
Machine Learning in neutrino 
telescopes
Mostly deep convolutional neural networks

Jakob van Santen 
APPP Workshop, Zeuthen, 2025-10-07



DESY. 2

Why neutrino telescopes

• Where are the sources of high-energy neutrinos? 

• What are their properties? 

• Along the way: what are the properties of the 
unresolved sources? (In IceCube jargon: "diffuse 
analysis") 

• Small fluxes -> O(gigaton) target mass -> natural 
media

• While you're at it: 

• Neutrino properties with atmospheric neutrinos 

• Hadronic physics with air showers 

• [Dark matter, nonstandard interactions, Lorentz 
invariance violation, etc]

K. Terveer



DESY. 3

IceCube & Radio Neutrino Observatory Greenland

• IceCube: PMTs 125 (40-70, 20)* m apart 

• Deep-inelastic scattering in the ice 

• Relativistic charged particles induce Cherenkov radiation, 
detectable O(100 m) away 

• Sensitive to neutrinos above ~1000 (100, 30)* GeV 

• Completed in 2012 (Upgrade 2026) 

• Cf. KM3NeT, Baikal-GVD, P-ONE

• RNO-G: radio antenna stations 1.25 km apart 

• Deep-inelastic scattering in the ice 

• Moving charge emits radio pulse, detectable O(1 km) away 

• Sensitive to neutrinos above ~1e7 GeV 

• Under construction (7/35 stations) 

• Cf. ARA, ARIANNA

νμ

μ
Deep-

inelastic 
scattering

Cherenkov 
cone

* IceCube DeepCore, IceCube Upgrade (2026) target lower-energy neutrinos with denser instrumentation

K. Terveer
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Tasks
From raw to analysis-ready data

IceCube: photons 

• Location, time 

• Number

RNO-G: electric field 

• Location, time 

• Amplitude 

• Polarization

Filter noise

Classify/select

Reconstruct

Physics: high-energy 
charged particles in ice 
Noise: everything else

Signal/Background 
   or 
Interaction signature

Direction: resolve sources 
Energy: separate from 
atmospheric backgrounds

(a) Total observed light level as a function of radial distance

from the source and observation angle with respect to the

source direction. While scattering in the ice washes out the

peak at the Cherenkov angle, the direction of the source re-

mains visible as an asymmetry even at large distances.

(b) Normalized time distribution of detected photons at di↵er-

ent distances for two observation angles. Photons detected at

the Cherenkov angle have generally experienced the least scat-

tering, and so are detected earlier and more closely bunched in

time than those detected at other angles.

Figure 5: Distribution of detectable photons obtained from a Monte Carlo simulation of a horizontal, 1 GeV electro-
magnetic cascade in the upper part of the IceCube detector. Both the number and time distribution of photons depend
on the direction of the cascade, here oriented in the direction of observation angle 0. The distributions shown are made
from spline tables (Sec. 3.2); directionality is neglected when using the first-guess approximation of Sec. 3.1.
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(a) Unfolding of a simple waveform containing one detected

photon, showing good agreement between the best-fit recon-

struction and the data in all active digitizers. Both the total

reconstructed amplitude (top label) and number of pulses (red

line) agree with the single photon interpretation of these data.
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(b) Unfolding a more complicated waveform, illustrating the

smooth transition between digitizers and handling of pileup.

The far-right pulse was recorded after the ATWD bu↵er was

filled and is reconstructed from fADC data only. The heights

of the first two pulses show the PMT amplification variance.

Figure 6: Examples of waveform unfolding in data from the IceCube detector for both simple and complex waveforms.
The lines marked Best-fit are predictions of the various digitizer read-outs given the reconstructed PMT hits. For a
perfect reconstruction, and with no noise in the data, these lines would exactly match within the digitizer step (typically
0.15 mV in the highest-gain ATWD and 0.1 mV in the fADC). The vertical lines with crosses at the top represent the
times and amplitudes of the unfolded pulses relative to the right-hand axis.

8

Focus on IceCube for now



Event reconstruction in 
IceCube



Jakob van Santen - Astrophysical neutrinos in IceCube

Neutrino event signatures (in an optical detector) 6

Charged-current νμ

Up-going track

Factor of ~2 energy resolution 
< 1 degree angular resolution

(data)

Neutral-current / νe 

Isolated energy 
deposition (cascade) 

with no track

15% deposited energy resolution 
10 degree angular resolution (above 100 TeV)

(data)

Charged-current ν τ

“Double-bang”

(none this clear observed 
yet: τ decay length is 50 m/

PeV)

(simulation)

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Early Late



0.01% of Cherenkov photons from a 100 TeV muon in South Pole ice ( )

Muon travels for kilometers: strong geometric constraint on direction
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

On time Late

https://www.youtube.com/watch?v=7Gj3Dwkk-CY
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Accounting for scattering in reconstruction
Standard/legacy approach
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LSPE1st(x) =
Nmodules

∏
i=1

dP(ti − tgeo,i)/dt

LMPE1st(x) =
Nmodules

∏
i=1

NdP(ti − tgeo,i)/dt ⋅ (1 − P(ti − tgeo,i))(N−1)

https://arxiv.org/abs/astro-ph/0407044v1

• Use a model of the expected time-delay distribution 
from a constant-intensity emitter to construct a 
likelihood for the underlying muon track


• For single photon detection: time distribution of 
individual photons


• For multiple photon detections: time distribution for 
first of N photons (order statistic)


• "Easy" for kilometer-long muon tracks: <1 degree 
angular error



0.01% of Cherenkov photons from a 100 TeV EM shower in South Pole ice ( )

Particle shower extends for a few meters: weak constraint on direction
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

On time Late

https://www.youtube.com/watch?v=7Gj3Dwkk-CY
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Cascade reconstruction with CNNs
Motivation

IceCube's likelihood-based 
angular reconstruction for 
cascades is not precise 
enough to be useful for 
astronomy. Can a deep neural 
network do a better job?

(for illustration only; absolute resolution depends on selection effects)

https://user-web.icecube.wisc.edu/~mhuennefeld/docs/dnn_reco/html/index.html
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Cascade reconstruction with CNNs
Challenge: geometry
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(a) Top view of IceCube (b) Side view of Strings

Figure 1: A top view of the IceCube detector is shown on the left. The in blue depicted 78 strings
are on an approximately triangular grid, while the DeepCore strings, shown in gray, are installed
in a denser configuration. The color scale indicates the inter-string distance for the main IceCube
array, which can substantially deviate from the usual spacing of 125 m. On the right, the DOM
layout along the I-axis of the strings is illustrated. In contrast to the strings of the main array, the
DOMs on the DeepCore strings (gray) are divided into two groups, one above the dust layer and
one below.

the presented method. E�ects of systematic uncertainties are investigated in Section 7. Before
concluding in Section 9, limitations of the chosen network architecture are discussed in Section 8.

2 Cascade Reconstruction in IceCube

The reconstruction method presented in this paper is a versatile tool that is applicable to a wide
range of classification and regression tasks. In the scope of this paper, the method is demonstrated
for the reconstruction of cascade events. In the following, the IceCube detector is introduced,
cascade events are defined, and the current standard cascade reconstruction method is discussed.

2.1 The IceCube Detector

IceCube is a neutrino detector located at the South Pole instrumenting a cubic kilometer of glacial
ice. The detector consists of 5160 digital optical modules (DOMs) with a downward-facing 10 inch-
diameter photomultipler tube (PMT) [21] installed on 86 vertical strings at depths between 1450 m
and 2450 m. The origin of the IceCube coordinate system is placed in the detector center at a depth
of 1948 m. The I-axis is chosen to point upwards towards the ice surface. PMT signals are digitized
and bu�ered on the DOM mainboard with a timing resolution of about 2ns. Upon readout request,
these digitized waveforms are sent to computers on the surface of the detector array.

– 3 –

Detector is not a cartesian grid

3D Space
1D Time

3D Space
1D Time

2D Space
1D Time

Main Array

Lower 
DeepCore

Upper 
DeepCore

Main Array
DeepCore
Zero Padding

Figure 3: The main IceCube array and DeepCore strings are handled separately due to their
di�ering geometry. Hexagonally shaped data of the main array can be transformed from an axial
coordinate system into an orthogonal grid by padding with zeros (orange dots) and aligning the
rows, which results in a 10 ⇥ 10 grid in the G-H-plane. Every DOM defines a bin in the spatial
coordinates (DOM-binning).

lower DeepCore, respectively, where = denotes the number of input variables per DOM. The second
to last dimension in each tensor indicates the number of DOMs (60, 10, and 50) along the z-axis.
Possible input variables for each DOM are discussed in the following section.

3.2 Data Dimensionality and Variability

The transformation described above allows for a convolution over all spatial dimensions for the
main array and a convolution over the z-dimension for DeepCore. Hence, the symmetry in spatial
coordinates can be exploited to the extent possible given IceCube’s geometry. Ideally, translational
invariance in time should also be exploited. The starting point of most reconstruction methods
in IceCube is the extracted pulses as described in Section 2.1. These pulses are an e�cient data
representation. However, the number of pulses at a given DOM is highly variable and therefore the
pulses are an unsuitable input to a CNN. A standard CNN requires a uniform and constant input
size. One option is to bin the measured pulse charges in time. With a four dimensional convolution
over the main array input, translational invariance in space and time can be exploited. A full four
dimensional convolution would require on the order of thousands of time bins per DOM for the
desired timing resolution. This would result in a significant increase in computational complexity.
A simultaneous processing in space and time via a 4D convolution is therefore not feasible. The
dimensionality of the problem must be reduced or separated out in individual tasks. Reducing the
dimensionality of the problem results in a loss of spatial and temporal relations that have to be
compensated for in an alternative way.

There are many ways to achieve this. For this paper, the variable size of the time dimension
is reduced to nine selected summary statistics, which describe the pulse series at each DOM. This

– 7 –

Approximate main array as cartesian grid, flatten dense infill 

doi:10.1088/1748-0221/16/07/P07041

https://doi.org/10.1088/1748-0221/16/07/P07041
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Cascade reconstruction with CNNs
Challenge: variable-sized input data

doi:10.1088/1748-0221/16/07/P07041
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Figure 4: An example pulse series and corresponding input data for a single DOM is shown. The
measured pulse series cannot directly be utilized by a CNN due to its varying length. The pulses
are therefore reduced to nine input parameters (2total, 2500ns, 2100ns, Cfirst, Clast, C20%, C50%, Cmean, Cstd)
which aim to summarize the pulse distribution.

has the added benefit that parameters can be chosen that have good agreement between measured
and simulated data, making the network more robust towards possible mis-modeling in the Monte
Carlo (MC) simulation. Parameters including time variables are calculated relative to a global o�set
which is defined as the start of a 6000 ns long time window that maximizes the contained charge
for each event. By utilizing relative timing information rather than absolute timing, translational
invariance in time can be exploited to a certain degree. The nine input parameters are chosen based
on their expected relevance for the reconstruction task and consist of: the total DOM charge, the
charge within 100 ns and 500 ns of the first pulse, the relative time of first pulse, the relative time
at which 20% and 50% of the charge is collected, the relative time of the last pulse, and the charge
weighted mean and standard deviation of the relative pulse arrival times. The input parameters are
illustrated in Fig. 4. Reconstruction methods in IceCube typically exclude pulses from saturated
or overly bright DOMs to avoid potential mis-modeling in the MC simulation. In this case, the
input features corresponding to the excluded DOMs are set to zero. With these features, three input
tensors are obtained for the CNN of the shape (10 ⇥ 10 ⇥ 60 ⇥ 9), (8 ⇥ 10 ⇥ 9), and (8 ⇥ 50 ⇥ 9)
for the main array and upper and lower DeepCore, respectively.

In a future iteration, the calculation and selection of input parameters (feature generation) for a
given DOM could be automated by applying a 1D CNN on the measured waveforms or time-binned
pulses. Alternatively, a recurrent neural network can be set up to work directly on the extracted
pulses. The automated and fully di�erentiable feature generation would allow for an end-to-end
learning task starting from the measured waveforms or pulse series.

– 8 –

Multiple photon arrival times 
measured per module

9 summary statistics per 
module

https://doi.org/10.1088/1748-0221/16/07/P07041
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Cascade reconstruction with CNNs
Potential for improvement

Likelihood-based 
reconstruction still outperforms 
CNN in some parts of the 
phase space. Can they be 
combined?

(for illustration only; absolute resolution depends on selection effects)
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Injecting domain knowledge

Maximum likelihood 
(Fixed PDF parameters)

Maximum likelihood 
(Learned PDF parameters)

Point predictor

More domain knowledge

⃗Θ = f ( ⃗t ) ⃗Θ = max
⃗θ ∏

i

dP(ti | ⃗Θ)/dt
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Hybrid reconstruction with CNN-backed likelihood

First detection of high-energy neutrino emission 
from the galactic plane 
https://doi.org/10.1126/science.adc9818

Figure S10: All-sky search significance and spectral index as a function of direction with
tested sources. Same as in Figure 4, but with an additional 30

�-cutout (indicated by grey lines)
in galactic coordinates (longitude and latitude indicated by l and b, respectively). Teal contours
enclose 20% and 50% of the acceptance-corrected and smeared Fermi Bubbles template (FBs).
Also shown are the sources of each of the three stacking catalogs, where the locations of sources
are indicated by star, triangle, and circle symbols. The sources in the stacking catalogs follow
the Galactic plane, indicated by a dark line. The Galactic plane cutout (B) also shows the central
20% and 50% contours of the ⇡0 model (⇡0

s ) convolved with detector acceptance and smeared
with a Gaussian corresponding to the uncertainty of a typical signal event (7�), as shown in
Figure 1E.

S20

Figure S5: Cascade event angular resolution. The angular resolution, defined as quantiles of
the distribution of opening angles (� ) between true and reconstructed directions, as a function
of neutrino energy (E⌫) is shown for simulated events in this work (solid, black line and shaded
regions) and the previous cascade selection (12) (dashed-dotted). The dashed, orange curve
shows the angular resolution of contained events. Systematic uncertainties are not included.

as demonstrated in Figure S5. This is accomplished by the hybrid reconstruction method (16),

which exploits more information than the CNN-based method (15, 48) used in the previous

cascade selection. The energy resolution of this sample is illustrated in in Figure S6.

Combining maximum-likelihood with deep learning

The hybrid reconstruction method is a likelihood-based reconstruction algorithm that utilizes

deep learning to approximate the underlying probability density function (PDF), i.e. the pulse

arrival time distribution at each of the 5160 DOMs for any given light emitter-receiver con-

figuration. In previous reconstruction methods (19, 29), this PDF was incorporated by di-

mensionality reductions and other approximations. Our hybrid method uses neural networks

to model these high-dimensional and complex dependencies. It is constructed to exploit the

available physical symmetries and domain knowledge. Details on how the neural network ar-

S12

DOI: 10.1007/3-540-70659-3_42

DOI: 10.1007/3-540-70659-3_42 

Train a mixture density network to predict time-delay PDFs
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caveats: 
TPN SPE/MPE uses MCTruth as seed
removed non-causal early noise

(a proper noise term is still todo)
TPN SPE/MPE uses Spice BFRv2 model SPE 

regime

MPE 
regime

NuMu datasets 21217 and 21220 (Spice 3.2.1)
Northern Tracks event selection
~200,000 events in ~1h

minimizer appears to work at scale.
all solutions have better LLH than seed.
impact of local minimia to be investigated.

MPE currently capped at N=30.
(no post-jitter implemented yet)

MPE pdfs appear to work.
16

What about tracks?

• Kilometer-long tracks are the most important 
sensitive channel for [optical] neutrino telescopes, 
but 

• CNN-based point predictors have worse resolution 
than classical maximum-likelihood reconstruction 
for track events 

• Hybrid likelihood backed by a mixture density 
network is likely the way forward here, too 

• (Work continues)

First example of ML-assisted track reconstruction beating legacy method 
H. Niederhausen, M. Jansson, R. Babu, B. Henke, M. Nisa

PRELIMINARY

far from track
close to track

PMT hit “head on”

back of PMT

=> smooth representation of track/receiver (PMT) relationship

4

Reminder

Underlying time-delay PDF prediction
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What about low energies?

• Most sensitivity below ~300 GeV comes from 
DeepCore infill array (soon: IceCube Upgrade) 

• Special challenges: very sparse data, noise, even 
more irregular geometry 

• Graph CNNs: convolutions with arbitrary 
(learnable) neighbors

• Graph networks outperform previous maximum-
likelihood method 

• Multiple applications: noise suppression, 
segmentation, classification, reconstruction

https://github.com/graphnet-team/graphnet

Figure 5: Event reconstruction performance for �������, estimating deposited energy (top left),
zenith angle (top right), direction (bottom left), and interaction vertex (bottom right). In all four
cases, the performance is compared to �����, and the ratio below the plots shows relative im-
provement of ������� w.r.t. �����, where the light blue and dark blue curves represents the
relative improvement for cascades and tracks, respectively. Positive values indicate an improve-
ment in resolution. Lines represent reconstruction resolution, and the bands cover 1f resolution
uncertainty.

– 16 –

Maximum likelihood 
Graph network

https://doi.org/10.1088/1748-0221/17/11/P11003
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IceCube Kaggle competition

• Public competition to improve IceCube 
reconstruction 

• Provided training data, documentation, baseline 
solution 

• Ran in early 2023, generated 11k submissions from 
900 participants

• 1st and 2nd-place solutions implemented in 
GraphNeT

https://arxiv.org/abs/2501.03817

Led by P. Eller (TUM) 
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice 

https://doi.org/10.22323/1.444.1609 

cf. https://www.kaggle.com/c/trackml-particle-identification 
cf. https://www.kaggle.com/competitions/g2net-gravitational-wave-detection

3.2 Kaggle Competition "IceCube - Neutrinos in Deep Ice"

In the Kaggle competition "IceCube - Neutrinos in Deep Ice" [30], close to a thousand participants
competed to develop the bst reconstruction algorithm for direction reconstruction on around 140
million simulated neutrinos from IceCube. The competition metric was defined as the mean opening
angle between the true and estimated direction vector computed over a a large sample of events [31].
During the competition a baseline utilizing DynEdge was shared with the participants. The baseline

Figure 5: Primary mode of opening angle distribution vs. neutrino energy for both up- and down-
going ⌫µ,CC events.

was trained on less than 8% of the data. Many participants, including the winning solutions, took
inspiration from methods used in the baseline and produced their own versions for the competition.
Performance of the 1st and 2nd place solutions on up- and down-going track events can be seen
in Figure 5. Here the baseline is shown in grey, and the kinematic angle between the neutrino and
out-going muon, which represents the expected information limit, is added in dotted grey [32].

After the competition, the 1st and 2nd place solutions, alongside other models, were added to
GraphNeT and are now available to the wider community.

4 Conclusion & Outlook

GraphNeT is an open-source deep learning library built by and for physicists working at the in-
tersection of deep learning and neutrino physics. GraphNeT enables researchers across different
neutrino experiments to develop, share, and adapt models to their work. By using popular deep
learning libraries, GraphNeT makes it possible for members of the deep learning community to make
meaningful contributions to the field without expertise in neutrino physics.

At the time of writing, users of GraphNeT have applied techniques from the library to problems in
at least 6 different experiments. Particularly, methods in GraphNeT have outperformed traditional
MLE methods on several tasks in the GeV energy range of IceCube, such as angular reconstruction
and event classification [28]. Recently, methods in GraphNeT were used to remove stochastic
noise induced by radioactive decays in the glass housing of OMs and to project the sensitivities of
IceCube Upgrade to atmospheric neutrino oscillations [29]. In addition, GraphNeT was used by
both organizers and participants in "IceCube - Neutrinos in Deep Ice"[32] and in reconstruction of
neutrino energy for point source searches [33].

To address the challenge of closed-data policies for low-level data in the field, more than 100 million
simulated neutrino events for at least 6 different detector geometries in both ice and water detection
mediums are expected to be released at the beginning of 2025 through GraphNeT for benchmarking
deep learning based techniques [34].

5

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://doi.org/10.22323/1.444.1609
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/competitions/g2net-gravitational-wave-detection


RNO-G
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The Radio Neutrino Observatory in Greenland (RNO-G)
The first large scale implementation
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Machine Learning for Radio Detection
Mostly used for two things

• Background 

• Our triggers are 99.999% useless (little pulses from thermal noise, airplanes, humans, wind, ….) 

• Classify backgrounds, understand backgrounds, mitigate them in instrument 

• Smarter triggering (reduce background at trigger level) 

• Reconstruction 

• Signal propagation in ice is complicated and ice not perfectly understood 

• Use ML to reconstruct signals (a bit hypothetical at this point, because not radio emission from a 
neutrino has been detected)
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Wind noise tagging for RNO-G

NO cosmic ray cosmic ray

5. Investigation of wind-correlated events

Figure 5.4.: UMAP representation of the mean latent vectors of station 23
shallow- and force-triggered events with the corresponding wind speed encoded
by color.

do cluster in the UMAP embedding as well. After that, individual events of each
cluster are inspected in terms of waveform, spectrum, and STFT. Then the borders
of each cluster are examined and events that are near a cluster but not assigned to
any cluster are investigated to judge clustering efficiency. If some clusters are split
in the UMAP and contain more than one visually different event class, the HDB-
SCAN parameters are tweaked again. The min_cluster_size is kept low to allow
small clusters and the cluster_selection_epsilon is slowly altered to combine
close clusters if their events are visually very similar to avoid having hundreds of
small clusters.

For station 23 the UMAP representation with wind speed encoded by color is
shown in Figure 5.4 and with the final clustering in Figure 5.5. In the appendix,
the event density in the UMAP representation is depicted in Figure A.4 and the
final non-default HDBSCAN parameters are found in Table A.3.

At first, the UMAP representation without the clusters found by HDBSCAN is

45

P. Laub, MSc FAU Erlangen

Summit Station,  
Greenland

J.A. Aguilar et al, Astropart.Phys. 145 (2023) 102790 

• Train variational autoencoder to 
describe individual waveforms 

• Wind-triggered events cluster in 
latent space

Noise waveforms are very similar to real triggers, but can be distinguished
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Summary

• Machine learning is becoming a workhorse for difficult reconstruction problems in IceCube 

• Will likely play a larger role in RNO-G as it grows 

• Interesting opportunities for outreach via open data 

• Some common challenges: 

• Irregular spatial data 

• Sparse, variable-sized data 

• Industry-standard solutions often need adaptation to our problem domain 

• No calibration source or off-beam data: need to train on simulation



Backup
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Wind and radio detection
Background events pose a threat to neutrino detection

• During periods of bad weather the ARINNA experiment saw an increase in background mimicking neutrino 
and cosmic ray signals 

• Hypotheses: problems with our power or communication system in bad weather

ARIANNA Coll. (AN)., Astropart. Phys. 90 (2017) 50

Moore’s Bay, Antartica 

No weather information at site 
But 
bad weather  
at Mc Murdo
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Triboelectricity
But the same all around the world

• All prototypes for neutrino detectors see 
and increase in triggers as function of wind-
speed 

• Anecdotal evidence from radio 
glaciologists: If the weather is bad, we just 
don’t go out, the data is bad anyway … 

• Even the expedition from Scott to South 
Pole saw this already 
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J.A. Aguilar et al, Astropart.Phys. 145 (2023) 102790 
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Triboelectricity
But what actually causes it? 

• If we want to make sure that we can reduce these 
backgrounds, we need to be able to model them 

• Lacks & Shinbrot (2019): We may never be able to model 
triboelectric charging 

• Then we need to understand better, what causes them and 
what they correlate with

5. Investigation of wind-correlated events

Figure 5.8.: CDF of the number of events (cluster size) as a function of the wind
speed (data-normalized) per cluster found for station 23. The data-normalization
takes the actual distribution of wind speed in the investigated time period into
account. The total number of events per cluster is shown in the legend.

sampling of the data, since per run only about 3-5% of all events are transferred
via satellite and available for this analysis.

The data-normalized CDF of the cluster size of clusters found for station 23 as
a function of wind speed is shown in Figure 5.8 with the total number of events
per cluster written in the legend. Again, cluster �1 denotes all unclustered events.
There are mainly three classes of clusters arising from the plot:

• Clusters that show a turn-on at wind speeds between ⇠ 7m/s � ⇠ 12m/s
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There are clearly different event characteristics 

So we probably need more than just wind


