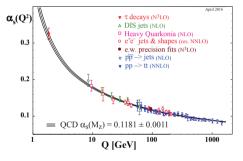
Lattice QCD and baryon-baryon interactions


Jeremy R. Green

Deutsches Elektronen-Synchrotron DESY

Astroparticle and Particle Physics Workshop DESY, Zeuthen October 6-8, 2025

Quantum chromodynamics at low energy

QCD is the sector of the Standard Model containing *quarks* and *gluons*.

on the energy scale at which we study it. At high energy, α_s becomes small (*asymptotic*

In QCD, the strong coupling constant α_s depends

- freedom), and perturbation theory works.
- At low energy, α_s is large and perturbation theory breaks down. Need nonperturbative methods such as lattice QCD.

PDG 2016

Degrees of freedom for low-energy QCD: hadrons. Bound states of quarks and gluons.

Hadrons

Historically, two kinds:

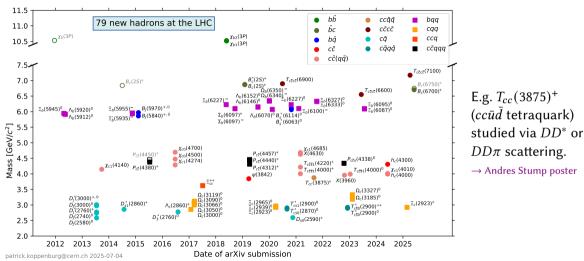
- mesons: quark-antiquark
- baryons: three quarks

In recent years: exotic hadrons, e.g. tetraquarks and pentaquarks.

Hadrons

Historically, two kinds:

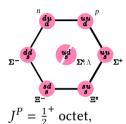
- mesons: quark-antiquark
- baryons: three quarks

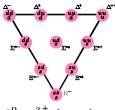

In recent years: exotic hadrons, e.g. tetraquarks and pentaquarks.

In QCD:

- ▶ Some hadrons are stable \rightarrow exist as asymptotic states.
- ▶ Most hadrons are resonances (unstable) \rightarrow decay to stable hadrons.

Rigorously, resonances appear in partial wave scattering amplitudes of stable hadrons. Resonances are studied in lattice QCD via 2- and 3-particle scattering amplitudes.

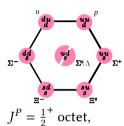

Ordinary and exotic hadrons at the LHC

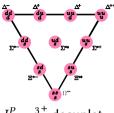


LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001, 2021, and recent updates.

Baryon-baryon interactions

In SU(3) flavour multiplets, lightest baryons are

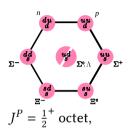


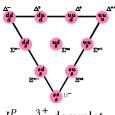

$$J^P = \frac{3}{2}^+$$
 decuplet.

Well-known $J^P = 1^+ pn$ bound state: deuteron (2 H nucleus), $m_d \approx 1876.1$ MeV. Also evidence of 3^+ resonance $d^*(2380)$. WASA-at-COSY, Phys. Rev. Lett. 112, 202301 (2014)

Baryon-baryon interactions

In SU(3) flavour multiplets, lightest baryons are


 $J^P = \frac{3}{2}^+$ decuplet.


Well-known $J^P = 1^+ pn$ bound state: deuteron (2 H nucleus), $m_d \approx 1876.1$ MeV. Also evidence of 3^+ resonance $d^*(2380)$. WASA-at-COSY, Phys. Rev. Lett. 112, 202301 (2014)

Low-energy NN well understood from pheno (pp, pn scattering) and theory (chiral EFT). Ongoing progress for theory of NNN necessary for precision nuclear physics.

Baryon-baryon interactions

In SU(3) flavour multiplets, lightest baryons are

 $J^P = \frac{3}{2}^+$ decuplet.

Well-known $J^P = 1^+ pn$ bound state: deuteron (²H nucleus), $m_d \approx 1876.1$ MeV. Also evidence of 3⁺ resonance $d^*(2380)$. WASA-at-COSY, Phys. Rev. Lett. 112, 202301 (2014)

Low-energy NN well understood from pheno (pp, pn scattering) and theory (chiral EFT). Ongoing progress for theory of NNN necessary for precision nuclear physics.

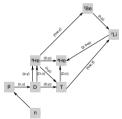
Data with nonzero strangeness are scarce: hypernuclei and femtoscopy.

What about ab initio QCD?

NN interaction (and NNN) leads to nuclei.

How fine tuned is the universe? Could Standard Model parameters have changed over time?

NN interaction (and NNN) leads to nuclei.


How fine tuned is the universe? Could Standard Model parameters have changed over time?

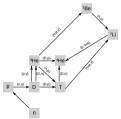
Hoyle state (7.65 MeV excitation of ¹²C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.

NN interaction (and NNN) leads to nuclei.

How fine tuned is the universe? Could Standard Model parameters have changed over time?

Hoyle state (7.65 MeV excitation of 12 C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.

(By Pamputt [CC-BY-SA-4.0], via Wikimedia Commons)


Big Bang nucleosynthesis has *deuterium bottleneck*: low deuteron binding energy 2.2 MeV delays onset of nucleosynthesis.

 \rightarrow controls abundances of light elements.

NN interaction (and NNN) leads to nuclei.

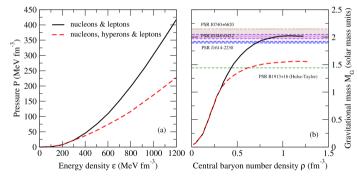
How fine tuned is the universe? Could Standard Model parameters have changed over time?

Hoyle state (7.65 MeV excitation of 12 C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.

(By Pamputt [CC-BY-SA-4.0], via

Big Bang nucleosynthesis has *deuterium bottleneck*: low deuteron binding energy 2.2 MeV delays onset of nucleosynthesis.

→ controls abundances of light elements.

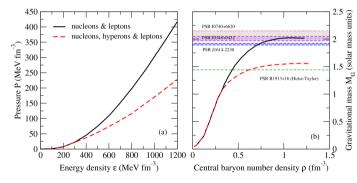

How strongly does deuteron binding depend on quark masses? H. Meyer and U.-G. Meißner, JHEP 2024, 74 Could *pp* or *nn* bind?

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known. \rightarrow opportunity for lattice QCD Also studied in recent years using femtoscopy at ALICE.

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known. \rightarrow opportunity for lattice QCD Also studied in recent years using femtoscopy at ALICE.


 Λ baryons can reduce Fermi pressure in neutron stars.

Contradicted by detection of neutron stars with $M \approx 2M_{\odot}$.

I. Vidaña, EPJ Web Conf. 271, 09001 (2022)

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known. \rightarrow opportunity for lattice QCD Also studied in recent years using femtoscopy at ALICE.

 Λ baryons can reduce Fermi pressure in neutron stars.

Contradicted by detection of neutron stars with $M \approx 2M_{\odot}$.

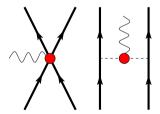
I. Vidaña, EPJ Web Conf. 271, 09001 (2022)

Do hyperon-hyperon (*YY*) or *NNY* interactions play a role?

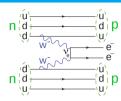
Nuclei as tools in experiments

In practice, nuclei instead of free nucleons are often used.

- ► Argon in neutrino experiments (MicroBooNE, DUNE).
- Xenon for dark matter direct detection (XENONnT, LUX-ZEPLIN).


Nuclei as tools in experiments

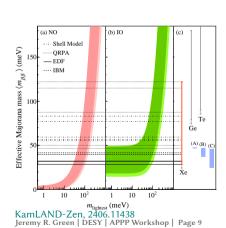
In practice, nuclei instead of free nucleons are often used.


- Argon in neutrino experiments (MicroBooNE, DUNE).
- ➤ Xenon for dark matter direct detection (XENONnT, LUX-ZEPLIN).

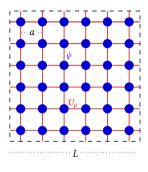
For precision physics, need *meson-exchange currents* to understand interaction of probe with > 1 nucleon, i.e. go beyond *impulse approximation*.

e.g. EMC effect: distribution of quarks is different inside nucleus compared with proton and neutron

Neutrinoless double beta decay


Are neutrinos Majorana?

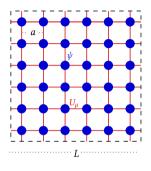
Violation of lepton number conservation.


Large nuclear modelling uncertainty.

Need QCD for precise interpretation of experimental constraints.

Long-term goal for the lattice.

Lattice QCD


Regularize QCD by discretizing space and imaginary time on 4d lattice:

- lattice spacing a: systematic error $O(a^2)$
- periodic box size L: systematic error $O(e^{-m_{\pi}L})$

Needs minimal experimental input: quark masses and reference scale.

Typical lattice size varies from 48×24^3 to 256×128^3 . Can need large compute cluster.

Lattice QCD

Regularize QCD by discretizing space and imaginary time on 4d lattice:

- lattice spacing a: systematic error $O(a^2)$
- periodic box size L: systematic error $O(e^{-m_{\pi}L})$

Needs minimal experimental input: quark masses and reference scale.

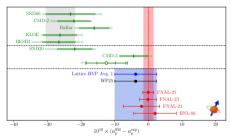
Typical lattice size varies from 48×24^3 to 256×128^3 . Can need large compute cluster.

Need to accommodate range of scales

$$L^{-1} \ll m_{\pi} \ll m_{N} \ll a^{-1}$$
.

Since $m_{\pi}^2 \propto m_u + m_d$, small m_u , m_d in nature make simulations difficult.

 \rightarrow Simpler calculations with heavier (unphysical) $m_u = m_d$.


Local lattice QCD activities

QCD+QED (Agostino Patella / RC* collaboration)

For QCD observables at high precision $\sim 1\%$, need to include QED corrections.

E.g. hadronic contributions to muon g - 2.

Muon g-2 Theory Initiative, Phys. Rept. 1143 (2025)

Glueballs (Stefan Schaefer / DFG Research Unit FOR5269)

Hadrons made of gluons. Challenging problem:

- ▶ Mixing with $\bar{q}q$ degrees of freedom → start from theory without quarks.
- Severe statistical fluctuations → new numerical techniques.

Choice of quark masses

Physical quark masses necessary for connection with experiment.

Why use unphysical quark masses?

Choice of quark masses

Physical quark masses necessary for connection with experiment.

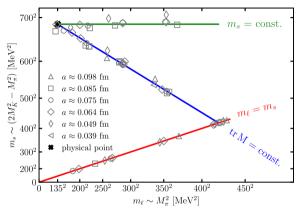
Why use unphysical quark masses?

- Larger $m_u = m_d$ makes simulations numerically easier.
- Larger m_{π} exponentially reduces noise, particularly for multi-nucleons.
- Larger m_{π} closes some decay channels and makes some resonances stable $(\Delta, D^*, ...)$.
- Can make some approximate symmetries exact: SU(3) flavour, heavy quark spin symmetry.

Choice of quark masses

Physical quark masses necessary for connection with experiment.

Why use unphysical quark masses?

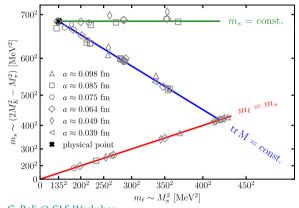

- Larger $m_u = m_d$ makes simulations numerically easier.
- Larger m_{π} exponentially reduces noise, particularly for multi-nucleons.
- Larger m_{π} closes some decay channels and makes some resonances stable $(\Delta, D^*, ...)$.
- Can make some approximate symmetries exact: SU(3) flavour, heavy quark spin symmetry.

SU(3)-symmetric point with $m_u = m_d = m_s \approx \frac{1}{3}(m_u^{\rm phys} + m_d^{\rm phys} + m_s^{\rm phys})$ has been a useful testing ground.

Coordinated Lattice Simulations (CLS)

European effort for lattice QCD simulations

- Using a particular formulation of LQCD.
- Sharing computing time, storage, and person effort.
- Leading role played by DESY.



G. Bali @ CLS Workshop

Coordinated Lattice Simulations (CLS)

European effort for lattice QCD simulations

- Using a particular formulation of LQCD.
- Sharing computing time, storage, and person effort.
- Leading role played by DESY.

G. Bali @ CLS Workshop

Investigations of possible new lattice QCD action for CLS ongoing at DESY.

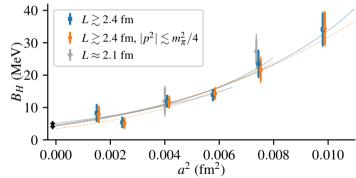
Stefan Schaefer, Jorge Baeza Ballesteros

 \rightarrow set direction for next decade of CLS.

Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: $\Lambda\Lambda$ bound by 80 MeV in MIT bag model. R. L. Jaffe, 1977 Limits on existence imposed by ${}^{6}_{\Lambda\Lambda}$ He double-hypernucleus produced at KEK and by $\Lambda\Lambda$ femtoscopy at ALICE.

JRG *et al.*, Phys. Rev. Lett. **127**, 242003 (2021) Calculation at unphysical SU(3) point. First $a \rightarrow 0$ limit for dibaryon system.

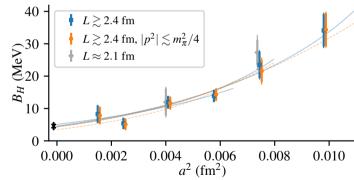

Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: $\Lambda\Lambda$ bound by 80 MeV in MIT bag model. R. L. Jaffe, 1977

Limits on existence imposed by $^{6}_{\Lambda\Lambda}$ He double-hypernucleus produced at KEK and by $\Lambda\Lambda$ femtoscopy at ALICE.

JRG *et al.*, Phys. Rev. Lett. **127**, 242003 (2021) Calculation at unphysical SU(3) point. First $a \rightarrow 0$ limit for dibaryon system.

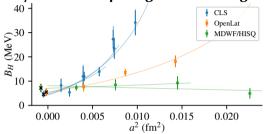
Unexpected result: lattice-spacing effects are very large. Past calculations had significant uncontrolled systematic error.


Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: $\Lambda\Lambda$ bound by 80 MeV in MIT bag model. R. L. Jaffe, 1977

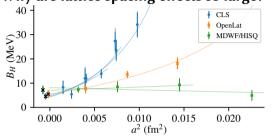
Limits on existence imposed by $^{6}_{\Lambda\Lambda}$ He double-hypernucleus produced at KEK and by $\Lambda\Lambda$ femtoscopy at ALICE.

JRG *et al.*, Phys. Rev. Lett. **127**, 242003 (2021) Calculation at unphysical SU(3) point. First $a \rightarrow 0$ limit for dibaryon system.


Unexpected result: lattice-spacing effects are very large. Past calculations had significant uncontrolled systematic error.

Small binding energy at SU(3)-symmetric point \implies probably no bound state in nature.

H dibaryon: follow-up work


In preparation: comparison of different lattice actions.

JRG, BaSc collaboration

universality: expect common $a \rightarrow 0$ limit

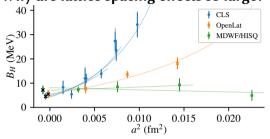
H dibaryon: follow-up work

In preparation: comparison of different lattice actions.

JRG, BaSc collaboration

universality: expect common $a \rightarrow 0$ limit

Longest-distance interaction in finite volume


Two baryons can exchange a pion \rightarrow sets breakdown point of finite-volume quantization conditions used to interpret lattice data. Problem also occurs in DD^* for $T_{cc}(3875)$ tetraquark.

In last few years, 5 different solutions proposed.

Effect on H dibaryon under investigation. JRG, Jorge Baeza Ballesteros

H dibaryon: follow-up work

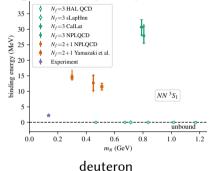
In preparation: comparison of different lattice actions.

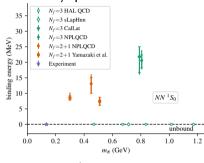
JRG, BaSc collaboration

universality: expect common $a \to 0$ limit

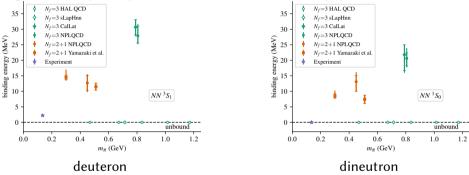
Longest-distance interaction in finite volume

Two baryons can exchange a pion \rightarrow sets breakdown point of finite-volume quantization conditions used to interpret lattice data. Problem also occurs in DD^* for $T_{cc}(3875)$ tetraquark.

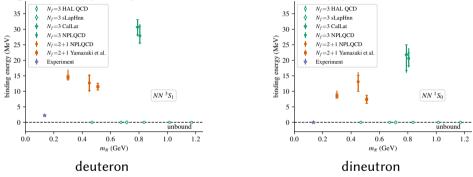

In last few years, 5 different solutions proposed.


Effect on H dibaryon under investigation. JRG, Jorge Baeza Ballesteros

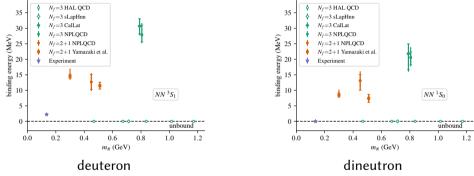
Lighter pion masses with broken SU(3) symmetry JRG, BaSc collaboration


Jeremy R. Green | DESY | APPP Workshop | Page 15

Decade-long controversy over presence of bound states at heavy quark masses.


Decade-long controversy over presence of bound states at heavy quark masses.

Disagreement about simplest warm-up problem for nuclear physics on the lattice.


Experiment: $B_d \approx 2.2$ MeV known for 90 years. J. Chadwick and M. Goldhaber, Nature 134, 237–238 (1934)

Decade-long controversy over presence of bound states at heavy quark masses.

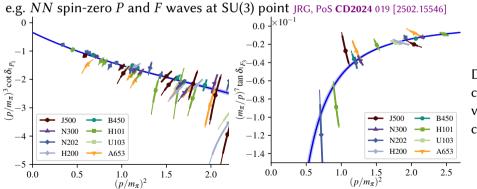
No calculation performed using more than one lattice spacing.

Decade-long controversy over presence of bound states at heavy quark masses.

No calculation performed using more than one lattice spacing.

Serious doubt has been cast on methodology used by all calculations that obtain bound states.

Nucleon-nucleon: work in progress


More reliable calculations:

- Adapt methods from years of successful meson-meson calculations.
- ► Recognize one lattice spacing is insufficient.
- Study amplitudes, not just binding energies.

Nucleon-nucleon: work in progress

More reliable calculations:

- ▶ Adapt methods from years of successful meson-meson calculations.
- ► Recognize one lattice spacing is insufficient.
- ► Study amplitudes, not just binding energies.

Data lie along consistent curve: very nontrivial consistency check.

Outlook

- Hyperon interactions will be where lattice first impacts baryon-baryon phenomenology.
 - → better input for hyperon puzzle in neutron stars.
- Extrapolation to physical point needs help from chiral EFT.
 - → deuteron binding energy from QCD will be milestone.
- Plans underway for exploring external probe: e.g. start with pp fusion.
- Studying three-baryon interaction is possible but much more difficult than baryon-baryon.
 - Very challenging numerically.
 - Three-body formalism only partially available.
- ▶ Dataset is being reused for exotic hadrons such as $T_{cc}(3875)$.