sin20W & mW

DESY SM group meeting July 29, 2025

F. Dattola

Effective Weak Mixing Angle

Extraction from DY triple differential cross-section at 8 TeV (Z3D)

- Ongoing work on the sin2θW extraction from Z3D data
- Detailed status update recently presented at the SM W/Z-Physics group Meeting

Extraction of the Effective Weak Mixing Angle from the Drell-Yan triple differential cross-section measurement at 8 TeV (Z3D)

[ANA-STDM-2024-10]

ATLAS W/Z Group Meeting June 11, 2025

F. Dattola, on behalf of the analysis team

Effective Weak Mixing Angle

ATLAS Z3D at 8 TeV

- Extraction of $\sin^2\!\theta_{\rm eff}^f$ builds on ATLAS 3D $(y_{ll}, M_{ll}, \cos\!\theta^*)$ DY cross section measurement at 8 TeV
 - ${
 m d}^3\sigma$ provides information on both $A_{
 m FB}$ and PDFs:

$$x_1 = \frac{m_{ll}}{\sqrt{s}} e^{yll}, x_2 = \frac{m_{ll}}{\sqrt{s}} e^{-yll}, Q^2 = m_{ll}^2 \rightarrow f(x, Q^2), \cos\theta^* \rightarrow A_{\text{FB}}(\cos\theta^*)$$

- 20.2 fb⁻¹ of pp data at \sqrt{s} = 8 TeV
- Two measurement regions:
 - central-central (CC): electrons and muons in seven $46 < m_{ll} < 200$ GeV, twelve $|y_{ll}| < 2.4$ and six $cos\theta^*$ bins (2×504 bins)
 - central-forward (CF): one central and one forward electron in five $66 < m_{ll} < 150$ GeV, five $1.2 < |y_{ll}| < 3.6$ and six $cos\theta^*$ bins (150 bins)
- Signal MC: P0WHEG+PYTHIA with CT10 PDFs, and with NNLO QCD+NLO EW k-factors
- · Good agreement with theoretical predictions
 - $d^3\sigma$ reaches 0.5% precision near Z peak, barring luminosity uncertainty

Effective Weak Mixing Angle

My current focus: brand-new EW and QCD modelling

- Working on the production of NNLO+NNLL QCD predictions with DYTurbo and NLO + h.o. EW predictions with POWHEG Z_ew-BMNNPV (+Pythia)
 - NLO + H.O. (F.O.) EW predictions in $\sin^2\!\theta_{
 m eff}^f$ EW scheme with the POWHEG-BOX-V2 framework
 - Use Z_ew-BMNNPV package at LO QCD + NLO+H.O. EW (+ matching to QCD Parton Shower)
 - EW accuracy: NLO EW plus leading universal higher order radiative corrections $(\Delta \alpha, \Delta \rho)$
 - $(G_{\mu}, M_Z, \sin^2 \theta_{\rm eff}^l)$ input scheme: observables (e.g., $A_{\rm FB}$) in terms of $\sin^2 \theta_{\rm eff}^f$; fast perturbative convergence
 - Resonance described using Complex Mass Scheme (CMS): theoretically more rigorous, width appearing at Lagrangian level → drawback complex propagators and couplings
 - W,Z masses/ (fixed) widths converted to their pole values: consistent with CMS definition
 - NNLO + NNLL QCD predictions with DYTurbo 1.4.2
 - Accounts for **resummation** corrections
 - LO EW in $\sin^2\!\theta_{
 m eff}^f$ like scheme
 - Fixed width + on-shell W,Z masses/widths converted to pole values: CMS not implemented

... potentially including also an "exercise" with SCETlib + Theory Nuisance Parameters (TNPs) in fiducial regions sensitive to resummation effects, against traditional scale variations for perturbative theory uncertainties

W mass

Resummed predictions with SCETlib + TNPs

- Goal is to use the new Theory Nuisance Parameter formalism designed by Frank (Tackmann) in the analysis
 - See Tackmann arXiv:2411.18606 and Cridge, Marinelli, Tackmann arXiv:2506.13874

$$rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = rac{\mathrm{d}\sigma_\mathrm{sing}^\mathrm{res}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma_\mathrm{nons}^\mathrm{FO}}{\mathrm{d}q_T} = rac{\mathrm{d}\sigma_\mathrm{sing}^\mathrm{res}}{\mathrm{d}q_T} + \left[rac{\mathrm{d}\sigma_\mathrm{full}^\mathrm{FO}}{\mathrm{d}q_T} - rac{\mathrm{d}\sigma_\mathrm{sing}^\mathrm{FO}}{\mathrm{d}q_T}
ight]$$

$$rac{\mathrm{d}\sigma_{\mathrm{sing}}}{\mathrm{d}Q\,\mathrm{d}Y\,\mathrm{d}q_T} = \sum_q oldsymbol{H_{qar{q}}}(Q,\mu) \,\,\, q_T \int_0^\infty \!\mathrm{d}b_T \,b_T \,J_0(q_T b_T)$$

$$imes B_q(x_a,b_T,\mu,Q/
u)\,B_{ar q}(x_b,b_T,\mu,Q/
u)\, {S(b_T,\mu,
u)}$$

Six sources of TNPs: the three fixed-order boundary conditions of each of the hard (H), soft (S), and beam (B) functions, and three anomalous dimensions governing their renormalization group evolution, namely the cusp anomalous dimension (Γ_{CUSP}) and the virtuality and rapidity noncusp anomalous dimensions (γ_{μ} and γ_{ν})

Brake things down to independent perturbative series, e.g. at N²⁺¹LL

5 scalar series (plus a few more we neglect ...)

$$\begin{split} &\Gamma(\alpha_s) = \alpha_s \, \hat{\Gamma}_0 + \alpha_s^2 \, \hat{\Gamma}_1 + \alpha_s^3 \, \hat{\Gamma}_2 + \alpha_s^4 \, \Gamma_3(\theta_3^{\Gamma}) + \cdots \\ &\gamma_{\mu}(\alpha_s) = \alpha_s \, \hat{\gamma}_{\mu 0} + \alpha_s^2 \, \hat{\gamma}_{\mu 1} + \alpha_s^3 \, \gamma_{\mu 2}(\theta_2^{\gamma_{\mu}}) + \cdots \\ &\gamma_{\nu}(\alpha_s) = \alpha_s \, \hat{\gamma}_{\nu 0} + \alpha_s^2 \, \hat{\gamma}_{\nu 1} + \alpha_s^3 \, \gamma_{\nu 2}(\theta_2^{\gamma_{\nu}}) + \cdots \\ &c(\alpha_s) = \hat{c}_0 + \alpha_s \, \hat{c}_1 + \alpha_s^2 \, c_2(\theta_2^H) + \cdots \\ &\tilde{S}(\alpha_s) = \hat{\tilde{S}}_0 + \alpha_s \, \hat{\tilde{S}}_1 + \alpha_s^2 \, \tilde{S}_2(\theta_2^S) + \cdots \end{split}$$

Up to five one-dimensional functional series for beam functions

$$ilde{b}_i(x,lpha_s) = \sum_j \int\!rac{\mathrm{d}z}{z} \left[\hat{I}_{ij,0}(z) + \hat{I}_{ij,1}(z) + I_{ij,2}(z, heta_2^{B_{ij}})
ight] f_j\!\left(rac{x}{z}
ight),$$

[F. Tackmann]

> TNPs of the hard and soft functions and the three anomalous dimensions are numerical constants

- > beam functions (BF) five one-dimensional functions of the Bjorken-x for the different partonic splitting channels
- > known functional shape and treat their normalization as a scalar TNP for each partonic channel

W mass

My current focus: matching to fixed order

- Suggested prescription is to match resummed SCETlib cross-section to DYTurbo fixed-order to cover consistently the qT spectrum
 - "singular" (or "leading-power")
 - To be resummed
 - "nonsingular" (or "subleading-power")
 - Suppressed by relative p_T^2/m_Z^2
 - To be supplied by matching to full FO

W mass

My current focus: matching to fixed order

 Suggested prescription is to match resummed SCETlib cross-section to DYTurbo fixed-order to cover consistently the qT spectrum

Matching to Fixed Order.

$$d\sigma = d\sigma^{(0)}(\mu_H, \mu_B, \nu_B, \mu_S, \nu_S) + \left[d\sigma^{FO}(\mu_{FO}) - d\sigma^{(0)}(\mu_i, \nu_i \equiv \mu_{FO})\right]$$

$$\equiv d\sigma^{resum}(\mu_H, \mu_B, \nu_B, \mu_S, \nu_S) + d\sigma^{nons}(\mu_{FO})$$

- σ^{resum} and σ^{nons} are separately scale independent (args show residual dep.)
 - In particular, σ^{nons} has no dependence (not even residual) on resum. scales
- Condition for $p_T \ll Q$: σ^{nons} must be power-suppressed by p_T/Q
 - $ightharpoonup d\sigma^{(0)}$ must exactly cancel all singular terms $d\sigma^{FO}$
- Condition for $p_T \sim Q$: Reproduce correct FO result $\mathrm{d}\sigma^\mathrm{FO}$
 - $\sigma^{resum} d\sigma^{(0)}$ must vanish *exactly* (i.e. their difference must not introduce higher-order corrections, because in general they would be unphysical and can be arbitrarily large)
 - lacktriangle Guaranteed by profile scales $\mu_i, \nu_i
 ightarrow \mu_{\mathrm{FO}}$ for $p_T
 ightarrow Q$