## Rare Kaon and Hyperon Decays from Lattice QCD

Raoul Hodgson 8<sup>th</sup> October, 2025

DESY Zeuthen raoul.hodgson@desy.de

Astroparticle and Particle Physics Workshop



### Search for New Physics

- Direct experimental results are described very well by the Standard Model of Particle Physics
- SM doesn't explain Matter-Antimatter asymmetry, Dark Matter, Neutrino masses, and is incompatible with General Relativity

# Where is new physics?

- Search for BSM physics is the interplay between experiment and theory
- Two main types of searches: Precision and rare processes

### Search for New Physics

#### Precision searches

- Look for tiny deviations from SM
- Need very high experimental precision
  - $\rightarrow$  many events
  - → highly probable channels
- Need very robust SM predictions
  - $\rightarrow$  QCD often makes this hard
- Examples: Muon anomalous magnetic moment,  $K^+ \to \mu^+ \nu$  and  $\pi^+ \to \mu^+ \nu$  decays, etc.

Can we find the pea under the mattresses?



### Search for New Physics

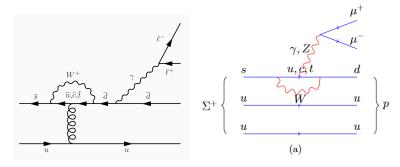
#### Rare/Forbidden processes

- Look for relatively large deviations from tiny SM background
- Remove SM background entirely by breaking SM symmetries:

e.g. 
$${\it K}^+ \to \pi^- \mu^+ \mu^+$$
,  ${\it K} \to \mu^+ e^-$ , etc.

SM suppression by vanishing at tree-level:
 e.g. Flavour Changing Neutral Currents



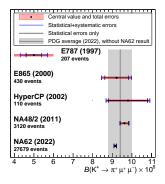

#### Many interesting FCNCs

- $K_{L,S} \rightarrow \ell^+ \ell^-$
- $K \rightarrow \pi \ell^+ \ell^-$
- $K \to \pi \nu \bar{\nu}$
- ·  $\Sigma^+ \rightarrow p\ell^+\ell^-$
- ·  $\Sigma^+ \to p \nu \bar{\nu}$
- ·  $D \rightarrow \pi \ell^+ \ell^-$
- ·  $\Lambda_c \to p\ell^+\ell^-$
- $B \rightarrow K^{(*)}\ell^+\ell^-$
- · etc.

Can we find the pea hidden in the grass?

### Rare K and $\Sigma$ Decays

- Focus on  $K^{+/S} \to \pi^{+/0} \ell^+ \ell^-$  and  $\Sigma^+ \to p \ell^+ \ell^-$
- Dominated by intermediate virtual photon  $\gamma^* \to \ell^+ \ell^-$
- $\cdot$  Complicated by low energy QCD  $\rightarrow$  Non-perturbative methods




• Future ambition to also compute  $D o \pi \ell^+ \ell^-$ 

### Rare K Decay Experiment

There are several different channels in  $K \to \pi \ell^+ \ell^-$ :

- $K^+ \to \pi^+ \mu^+ \mu^-$  most precise: latest result from NA62  $\mathcal{B}=(9.15\pm0.08)\times10^{-8}$
- $K^+ \to \pi^+ e^+ e^-$  measured by NA48  $\mathcal{B} = (3.11 \pm 0.12) \times 10^{-7}$
- $K_S^0 \to \pi^+ \mu^+ \mu^-$  and  $K_S^0 \to \pi^+ e^+ e^-$  observed at NA48. Much less precise  $\mathcal{B} = (2.9^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$  and  $(5.8^{+2.9}_{-2.6}) \times 10^{-9}$



[hep-ex 2209.05076]

•  $K_L^0 \to \pi^0 \ell^+ \ell^-$  not observed. Bounds set by KTeV at Fermilab  $\mathcal{B} < 3.8 \times 10^{-10}$  and  $< 2.8 \times 10^{-10}$ 

### Rare K Decay Phenomenology

$$K^+ \to \pi^+ \ell^+ \ell^-$$
 and  $K_S \to \pi^0 \ell^+ \ell^-$ 

- $\mathcal{B} = C_{1\gamma} a_{+,S}^2$
- Dominated by CP conserving intermediate  $\gamma^* \to \ell^+\ell^-$
- Non-perturbative physics determined by parameters  $a_+$  and  $a_S$
- Experiment  $a_{+}^{\text{exp}} = -0.575(13)$ , theory  $a_{+}^{\text{SM}} = -1.59(8)$

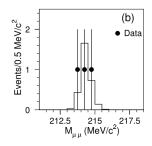
$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$

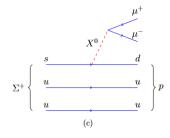
- $\mathcal{B} = (C_{2\gamma} + C_{dir} + C_{ind}a_S^2 \pm C_{int}a_S)$
- $C_{2\gamma}$ : CP conserving  $\gamma^*\gamma^* \to \ell^+\ell^-$
- C<sub>dir</sub> : Direct CP violation (short distance)
- $C_{\text{ind}}$ : Indirect CP violating  $(K^0 \bar{K}^0 \text{ mixing} \times K_S \to \pi^0 \ell^+ \ell^-)$
- $\cdot$   $C_{int}$ : Interference between direct and indirect CP violation

Need to know sign of  $a_S$  to disentangle interference vs new physics

### Rare $\Sigma$ Decay Experiment

#### First observed by HyperCP: [hep-ex/0501014]


· 3 events seen


$$\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-)_{HCP} = 8.6^{+6.6}_{-5.4} \pm 5.5 \times 10^{-8}$$

• HyperCP anomaly: possible new particle  $\Sigma^+ o p X^0 o p X^0 o \mu^+ \mu^-$  with  $m_{X^0} \simeq$  214 MeV?

#### Lots of attention from the BSM theory community

- $X^0$  scalar or pseudoscalar?
- · Sgoldstino?
- Light Higgs?
- Secluded U(1)?



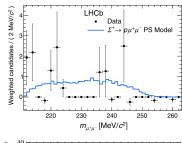


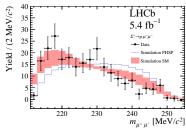
### Rare $\Sigma$ Decay Experiment

Later measured at LHCb: [hep-ex/1712.08606]

 $\cdot \simeq$  10 events

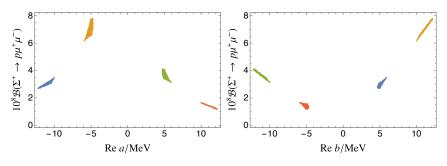
$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)_{\text{LHCb}} = 2.2^{+1.8}_{-1.3} \times 10^{-8}$$


Recent observation at LHCb: [hep-ex/2504.06096]


•  $\simeq$  240 events

$$\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-)_{LHCb} = 1.09 \pm 0.17 \times 10^{-8}$$

- · Currently working on additional measurements
  - + angular observables
  - + CP violation
  - $+ e^+e^-$  mode


No evidence of the HyperCP anomaly





### Rare $\Sigma$ Decay Phenomenology

- · Spin degree of freedom gives access to extra BSM operators
- SM prediction uses combination of experimental input ( $\Sigma^+ \to p\gamma$ ), Vector Meson Dominance, Baryon  $\chi_{\rm PT}$
- 4-fold ambiguity from experimental input



[hep-ph 2404.15268]

Need ab initio non-perturbative methods  $\rightarrow$  Lattice QCD

#### Lattice QCD

Need to regulate infinite, continuous QCD problem to put it onto a computer

- · Discretize space-time
- · Restrict to finite size lattice
- Define discretisation of quarks  $\psi$  and gluons  $U_\mu$

 $P_{\mu\nu}$   $U_{\mu}$   $U_{\mu}$ 

Compute observables on the lattice  $\mathcal{O}(a, L)$ 

Recover QCD by taking the infinite volume and continuum limits

$$\mathcal{O}_{QCD} = \lim_{a \to 0} \lim_{L \to \infty} \mathcal{O}(a, L)$$

Also cheaper to compute with unphysical pion mass Then take  $m_\pi \to m_\pi^{\rm phys}$  limit

#### Lattice QCD

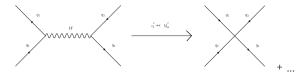


• Wick rotation  $t \rightarrow it$ : Euclidean spacetime

$$\int \mathcal{D}\psi \dots e^{i\mathsf{S}_{\mathsf{M}}} o \int \mathcal{D}\psi \dots e^{-\mathsf{S}_{\mathsf{E}}}$$

- · Use Monte Carlo Markov Chain to compute path integral
- Propagation in time  $e^{iEt}$  becomes decaying (or growing)  $e^{-Et}$

Need to get back to Minkowski quantity:


- · Trivial for many quantities: e.g. hadrons masses
- Non-trivial for non-local matrix elements like rare decays (problematic growing exponentials)
- K and  $\Sigma$  decays can be done manually
- Heavier decays like  $D \to \pi \ell^+ \ell^-$  need alternative methods: e.g. numerical inverse Laplace transform  $\to$  Can other fields help?

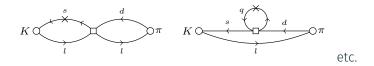
#### Electroweak Interactions on the Lattice

Can we simulate the full SM on the lattice? No!

- Practical problem: Would need  $L\gg m_\pi^{-1}$  and  $a\ll\sqrt{G_F}$   $(L/a)^4\gg 10^{13}$  lattice sites. Currently limits  $128^3\times 256\sim 5\times 10^8$
- Theoretical problem: EW is a chiral gauge theory
   Fermion discretisations generally break chiral symmetry

Instead we work in Low-Energy Effective Field Theory  $\rightarrow$  integrate out heavy degrees of freedom




Compute matrix elements of these operators in pure QCD

#### Rare K and $\Sigma$

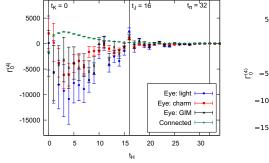
Amplitude to calculate (very similar for  $\Sigma$  decay)

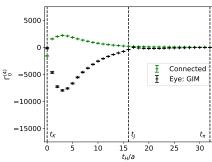
$$\mathcal{A}_{\mu} = \int d^{4}x \, \langle \pi | \, T\{H_{W}(x)J_{\mu}(0)\} \, | K \rangle$$

$$= i \int_{0}^{\infty} d\omega \frac{1}{2\omega} \frac{\langle \pi | J_{\mu} | \omega \rangle \, \langle \omega | \, H_{W} | K \rangle}{\omega - E_{\pi}} + i \int_{0}^{\infty} d\omega \frac{1}{2\omega} \frac{\langle \pi | \, H_{W} | \omega \rangle \, \langle \omega | \, J_{\mu} | K \rangle}{\omega - E_{K}}$$



Quark loops diagrams are problematic


- Need to take the trace of gigantic ( $\sim 10^9 \times 10^9$ ) matrix  $Tr[D^{-1}]$
- Done stochastically: recent developments have had massive improvement


Baryons also have a signal-to-noise problem ightarrow even harder than kaon decay

#### Rare K and $\Sigma$ Calculations

|                     |                | Method    | Exploratory | Physical  | Improvement           |
|---------------------|----------------|-----------|-------------|-----------|-----------------------|
| $K \rightarrow \pi$ | $\ell^+\ell^-$ | 2015      | 2016        | 2022 [RH] | Analysis ongoing [RH] |
| $\Sigma 	o \pi$     | $\ell^+\ell^-$ | 2022 [RH] | 2025 [RH]   |           |                       |

- $\cdot$  K o  $\pi \ell^+ \ell^-$  stochastic loop noise blows up as  $m_\pi o m_\pi^{
  m phys}$
- Unexpectedly loop noise dominates in  $\Sigma o \pi \ell^+ \ell^-$  at  $m_\pi =$  340 MeV
- ·  $\Sigma \to \pi \ell^+ \ell^-$  large cancellation between two time orderings
- Improved stochastic loop estimator





#### Conclusions/Outlook

#### Big question to answer:

· Where is all the new physics?

Rare FCNC decays have potential to answer this

- · Current theory methods struggle to make robust predictions in some areas
- $\cdot$  Need first principles non-perturbative calculations o Lattice QCD

#### Lattice still has challenges to overcome

- Stochastic loop noise  $\rightarrow$  even better estimators?
- $\cdot$  Unexpected cancellations  $\rightarrow$  can we reformulate the problem
- ullet Baryon signal-to-noise problem o would have massive benefit to many lattice calculations
- Developments towards numerically undoing Wick rotation / inverse Laplace transform → lattice has made progress in recent years

#### Does your field have any solutions?