex

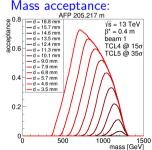


AFP Detectors

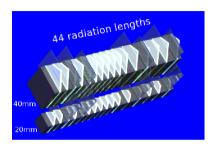

> Goal: Reconstruct scattered proton trajectories close to the beam

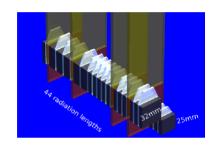
AFP Detectors


- > Goal: Reconstruct scattered proton trajectories close to the beam
- > Roman Pot stations can be inserted directly into the beam pipe

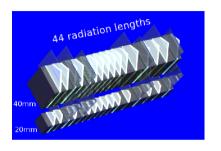

Advantages of Roman Pot Technology

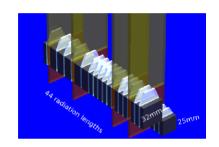
diffractive protons thin window and floor (300 μ m)


Geometric acceptance:

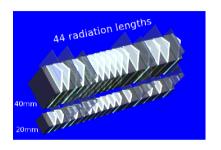


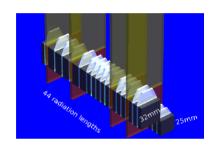
M. Trzebiński AFP Detectors


LHCf Detectors

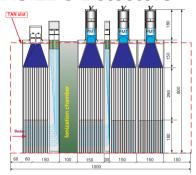


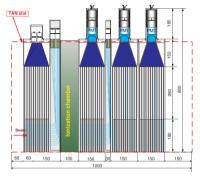
- > Two calorimeter towers on each side of ATLAS
- Different geometric orientations
- > Tungsten absorber, plastic scintillators + position sensitive layers per tower

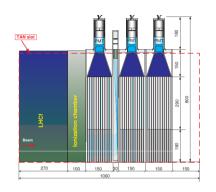

LHCf Detectors

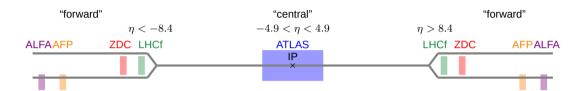


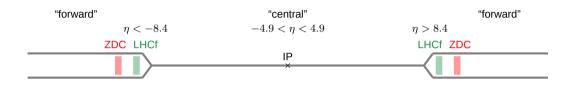
- > Two calorimeter towers on each side of ATLAS
- > Different geometric orientations
- > Tungsten absorber, plastic scintillators + position sensitive layers per tower
- > Only reached by neutral particles: n, γ , $\pi^0 \to \gamma \gamma$, $\eta^0 \to \gamma \gamma$...

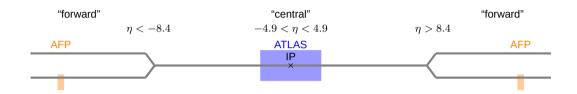

LHCf Detectors


- > Two calorimeter towers on each side of ATLAS
- Different geometric orientations
- > Tungsten absorber, plastic scintillators + position sensitive layers per tower
- > Only reached by neutral particles: n, γ , $\pi^0 \to \gamma\gamma$, $\eta^0 \to \gamma\gamma$...
- > Energy resolution: < 3% (photons), $\sim 40\%$ (neutrons)

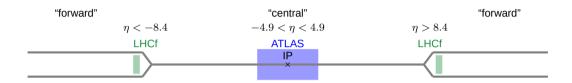

ATLAS ZDC Detectors

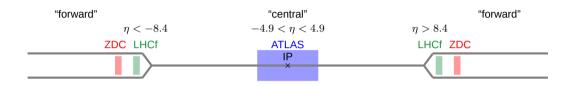

- > Two calorimeter systems on each side of ATLAS
- > Each consists of 1 EM module and 3 hadronic modules
- Usually operational during heavy ion runs

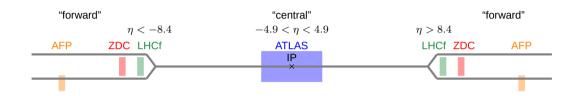

ATLAS ZDC Detectors

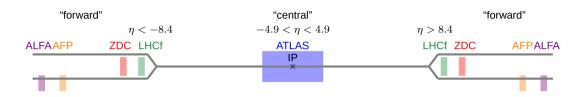


- > Two calorimeter systems on each side of ATLAS
- > Each consists of 1 EM module and 3 hadronic modules
- > Usually operational during heavy ion runs
- > Combination with LHCf: EM module replaced by LHCf
- \rightarrow Improve neutron energy resolution: $40\% \rightarrow 20\%$

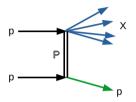


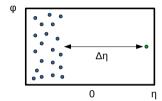

> LHCf + ZDC: Improve neutron energy resolution

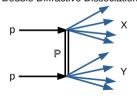

- > LHCf + ZDC: Improve neutron energy resolution
- > AFP + ATLAS: Diffractive dissociation, exclusive processes

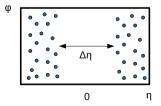

- > LHCf + ZDC: Improve neutron energy resolution
- > AFP + ATLAS: Diffractive dissociation, exclusive processes
- > LHCf + ATLAS: Diffractive dissociation, correlations of central and forward particle spectra

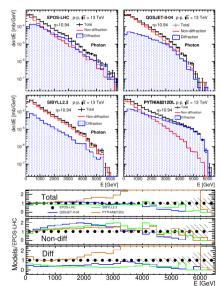
- > LHCf + ZDC: Improve neutron energy resolution
- > AFP + ATLAS: Diffractive dissociation, exclusive processes
- > LHCf + ATLAS: Diffractive dissociation, correlations of central and forward particle spectra
- > LHCf + ZDC + ATLAS: One-pion-exchange process




- > LHCf + ZDC: Improve neutron energy resolution
- > AFP + ATLAS: Diffractive dissociation, exclusive processes
- > LHCf + ATLAS: Diffractive dissociation, correlations of central and forward particle spectra
- > LHCf + ZDC + ATLAS: One-pion-exchange process
- > LHCf + AFP (+ ZDC + ATLAS): Single diffractive dissociation, proton excitations


- > LHCf + ZDC: Improve neutron energy resolution
- > AFP + ATLAS: Diffractive dissociation, exclusive processes
- > LHCf + ATLAS: Diffractive dissociation, correlations of central and forward particle spectra
- > LHCf + ZDC + ATLAS: One-pion-exchange process
- > LHCf + AFP (+ ZDC + ATLAS): Single diffractive dissociation, proton excitations


Single Diffractive Dissociation


Double Diffractive Dissociation

Eur. Phys. J. C77 no. 4, (2017) 212

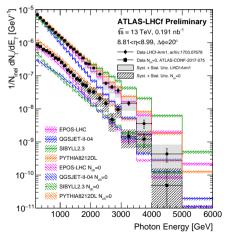
- Contribution of diffractive vs. non-diffractive very different for each event generator!
- Central veto helps disentangle diffractive and non-diffractive

ATLAS-CONF-2017-075

Event Selection

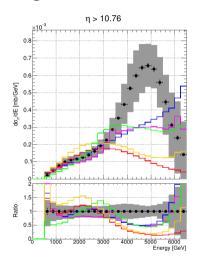
- $> \gamma$ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$

ATLAS-CONF-2017-075

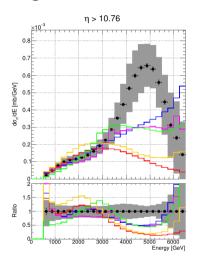

Event Selection

- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - \rightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$
- > Track reconstruction in ATLAS:
 - $\rightarrow |\eta(\text{track})| < 2.5$
 - $\rightarrow p_T(\text{track}) > 100 \, \text{MeV}$
 - → Veto such tracks! (Rapidity gap)

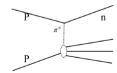
ATLAS-CONF-2017-075

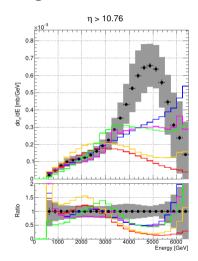

Event Selection

- > γ candidate inside LHCf
 - $\rightarrow E(\gamma) > 200 \, \text{GeV}$
 - ightarrow Region A: $8.81 < \eta(\gamma) < 8.99$
 - \rightarrow Region B: $\eta(\gamma) > 10.94$
- > Track reconstruction in ATLAS:
 - $\rightarrow |\eta(\mathrm{track})| < 2.5$
 - $\rightarrow p_T(\text{track}) > 100 \, \text{MeV}$
 - $\rightarrow \mbox{ Veto such tracks! (Rapidity gap)}$


LHCf ("alone") measured neutron energy spectrum (JHEP11(2018)073):

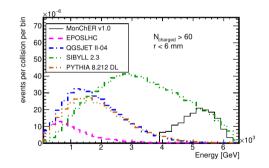
Large differences between data and event generator predictions


LHCf ("alone") measured neutron energy spectrum (JHEP11(2018)073):

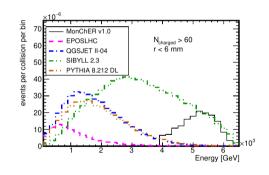

- Large differences between data and event generator predictions
- > Could be from...
 - ... Diffractive dissociation mismodelling
 - ... Mismodelling of non-diffractive processes

LHCf ("alone") measured neutron energy spectrum (JHEP11(2018)073):

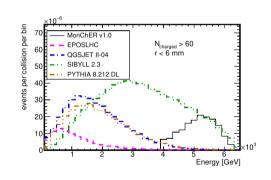
- Large differences between data and event generator predictions
- > Could be from...
 - ... Diffractive dissociation mismodelling
 - ... Mismodelling of non-diffractive processes
 - ... Generators don't take pion exchange into account



 \rightarrow How disentangle these contributions?

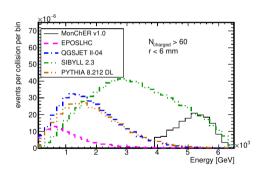

K. Ohashi at ICRC 2021

- > Diffractive veto:
 - ATLAS tracks with $|\eta| < 2.5$ and $p_T > 100\,\mathrm{MeV}$
 - N(tracks) > 10


K. Ohashi at ICRC 2021

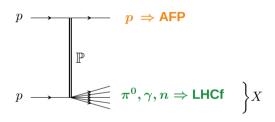
- > Diffractive veto:
 - ATLAS tracks with $|\eta| < 2.5$ and $p_T > 100\,\mathrm{MeV}$
 - N(tracks) > 10
- > Non-diffractive veto:
 - Neutron in LHCf with $E(n) > 3500\,\mathrm{GeV}$ and $\eta > 10.76$
 - Additionally N(tracks) > 60

K. Ohashi at ICRC 2021

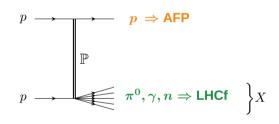

- > Diffractive veto:
 - ATLAS tracks with $|\eta| < 2.5$ and $p_T > 100\,\mathrm{MeV}$
 - N(tracks) > 10
- > Non-diffractive veto:
 - Neutron in LHCf with $E(n) > 3500\,\mathrm{GeV}$ and $\eta > 10.76$
 - Additionally N(tracks) > 60
- + ZDC info (improve neutron energy resolution)

K. Ohashi at ICRC 2021

Event Selection Strategy

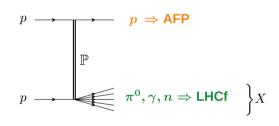

- > Diffractive veto:
 - ATLAS tracks with $|\eta| < 2.5$ and $p_T > 100\,\mathrm{MeV}$
 - N(tracks) > 10
- > Non-diffractive veto:
 - Neutron in LHCf with $E(n) > 3500\,\mathrm{GeV}$ and $\eta > 10.76$
 - Additionally $N({\rm tracks}) > 60$
- + ZDC info (improve neutron energy resolution)

ightarrow To be studied with new LHC run 3 data!


ATL-PHYS-PUB-2023-024

- $> \ge 1 \, \gamma \; {
 m or} = 1 \; {
 m neutron} \; {
 m in} \; {
 m LHCf}$
- > $E_{\gamma,n} > 200 \, {\rm GeV}$
- > Proton in AFP (opposite side)

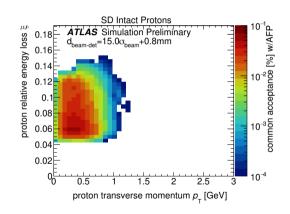
ATL-PHYS-PUB-2023-024


- > $\geq 1 \gamma$ or = 1 neutron in LHCf
- > $E_{\gamma,n} > 200 \, \text{GeV}$
- > Proton in AFP (opposite side)
- > (+ ATLAS central track veto)
- > (+ ZDC information)

ATL-PHYS-PUB-2023-024

Event Selection Strategy

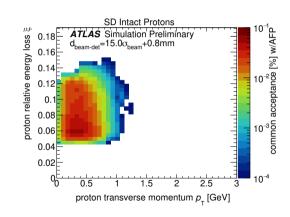
- > $\geq 1 \gamma$ or = 1 neutron in LHCf
- > $E_{\gamma,n} > 200 \, \text{GeV}$
- > Proton in AFP (opposite side)
- > (+ ATLAS central track veto)
- > (+ ZDC information)



Advantages

- > Improved discrimination against other processes
- > Better kinematic reconstruction

- Checked combined acceptance of LHCf+AFP
- > As function of p_T and energy loss ξ

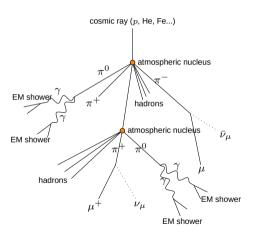

$$\xi = \frac{E_{\rm beam} - E_{\rm proton}}{E_{\rm beam}}$$

- Checked combined acceptance of LHCf+AFP
- > As function of p_T and energy loss ξ

$$\xi = \frac{E_{\rm beam} - E_{\rm proton}}{E_{\rm beam}}$$

- > Expected ~ 10 million events with run 3 data
- → Ongoing efforts!

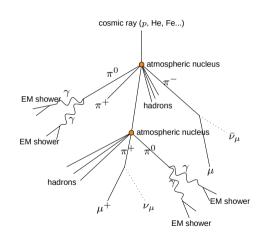
- $> 23^{\rm rd} 26^{\rm th}$ September 2022
- > \sim 2.5 days of data taking
- > Record: Longest LHC fill ever!
- > Low pileup conditions: $\langle \mu \rangle \approx 0.02$
- > Simultaneous data taking by ATLAS, LHCf, ZDC and AFP

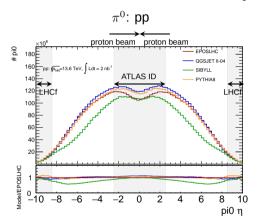

- $> 23^{\rm rd} 26^{\rm th}$ September 2022
- > \sim 2.5 days of data taking
- > Record: Longest LHC fill ever!
- > Low pileup conditions: $\langle \mu \rangle \approx 0.02$
- > Simultaneous data taking by ATLAS, LHCf, ZDC and AFP
- > Current work status:

- $> 23^{\rm rd} 26^{\rm th}$ September 2022
- > \sim 2.5 days of data taking
- > Record: Longest LHC fill ever!
- > Low pileup conditions: $\langle \mu \rangle \approx 0.02$
- > Simultaneous data taking by ATLAS, LHCf, ZDC and AFP
- > Current work status:
 - Combine data of different experiments
 - Independent DAQ of ATLAS and LHCf ightarrow offline data combination

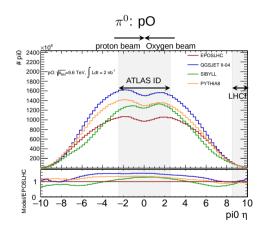
- $> 23^{\rm rd} 26^{\rm th}$ September 2022
- > \sim 2.5 days of data taking
- > Record: Longest LHC fill ever!
- > Low pileup conditions: $\langle \mu \rangle \approx 0.02$
- > Simultaneous data taking by ATLAS, LHCf, ZDC and AFP
- > Current work status:
 - Combine data of different experiments
 - Independent DAQ of ATLAS and LHCf ightarrow offline data combination
 - Generate common simulations
 - Common detector simulation of LHCf+ZDC
 - Simulation of proton transportation to AFP under special beam conditions

Outlook: Proton-Oxygen at the LHC

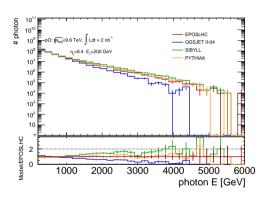

Proton-Oxygen collisions at the LHC for the first time in 2025!

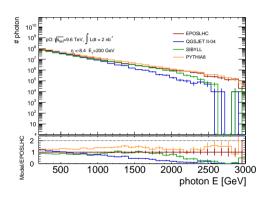

Outlook: Proton-Oxygen at the LHC

Proton-Oxygen collisions at the LHC for the first time in 2025!


- Again, the entire set of detectors will join the run:
 - → ATLAS, LHCf, ZDC and AFP
- Preparatory and feasibility studies ongoing!

Generator Predictions for pO

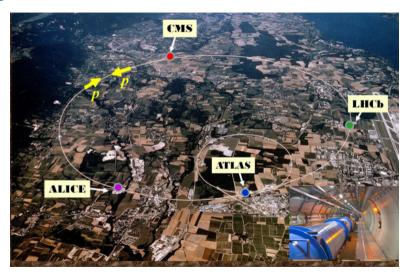

ightarrow models show similar behaviour in central region (have been tuned there)


ightarrow Huge differences between models in the entire η -spectrum

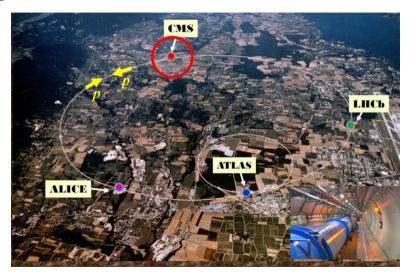
Generator Predictions for pO

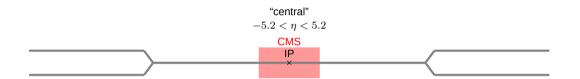
Proton remnant side:

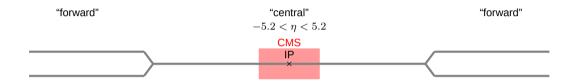
Oxygen remnant side:

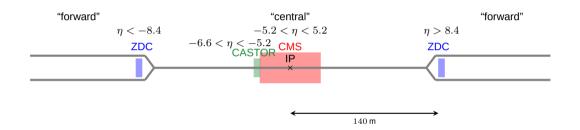


- > Large disagreements between generators, especially at high photon energies
- > Differences on both sides (\rightarrow data should be taken on both sides!)

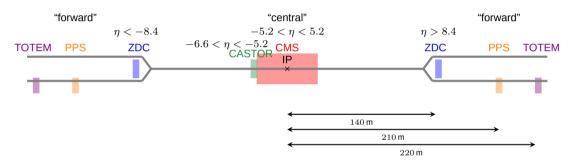

What about other LHC experiments?



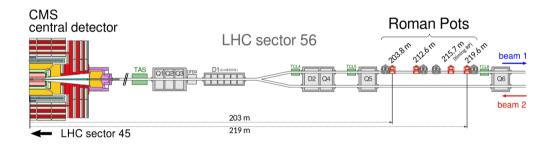

The Large Hadron Collider



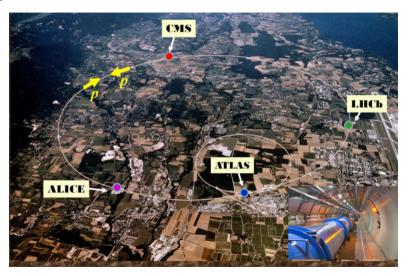
The Large Hadron Collider

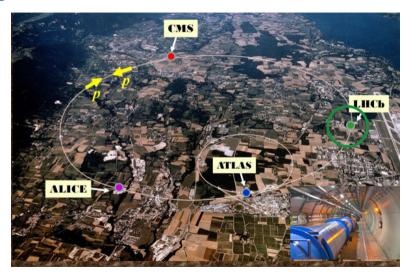


> Calorimeters: CASTOR, ZDC

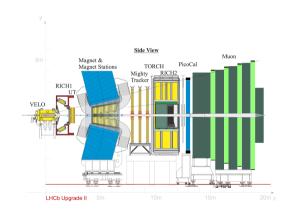


> Calorimeters: CASTOR, ZDC

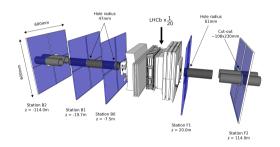

> Proton detectors: PPS, TOTEM

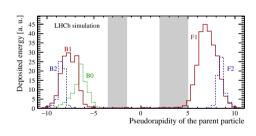

CMS PPS: Precision Proton Spectrometer

The Large Hadron Collider



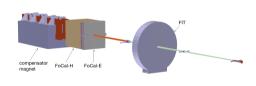
The Large Hadron Collider

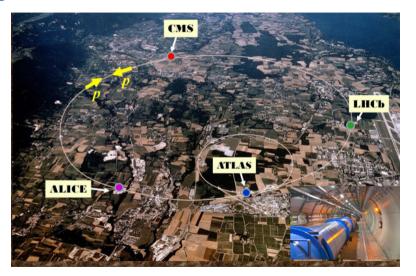

LHCb Detector


- Dedicated to measurements in the forward region
- > Coverage: $2 < \eta < 5$
- Main interest in flavour physics, CP violation etc.
- Soft QCD program: particle multiplicities, inelastic cross section...
- Fixed target configuration possible (noble gas injection)

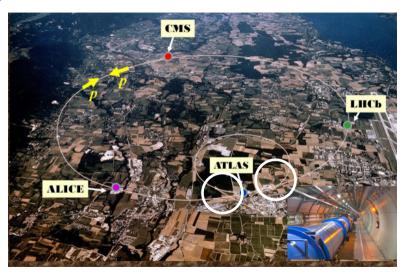
LHCb Detector and HeRSCHeL

LHCB-DP-2016-003




ALICE Detector and FoCal

ALICE-TDR-022



The Large Hadron Collider

The Large Hadron Collider

FASER & FASER ν

- > New LHC experiment
 - \rightarrow first data in 2022
- > 480 m downstream of the ATLAS IP
- > On beam axis ($\eta > 9.1$)
- Long lived light particle searches & forward TeV neutrinos (+ flavour info)

FASER & FASER ν

- > New LHC experiment
 - \rightarrow first data in 2022
- > 480 m downstream of the ATLAS IP
- > On beam axis ($\eta > 9.1$)
- Long lived light particle searches & forward TeV neutrinos (+ flavour info)

SND@LHC

- New LHC experiment
 - \rightarrow first data in 2022
- > 480 m downstream of ATLAS IP
- > Off-axis position (7.2 $< \eta < 8.4$)
- Neutrinos from charm decays, LFU in neutrino sector

FASER & FASER ν

- New LHC experiment
 - \rightarrow first data in 2022
- > 480 m downstream of the ATLAS IP
- > On beam axis ($\eta > 9.1$)
- Long lived light particle searches & forward TeV neutrinos (+ flavour info)

SND@LHC

- New LHC experiment
 - \rightarrow first data in 2022
- > 480 m downstream of ATLAS IP
- > Off-axis position (7.2 $< \eta < 8.4$)
- Neutrinos from charm decays, LFU in neutrino sector

Successor experiments will be part of the Forward Physics Facility during HL-LHC!

Short answer: We don't really know...

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

> First idea of strong interaction: Pion exchange

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

- > First idea of strong interaction: Pion exchange
- > A lot of other mesons also were found out to contribute

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

- > First idea of strong interaction: Pion exchange
- > A lot of other mesons also were found out to contribute
- > Regge theory:

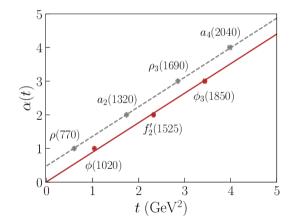
Short answer: We don't really know...

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

- > First idea of strong interaction: Pion exchange
- A lot of other mesons also were found out to contribute
- > Regge theory:
 - Discrete real angular momentum l \rightarrow continuous complex angular momentum α

HUMBOLDT-

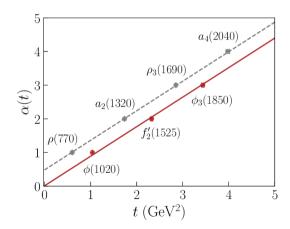

Short answer: We don't really know...

History: Strong interaction theories in the 1960s

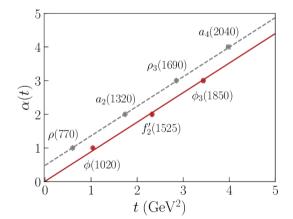
Strong interactions in the 60s

- > First idea of strong interaction: Pion exchange
- A lot of other mesons also were found out to contribute
- > Regge theory:

 - Exchange mesons were found to be points on distinct lines in angular momentum space:

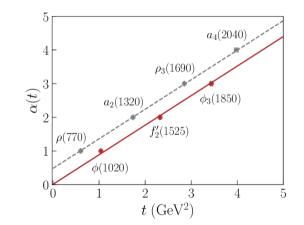


Short answer: We don't really know...

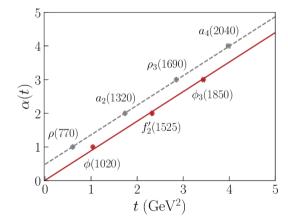

History: Strong interaction theories in the 1960s

Strong interactions in the 60s

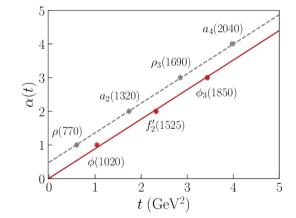
- > First idea of strong interaction: Pion exchange
- A lot of other mesons also were found out to contribute
- > Regge theory:
 - Discrete real angular momentum l \rightarrow continuous complex angular momentum α
 - Exchange mesons were found to be points on distinct lines in angular momentum space:
 - ightarrow Regge trajectories lpha(t) (Mandelstam t: squared momentum exchange)


History: Strong interaction theories in the 1960s

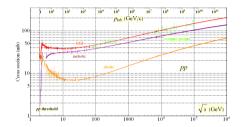
History: Strong interaction theories in the 1960s

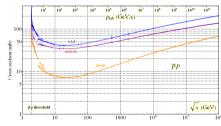

Energy dependence of total hadron-hadron cross sections

> $\sigma_{
m total} \sim s^{lpha(t)-1}$ (Mandelstam s: CME 2)

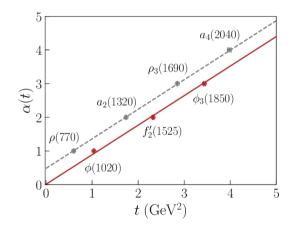

History: Strong interaction theories in the 1960s

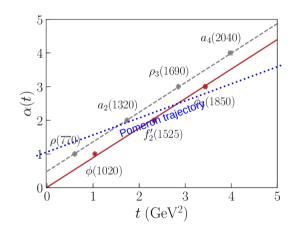
- > $\sigma_{\text{total}} \sim s^{\alpha(t)-1}$ (Mandelstam s: CME²)
- > For $t \to 0$, all known Regge trajectories are < 1


History: Strong interaction theories in the 1960s


- > $\sigma_{\text{total}} \sim s^{\alpha(t)-1}$ (Mandelstam s: CME²)
- > For $t \to 0$, all known Regge trajectories are < 1
- \rightarrow Expectation: σ_{total} decreases with s at small t

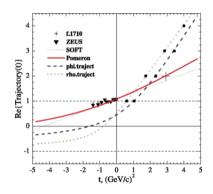
History: Strong interaction theories in the 1960s


- > $\sigma_{\text{total}} \sim s^{\alpha(t)-1}$ (Mandelstam s: CME²)
- > For $t \rightarrow 0$, all known Regge trajectories are < 1
- ightarrow Expectation: $\sigma_{ ext{total}}$ decreases with s at small t
- > Observation: $\sigma_{\rm total} \sim {\rm constant}$ with high energy with slight logarithmic rise


History: Strong interaction theories in the 1960s

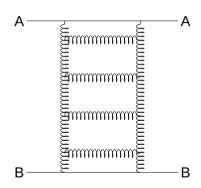
- > $\sigma_{\text{total}} \sim s^{\alpha(t)-1}$ (Mandelstam s: CME²)
- > For $t \to 0$, all known Regge trajectories are < 1
- \rightarrow Expectation: σ_{total} decreases with s at small t
- > Observation: $\sigma_{\rm total} \sim {\rm constant}$ with high energy with slight logarithmic rise

History: Strong interaction theories in the 1960s


- > $\sigma_{\text{total}} \sim s^{\alpha(t)-1}$ (Mandelstam s: CME²)
- > For $t \to 0$, all known Regge trajectories are < 1
- \rightarrow Expectation: σ_{total} decreases with s at small t
- > Observation: $\sigma_{\rm total} \sim {\rm constant}$ with high energy with slight logarithmic rise
- > Idea: There exists another trajectory with $\alpha(0) \gtrsim 1$ that dominates strong interactions at small t
- → Pomeron!

Open Questions

Did it work? What about QCD?


- Concept fairly successful
- > But: Up to now no confirmed particles on the Pomeron trajectory
- > Pomeron definition only valid for low t= non-perturbative regime of QCD
- → What is the Pomeron in QCD?

Open Questions

QCD Pomeron?

- Properties of Regge Pomeron: Quantum numbers of the vacuum, C-even
- > BFKL equation: Pomeron analogous to exchange of two (or a higher even number) gluons in QCD
- Represented by "ladder" operator

Open Questions

Pomeron Resonances?

- > No known particles on Pomeron trajectory known yet
- > Candidates: Tensor (spin 2) glueballs
 - Purely gluonic bound states allowed by QCD
 - Haven't been identified as well so far

