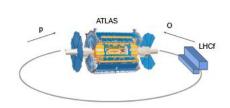
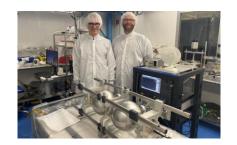
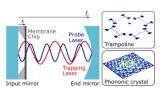

Particle Physics needs cutting-edge technologies


All pictures from the Open Session of the last PRC





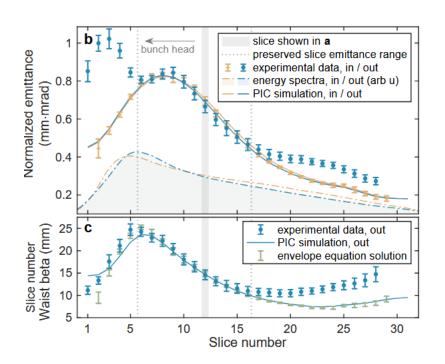
New technologies enable new insights!

Fundamental research in technologies

We have identified three key technological areas

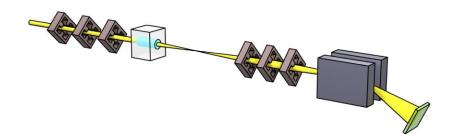
- New concepts in acceleration and accelerators from largest to smallest systems.
- New concepts in sensing and detection make the invisible visible.
- New disruptive concepts in data-driven research and data science.

Matter and Technologies – the program for technology research.


We research new and leverage emergent technologies to find solutions for current challenges and create new opportunities with accelerators, detectors and data for the science of today and tomorrow.

Driven by science and driving science.

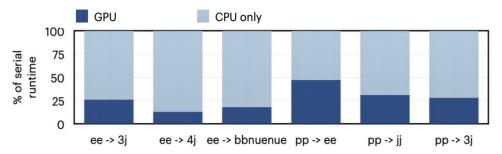
Preserving emittance while focussing



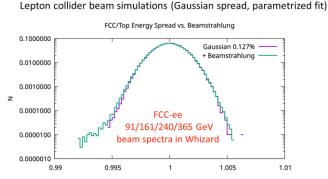
FLASHForward results at arXiv:2509.08420

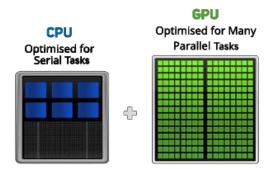
Emittance preservation with a plasma lens

- Symmetric focussing at kT-MT/m with a plasma lens
- Shown: can be done whilst preserving emittance for many beam slices
- Important to enable staging → crucial step on the road to Plasma Wakefield Acceleration applications


Speeding up MC generation

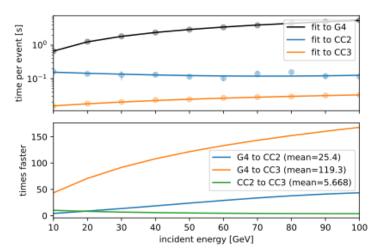
Whizard 3: arXiv: 2507.19285

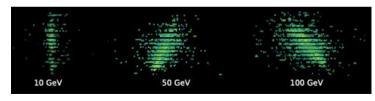


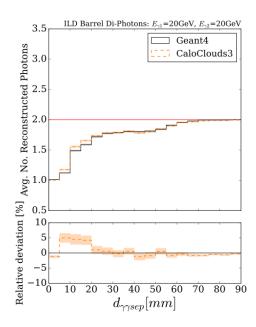

Whizard 3: Complete MC generator for all colliders @ LO/NLO (e.g. NLO QCD+EW for LHC + MuC, EWPDFs, FCC-ee beam simul.)
Fully modular framework of test-driven research software development

- Performance boosting via GPU offloading, MPI parallelization, ML phase space sampling
- Matrix elements + phase space integration + event generation on GPU e.g. MPI brings complex phase-space integration down from weeks to hours

Benchmarking of LO integration on CPU vs. GPU

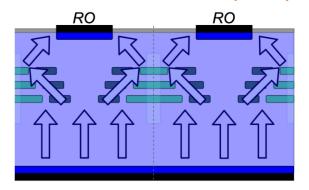



Using AI to simulate EM-showers much faster



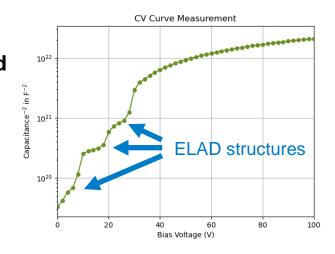
... but with (nearly) the same precision arXiv:2511.01460

- CaloClouds3: 50 times (10 GeV) 150 times (100 GeV) faster than Geant4 on single CPU
- Agreement with Geant4 after full reconstruction on physics observables (di-photon separation, π⁰ eff. in τ+τ events)



Improving Spatial Resolution by Charge Sharing

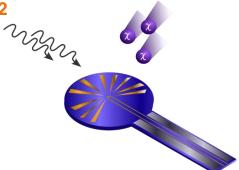
The Enhanced Lateral Drift (ELAD) Sensor Prototype has arrived



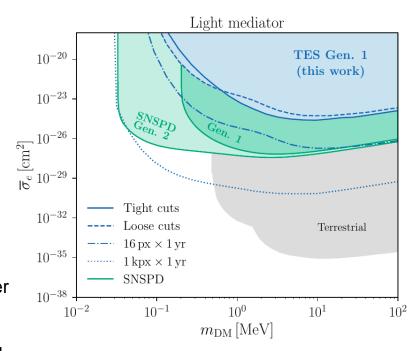
Silicon sensor design developed at DESY

- Featuring deep implant layers (regions of additional doping) to locally engineer the electric field inside the sensor bulk
- Modified drift path of charge carriers results in increased charge sharing and thus an improved spatial resolution
- Potential application: tracking detectors for future lepton colliders

Prototypes have arrived and are being tested. First results look promising.



Searching for dark matter with a 0.2 ng detector


First results: arXiv:2506.18982

Superconducting detectors are promising for sub-MeV dark matter searches

First direct search for light dark matter interactions in a transition-edge sensor (use of the TES as target and sensor simultaneously) → Successful proof-of-concept study

Overburden effects need to be considered above approximately the order of 10⁻²⁴ cm²

Helmholtz *Matter*

Topic **MU-FPF**Fundamental Particles
and Forces

Fundamental Interactions

Pushing the limits of our under-standing of fundamental interactions

- EW precision and Higgs physics (HH, H potential)
- SF QED
- QCD (incl. lattice and QC)
- Probing SM extensions

The Origin of Mass

Covering the puzzle of the origin of mass and of flavour, and the imbalance between matter and antmatter in the universe

- EWSB
- Higgs portal
- · Top, beauty, tau physics
- CPV
- LFU

The Early Universe

Exploring the evolution of the early universe and the nature of the dark sector

- Cosmology (inflation, ...)
- DM searches (WIMPs, axions, ALPs, ...)
- GW
- · EW phase transitions

MATTER AND M T

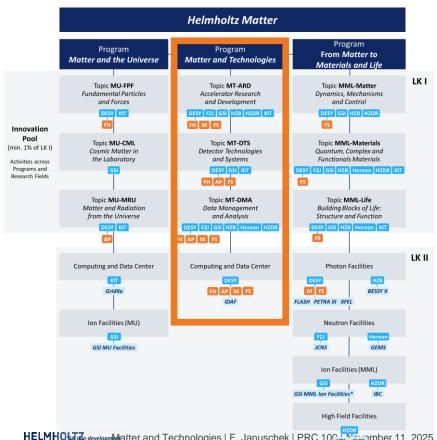
- SRF systems
- Hadron & electron acc.
- Beam control, diagnostics, dvnamics
- Plasma accelerators
- Sensing and detecting
- Quantum technologies
- Systems and systems technologies
- Detection methods
- Frontier methods in computational and data science
- Sustainable solutions
- Innovation for research infrastructures

Accelerator R&D (ARD)

Accelerator Science and Technology for highest performance and sustainability

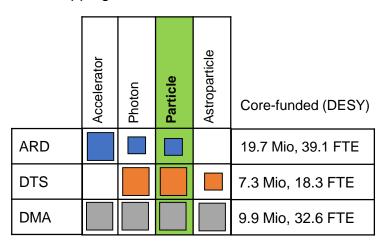
Detector Technologies and Systems (DTS)

Advancing discovery through world-leading detector innovation


Data Management and Analysis (DMA)

Enabling and accelerating MATTER science with frontier digital solutions

Technologies cross borders



MT as a program in our research field is cross-center, but also cross-division at DESY

Mapping to DESY divisions

PoF IV

DESY-FH has large contributions in MT-DTS and MT-DMA and a smaller, but important contribution in ARD.

FH: Technology-Platforms

- Technology development within MT strongly linked to the other two programs MML and MU (Matter and the Universe, which includes particle physics)
- Within FH: detector physicists and scientific computing experts are part of experiment groups/IT
- **Detector R&D** and **Scientific Computing platforms:** horizontal to this group structure → bring people together and link between MT and MU.
- Steering groups with experts from the FH groups.
- No regular personnel
- But: two postdoc positions (2+1 y) for cross-group scientific computing projects per year.
- Organise seminars, meetings, strategy discussions etc.

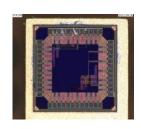
Selection of key technological goals within FH

Our strategy for the next funding period

Beam-driven plasma accelerator stage with high quality, high efficiency and high average power at 1GV/m

Going to higher energies, staging

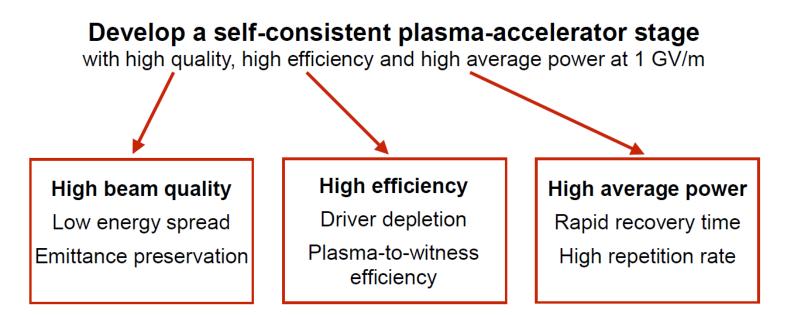
Move towards a full 5D-tracking/calorimeter system


Enable quantum detectors

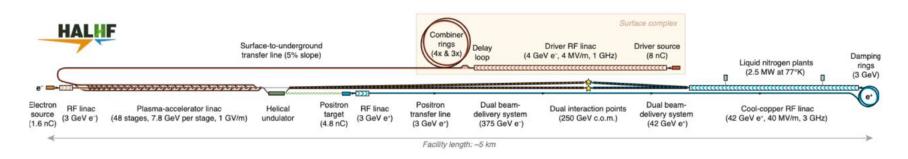
Maximising data processing on the detector

Al for autonomous beamlines, autonomous experiments, monitoring and digital twin technology

Develop quantum computing solutions and algorithms



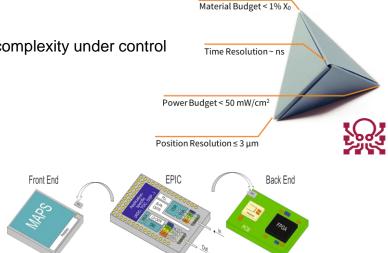
Accelerators: Mid-term future


All combined with >1 GV/m with energy gain as large as possible and as stable as possible.

Accelerators: Longer-term goals

Going to higher energies

- Possible high energy gain experiments at ELBEX / EuXFEL
- Stacking of multiple plasma modules to get to very high energy



Any staging requires energy doubling, beam quality and probably high repetition rate – all being studied at FLASHForward.

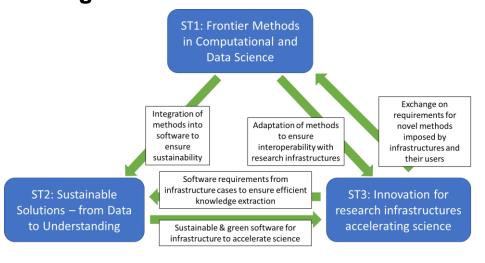
Detector strategy

- Next generation trackers and calorimeters are required to provide high resolution, additional
 measurements such as timing and energy, while consuming little power at reduced non-detection
 related mass.
- Maximising data processing on the detector is paramount to achieve performance targets and to keep the needed data transfer under control.
- Strategy:
 - High level of integration allows for scalability while keeping system complexity under control
 - High bandwidth data transfer at low power consumption
- Key technologies to address these challenges
 - CMOS based sensors
 - Photonic transceivers
 - Advanced interconnects and wafer bonding
 - Advanced cooling techniques

Detector strategy: Infrastructures

Infrastructures play a key role for detector development and its strategy at DESY

- Test beam: Essential work horse for detector development in particle and nuclear physics.
- Detector Assembly facility (DAF): Large clean rooms
- Smaller detector labs
- Workshops



Data/Scientific Computing strategy

DMA in PoF V: Novel Methods, Sustainability, Infrastructures → Al as a cross-cutting theme

- Key DESY-FH topics:
 - Data- and Metadata storage (e.g. dCache, MDC for on-site)
 - Research software engineering (e.g. key4HEP)
 - Autonomous experiments (autonomous beamlines a key topic within DESY, might profit)
 - Sustainable dynamic energy use and resource provision for large infrastructures
 - Al-based procedures for monitoring and digital twin technology for distributed computing infrastructures (IDAF)
 - Quantum computing applications
- IDAF as key Matter infrastructure

Summary

- Technology development is an important and successful part of FH science activities
 - Accelerator development
 - Detector development
 - Data science
- Matter and Technologies is a unique program for technology research, that is cross-center and cross-division at DESY
- For FH, the technology platforms play an important role
- MT at DESY-FH is very well positioned for PoF V
- Strategy focus for the next funding period:
 - ARD: Plasma (FLASHForward)
 - DTS: Systems, Pixel detectors, Data
 - DMA: Novel Methods, Sustainability, Infrastructures

Backup

Interdisciplinary Photon science MML Accelerator R&D MI (Astro-)particle physics MU **Data** and Data centric concepts and implementation **Analysis** Designed for the diversity of analyses

Key goals for PoF V

Facility.

Enabling the large, PoF V data sources (HL-LHC, PETRA IV, BELLE, CTAO, XFEL)

Supporting the complete data lifecycle

- Serving the smaller onsite experiments
- Digital twin for sustainable data center
- Integration of AI at all levels of user interaction
- Support novel analysis techniques (e.g. columnar analysis): Interplay Users<==>IDAF
- TIER Upgrade

MT-ARD

Continuous development of the very successful ARD sub-topic structure

2028 – 2034 PoF V 2021 – 2027 PoF IV 5 centres & 2 Institutes DESY. ST1 SRF systems for sustainable Advanced CW SRF-Systems applications HZB Helmholtz
Zentrum Berlin
HZDR SIT New Concepts and Prototypes for ST2 Efficient and High-Performance Maximizing the Performance of R&D for outstanding Hadron & Electron Accelerators **Hadron & Electron Accelerators** science & technologies Tailored 6D Beam Dynamics, ST3 Advanced Beam Control, & disruption Diagnostics, and Intelligent **Diagnostics and Dynamics** eam) Control ST4 Plasma Accelerators and their Ultra Compact, Novel Accelerators and their Applications **Applications** Within PoF V DESY will contribute to all Contribution to Competence Team subtopics, with a clear focus on ST3 Optical Technologies (OPT) (Beam Control) and ST4 (Plasma)

MT-DTS @ PoF V

Preliminary structure

Detector Technology and Systems (DTS)

ST1

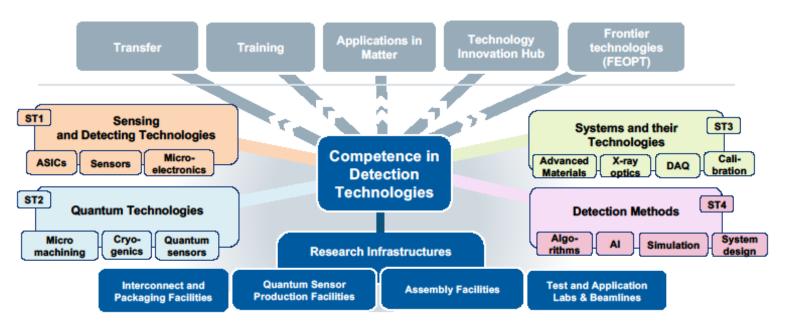
Sensing and Detecting Technologies ST2

Quantum Technologies ST3

System Technologies ST4

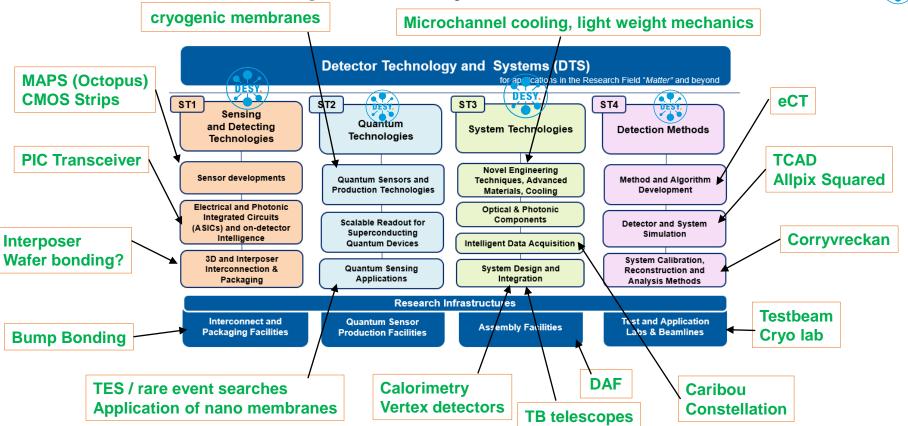
Detection Methods

"Realize intelligent and compact granular detectors with high space and time resolution" "Establish highly pixelated quantum sensors with ultimate energy resolution"


"Build sustainable detector systems and cope with drastically increasing data rates"

"Integrate advanced detector systems into multidimensional modalities for scientific discovery"

MT-DTS @ PoF V


Structure

- New sub-topics: Quantum, Detection Methods
- DESY-FH subtopic conveners: Simon Spannagel (ST1), Steven Worm (ST2), Moritz Guthoff (ST3)

DTS FH activities in preliminary PoF V structure

MT-DMA

Refining the PoF IV structure for a sustainable future of data-driven science

2021 – 2027 PoF IV

2028 – 2034 PoF V

5 centres & 3 Institutes

The Matter Information Fabric: ST1 F.A.I.R. Data Management

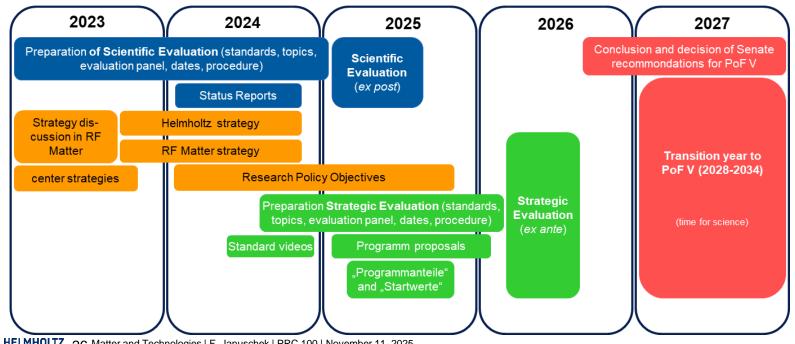
Frontier Methods in Computational and Data Science

The Digital Scientific Method: Exascale, AI, Quantum

Sustainable Solutions from Data to Understanding

The Digital Experiment & Machine Fast feedback, online analysis

Innovation for research infrastructures accelerating science


The focal point of Helmholtz Matter digitalization

Contributions to OPT-FE visible in all subtopics, highlighting synergies

Timeline for PoF V

Preparations for PoF V in full swing

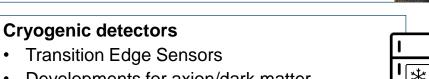
Topics of Interest & Connections to DRDs

Silicon detector development is a strong focus of our interest

- Monolithic CMOS
- Novel sensors (ELAD, digital SiPM, ...)
- Software tool developments
- Involvement in DRD3 (Silicon)

Calorimeter developments

- Highly granular SiPM on tile calorimeter
- Involvement in DRD6 (Calo)



Data transfer

- Silicon photonics
- Advanced interconnects
- Involvement in DRD7 (Electronics)

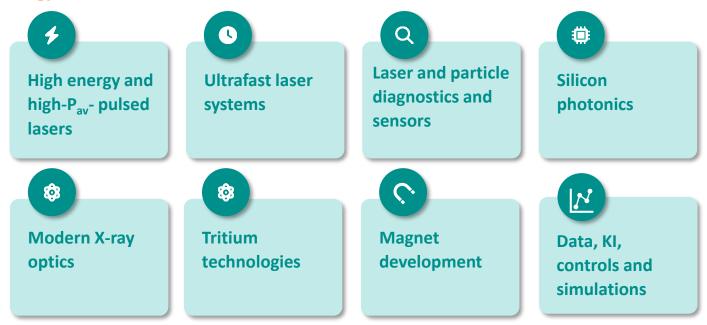
Integration

- Detector integration center
- R&D on light weight mechanics, local cooling and cooling systems
- Involvement in DRD8 (Integration)

- Developments for axion/dark matter experiments
- Involvement in DRD5 (Quantum sensors)

Infrastructure

- **Detector Assembly Facility**
- Test beam


Cross topic goal: Build a demonstrator vertex detector based on CMOS technologies

Technologies for Fusion Energy and Frontiers of Optics

Key technology areas

These innovation areas will have major impact on our facilities and Germany's technological sovereignty in research and innovation.