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Quantum chromodynamics at low energy

QCD is the sector of the Standard Model containing quarks and gluons.
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"o > At high energy, a; becomes small (asymptotic
" freedom), and perturbation theory works.
o e > At low energy, a5 is large and perturbation
= QCD a(Mp) = 0.1181 & 0.0011 theory breaks down. Need nonperturbative
' " QiGev) '™ 1000 methods such as lattice QCD.
PDG 2016

Degrees of freedom for low-energy QCD: hadrons. Bound states of quarks and gluons.
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Historically, two kinds:
> mesons: quark-antiquark
> baryons: three quarks

In recent years: exotic hadrons, e.g. tetraquarks and pentaquarks.
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Historically, two kinds:
> mesons: quark-antiquark
> baryons: three quarks

In recent years: exotic hadrons, e.g. tetraquarks and pentaquarks.

In QCD:
> Some hadrons are stable — exist as asymptotic states.
> Most hadrons are resonances (unstable) — decay to stable hadrons.

Rigorously, resonances appear in partial wave scattering amplitudes of stable hadrons.
Resonances are studied in lattice QCD via 2- and 3-particle scattering amplitudes.
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Ordinary and exotic hadrons at the LHC
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LHCDb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001, 2021, and recent updates.
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Baryon-baryon interactions

In SU(3) flavour multiplets, - -
lightest baryons are

m
I
1

.
JP =14 octet, JP =37 decuplet.

Well-known J¥ = 1* pn bound state: deuteron (*H nucleus), mg ~ 1876.1 MeV.
Also evidence of 3* resonance d*(2380). WASA-at-COSY, Phys. Rev. Lett. 112, 202301 (2014)
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Baryon-baryon interactions

In SU(3) flavour multiplets,
lightest baryons are
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JP =14 octet, JP =37 decuplet.

Well-known J¥ = 1* pn bound state: deuteron (*H nucleus), mg ~ 1876.1 MeV.

Also evidence of 3* resonance d*(2380). WASA-at-COSY, Phys. Rev. Lett. 112, 202301 (2014)

Low-energy NN well understood from pheno (pp, pn scattering) and theory (chiral EFT).
Ongoing progress for theory of NNN necessary for precision nuclear physics.

Data with nonzero strangeness are scarce: hypernuclei and femtoscopy.

What about ab initio QCD?

Jeremy R. Green | DESY | APPP Workshop | Page 5



Dependence on quark masses

NN interaction (and NNN) leads to nuclei.
How fine tuned is the universe? Could Standard Model parameters have changed over time?
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Hoyle state (7.65 MeV excitation of 12C) plays essential role in triple-alpha process
for stellar nucleosynthesis of carbon.
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Dependence on quark masses

NN interaction (and NNN) leads to nuclei.
How fine tuned is the universe? Could Standard Model parameters have changed over time?

Hoyle state (7.65 MeV excitation of 12C) plays essential role in triple-alpha process
for stellar nucleosynthesis of carbon.

Li

Big Bang nucleosynthesis has deuterium bottleneck:

low deuteron binding energy 2.2 MeV delays onset of
nucleosynthesis.

N — controls abundances of light elements.

He—2% - sHie
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(By Pamputt [CC-BY-SA-4.0], via
Wikimedia Commons)
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Dependence on quark masses

NN interaction (and NNN) leads to nuclei.
How fine tuned is the universe? Could Standard Model parameters have changed over time?

Hoyle state (7.65 MeV excitation of 12C) plays essential role in triple-alpha process
for stellar nucleosynthesis of carbon.

Li

Big Bang nucleosynthesis has deuterium bottleneck:

low deuteron binding energy 2.2 MeV delays onset of
nucleosynthesis.

N — controls abundances of light elements.
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(By Pamputt [CC-BY-SA-4.0], via
Wikimedia Commons)

How strongly does deuteron binding depend on quark masses? H. Meyer and U.-G. Meifiner, JHEP 2024, 74
Could pp or nn bind?
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Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (hyperons)?

Hyperon interactions with S = —1 or —2 less well known. — opportunity for lattice QCD
Also studied in recent years using femtoscopy at ALICE.
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Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (hyperons)?
Hyperon interactions with S = —1 or —2 less well known. — opportunity for lattice QCD
Also studied in recent years using femtoscopy at ALICE.
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Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (hyperons)?
Hyperon interactions with S = —1 or —2 less well known. — opportunity for lattice QCD
Also studied in recent years using femtoscopy at ALICE.
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Do hyperon-hyperon (YY) or NNY interactions play a role?
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Nuclei as tools in experiments

In practice, nuclei instead of free nucleons are often used.
> Argon in neutrino experiments (MicroBooNE, DUNE).
> Xenon for dark matter direct detection (XENONRT, LUX-ZEPLIN).
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Nuclei as tools in experiments

In practice, nuclei instead of free nucleons are often used.
> Argon in neutrino experiments (MicroBooNE, DUNE).
> Xenon for dark matter direct detection (XENONRT, LUX-ZEPLIN).

For precision physics, need meson-exchange currents
to understand interaction of probe with > 1 nucleon,
i.e. go beyond impulse approximation.

e.g. EMC effect:
distribution of quarks is different inside nucleus
compared with proton and neutron
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Neutrinoless double beta decay
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Large nuclear modelling uncertainty.

Need QCD for precise interpretation of experimental
constraints.
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KamLAND-Zen, 2406.11438
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Lattice QCD

Regularize QCD by discretizing space
and imaginary time on 4d lattice:
> lattice spacing a: systematic error O(a?)
» periodic box size L: systematic error O(e™™L)
Needs minimal experimental input: quark masses and
reference scale.

Typical lattice size varies from 48 x 24° to 256 x 128°.
Can need large compute cluster.
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Lattice QCD

Regularize QCD by discretizing space
and imaginary time on 4d lattice:

> lattice spacing a: systematic error O(a?)

» periodic box size L: systematic error O(e™™L)

Needs minimal experimental input: quark masses and
reference scale.

Typical lattice size varies from 48 x 24° to 256 x 128°.
Can need large compute cluster.

Need to accommodate range of scales

L l'<m, <my<al
Si 2 Il i ke simulati difficul
ince mj, o« my, + mg, small my, my in nature make simulations difficult.
— Simpler calculations with heavier (unphysical) m, = my.
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Local lattice QCD activities

QCD+QED (Agostino Patella / RCx collaboration)
For QCD observables at high precision ~ 1%, need to include QED corrections.

SNDOG
CMD-2

BaBar - s—f—
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SND20 ———

E.g. hadronic contributions to muon g — 2. s

7 H——0—+—H
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WP25
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109 x (a5 — agv)

Muon g — 2 Theory Initiative, Phys. Rept. 1143 (2025)

Glueballs (Stefan Schaefer / DFG Research Unit FOR5269)
Hadrons made of gluons. Challenging problem:

> Mixing with ggq degrees of freedom — start from theory without quarks.

> Severe statistical fluctuations — new numerical techniques.
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Choice of quark masses

Physical quark masses necessary for connection with experiment.

Why use unphysical quark masses?
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Choice of quark masses

Physical quark masses necessary for connection with experiment.

Why use unphysical quark masses?
> Larger m, = my makes simulations numerically easier.
> Larger m, exponentially reduces noise, particularly for multi-nucleons.
> Larger m, closes some decay channels and makes some resonances stable (A, D, ...).

> Can make some approximate symmetries exact: SU(3) flavour, heavy quark spin symmetry.
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Choice of quark masses

Physical quark masses necessary for connection with experiment.

Why use unphysical quark masses?
> Larger m, = my makes simulations numerically easier.
> Larger m, exponentially reduces noise, particularly for multi-nucleons.
> Larger m, closes some decay channels and makes some resonances stable (A, D, ...).

> Can make some approximate symmetries exact: SU(3) flavour, heavy quark spin symmetry.

SU(3)-symmetric point with my, = mg = mg = %(mf;hys +m

ground.

p

+ mg

h h .
z ve ”*) has been a useful testing
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Coordinated Lattice Simulations (CLS)
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G. Bali @ CLS Workshop
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Coordinated Lattice Simulations (CLS)
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> Sharing computing time, storage, and 3 O a~0064 fm m
erson effort Lo O =00 P i
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> Leading role played by DESY. 3007 T PRSI PO Oy T
2002t "
00 1357 2007 2507 3007 3507 007 4507

mg ~ M? [MeV?]
G. Bali @ CLS Workshop
Investigations of possible new lattice QCD action for CLS ongoing at DESY.
Stefan Schaefer, Jorge Baeza Ballesteros
— set direction for next decade of CLS.
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Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: AA bound by 80 MeV in MIT bag model. r. L. Jaffe, 1977

Limits on existence imposed by , *He double-hypernucleus produced at KEK
and by AA femtoscopy at ALICE.

JRG et al,, Phys. Rev. Lett. 127, 242003 (2021)
Calculation at unphysical SU(3) point.
First a — 0 limit for dibaryon system.
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Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: AA bound by 80 MeV in MIT bag model. r. L. Jaffe, 1977

Limits on existence imposed by , *He double-hypernucleus produced at KEK

and by AA femtoscopy at ALICE.

JRG et al,, Phys. Rev. Lett. 127, 242003 (2021)
Calculation at unphysical SU(3) point.
First a — 0 limit for dibaryon system.

Unexpected result:

lattice-spacing effects are very large.
Past calculations had significant
uncontrolled systematic error.
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Hyperon-hyperon interactions: H dibaryon

Conjectured uuddss hexaquark state: AA bound by 80 MeV in MIT bag model. r. L. Jaffe, 1977

Limits on existence imposed by , *He double-hypernucleus produced at KEK

and by AA femtoscopy at ALICE.

JRG et al,, Phys. Rev. Lett. 127, 242003 (2021)
Calculation at unphysical SU(3) point.
First a — 0 limit for dibaryon system.

Unexpected result:

lattice-spacing effects are very large.
Past calculations had significant
uncontrolled systematic error.
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Small binding energy at SU(3)-symmetric point = probably no bound state in nature.
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H dibaryon: follow-up work

Why are lattice spacing effects so large?

401 y ! { cLs
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5301 / } MDWEHISQ In preparation: comparison of
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H dibaryon: follow-up work

Why are lattice spacing effects so large?

40 1 { s
‘ 4 OpenLat . .
5301 t mowerso In preparation: comparison of
ézo i ' different lattice actions.
QE J//‘k:{ 4 JRG, BaSc collaboration
104 el + *
universality: expect common a — 0 limit

0.000  0.005  0.010  0.015  0.020
a? (fm?)

Longest-distance interaction in finite volume
Two baryons can exchange a pion — sets breakdown point of finite-volume quantization
conditions used to interpret lattice data. Problem also occurs in DD* for T,.(3875) tetraquark.

In last few years, 5 different solutions proposed.
Effect on H dibaryon under investigation. JRG, Jorge Baeza Ballesteros
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H dibaryon: follow-up work

Why are lattice spacing effects so large?
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301 4 MDWF/HISQ In preparation: comparison of
ézo i ' different lattice actions.
c§ J/‘#:{ 4 JRG, BaSc collaboration
104 4 el +
01— : : : : universality: expect common a — 0 limit
0.000 0.005 0.010 0.015 0.020
a? (fm?)

Longest-distance interaction in finite volume
Two baryons can exchange a pion — sets breakdown point of finite-volume quantization
conditions used to interpret lattice data. Problem also occurs in DD* for T,.(3875) tetraquark.

In last few years, 5 different solutions proposed.
Effect on H dibaryon under investigation. JRG, Jorge Baeza Ballesteros

Lighter pion masses with broken SU(3) symmetry JRG, BaSc collaboration
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Nucleon-nucleon interaction from LQCD: past calculations

Decade-long controversy over presence of bound states at heavy quark masses.

binding energy (MeV)
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Decade-long controversy over presence of bound states at heavy quark masses.
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Disagreement about simplest warm-up problem for nuclear physics on the lattice.

Experiment: By =~ 2.2 MeV known for 90 years. ). Chadwick and M. Goldhaber, Nature 134, 237-238 (1934)
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Nucleon-nucleon interaction from LQCD: past calculations

Decade-long controversy over presence of bound states at heavy quark masses.

binding energy (MeV)
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No calculation performed using more than one lattice spacing.
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Nucleon-nucleon interaction from LQCD: past calculations

Decade-long controversy over presence of bound states at heavy quark masses.

binding energy (MeV)
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No calculation performed using more than one lattice spacing.

Serious doubt has been cast on methodology used by all calculations that obtain bound states.
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Nucleon-nucleon: work in progress

More reliable calculations:
> Adapt methods from years of successful meson-meson calculations.
> Recognize one lattice spacing is insufficient.

> Study amplitudes, not just binding energies.
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Nucleon-nucleon: work in progress

More reliable calculations:
> Adapt methods from years of successful meson-meson calculations.
> Recognize one lattice spacing is insufficient.

> Study amplitudes, not just binding energies.

e.g. NN spin-zero P and F waves at SU(3) point JRG, PoS CD2024 019 [2502.15546]
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> Hyperon interactions will be where lattice first impacts baryon-baryon phenomenology.
— better input for hyperon puzzle in neutron stars.

> Extrapolation to physical point needs help from chiral EFT.
— deuteron binding energy from QCD will be milestone.
> Plans underway for exploring external probe: e.g. start with pp fusion.
> Studying three-baryon interaction is possible but much more difficult than baryon-baryon.

> Very challenging numerically.
> Three-body formalism only partially available.

> Dataset is being reused for exotic hadrons such as T,.(3875).
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