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(Early) Universe needs 
physics beyond standard model (BSM)

-Inflation
-Baryogenesis
-Dark matter
-Dark energy

Early Universe is a good laboratory 
of the high energy physics/BSM

WMAP



Beyond the standard model?

-supersymmetry(SUSY)
-hierarchy problem
-dark matter candidate

-gauged U(1)B-L
-neutrino mass

-Grand Unified Thoeries (GUTs)

When are these symmetries, if ever,  
broken in the cosmic history? 



In this talk...
I will concentrate on the spontaneous breaking of 
GUTs and other intermediate symmetries based on 
the supersymmetric theories. 

SU(5)→ SU(3)c × SU(2)L × U(1)Y

SO(10)→ SU(4)c × SU(2)R × SU(2)R

→ SU(3)c × SU(2)L × U(1)Y

SO(10)→ SU(4)c × SU(2)R × SU(2)R

→ SU(3)c × SU(2)L × U(1)R × U(1)B−L

→ SU(3)c × SU(2)L × U(1)Y

...
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When a symmetry is broken, topological defects such as 
(magnetic) monopoles, cosmic strings, domain walls may be formed. 

Kibble mechanism (Kibble ’76)

|Φ| = v �= 0

|Φ| = 0

Higgs field in the vacuum manifold 
distributes randomly at the scale larger 
than the correlation scale. 

There must be a point where Higgs field 
cannot fall down to the vacuum,           , 
from the topological reason. 
(At that point, the energy density 
remains high. )

Such field configuration is topologically 
stable and hence we call it “topological 
defects”. 

|Φ| = 0



There are several types of topological defects. 
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Figure 6.2: Distribution of the field ϕa (6.2.5) about the center of a hedgehog (global
monopole).

where ϕ0 =
µ√
λ

, r =
√

x2, and f(r) is some function that tends to ±1 for r " µ−1, and

tends to zero as r → 0 (the latter condition derives from the continuity of to the function
ϕa(x)). Such a distribution is a solution of equations of motion in the theory (6.2.4) (for a
specific choice of function f(r) with the indicated properties), and this solution turns out
to be topologically stable for the same reason as do the global strings considered above.

At large r, the main contribution to the hedgehog energy comes from gradient terms

arising from the change in direction of the unit vector
xa

r
at different points,

ρ ≈
1

2
(∂iϕ)2 =

3

2

ϕ2
0

r2
, (6.2.6)

whereupon that part of the hedgehog energy contained within a sphere of radius r centered
at x = 0 is

E(r) = 6 π ϕ2
0 r . (6.2.7)

In infinite space, the total hedgehog energy thus goes to infinity (as r). That is why
the hedgehog solution (6.2.5), discovered more than ten years ago in the same paper as
monopoles [83], failed until fairly recently to elicit much interest in and of itself.

When phase transitions take place in an expanding universe, however, hedgehogs can
most certainly be created. The theory of hedgehog formation is similar to the theory of
string creation, and in fact the first estimates of the number of monopoles created during
a phase transition [40] were based implicitly on an analysis of hedgehog production. An
investigation of this problem shows that rather than being created singly, hedgehogs
are typically created in hedgehog-antihedgehog pairs (corresponding to f(r) = ±1 for
r " m−1 in (6.2.5)). At large distances, such a pair exerts a mutually compensatory
influence on the field ϕ, and instead of the infinite energy of the individual hedgehogs, we
obtain the energy of the pair, which is proportional to their mutual separation r (6.2.7).
This is the simplest example of a realization of the idea of confinement that we know of.

(magnetic) monopoles: 
Point-like topological defect. 
They are formed when the vacuum manifold is      or                       . 
Inevitable in the GUT breaking into        because it contains          . 

S2 π2(G/H) �= 0
GSM U(1)Y

Cosmic strings: 
String-like topological defect. 
They are formed when the vacuum manifold is      or                     . 
Produced at the breaking of               and other         symmetries.   

S1 π1(G/H) �= 0
U(1)B−L U(1)

対称性の破れと宇宙ひも! !"#$$%&!'&()*+#,'!

一次元状のエネルギーの高い領域が相転移後に
生じる。!

エネルギー的に高い状態にあるにも関わらず、
安定。!

Domain walls: 
Sheet-like topological defect. 
They are formed when the vacuum manifold is disconnect.  



What kind of topological defects are formed?

of domain walls, then these would become cosmologically catastrophic; this situation is
forbidden. Another Z2 appears when SO(10) is breaking via GPS [60]; indeed, it is not
SO(10) but its universal covering group Spin(10) which is really broken to [(Spin(6) ×
Spin(4))/Z2](×ZC

2 ) (We remind to the reader that SU(4) × SU(2) × SU(2) ∼ Spin(6) ×
Spin(4).) The quotient Z2 results from the non-trivial intersection of Spin(6) and Spin(4)
and implies the formation of monopoles.

The SSB patterns of GPS and GPS with D-parity down to GSM (Z2) are respectively
given by
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The SSB schemes of SO(10) via the left-right groups with associated defect formation
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e.g.) R. Jeannerot+ (’03)

1. monopoles
2. cosmic strings



Effects of topological defects in cosmology

Magnetic monopoles:
Their formation would be a disaster since they may overclose the Universe. 
If some dilution mechanism takes place, they may be detected by future 
experiments. (One of the main motivations of inflation)

Cosmic strings: 
They enter so-called “scaling regime” (Explain later!) and do not overclose 
the Universe. It may contribute to the Cosmic Microwave Background 
Radiation (CMB) and Gravitational Wave Background (GWB). 

Domain walls: 
They may overclose the Universe and their formation is a disaster. 
Dilution mechanism is required, if ever. 



How topological defects are formed?
Thermal phase transition

Consider the Higgs potential including thermal correction
 (Remember Mathias’ workshop seminar!)

Veff(φ, T ) ∼
�

h2T 2 − 1
2
m2

�
φ2 + λφ4

φ

m/2
√

λ

T > Tc T < Tc

T down

Phase transition takes place at                          .T ∼ Tc ≡ m/
√

2h

Correlation length: ξ ∼ T−1

If the temperature of the Universe once high 
enough, this may be a disaster. 
However, we can avoid this problem with 
inflation & low reheating temperature. 

cf:                       is required to avoid gravitino problem. TR < 106−9GeV



Hubble induced mass driven phase transition

There is another possibly INEVITABLE phase transition 
in supersymmetric (supergravity) F-term inflation. 

For definiteness, let us consider the following superpotential: 

W = κS(ΦΦ̄−M2) + Winf

This system has a global minimum at                            .ΦΦ̄ = M2, S = 0

The effective potential during inflation reads, 

V (Φ, Φ̄) = 3H
2(|Φ|2 + |Φ̄|2) + κ2|ΦΦ̄−M

2|2

Hubble induced mass

+ D-term

cf.)Shafi+(’84), Vishniac+(’87),Kofman+(’87),Yokoyama(‘88,’89), Freese(’96)



The origin of Hubble induced mass :

V = e
K

�
DiWK

ij̄
Dj̄W

∗ − 3
M

2
G

|W |2
�
� 3H

2
M

2
G exp

�
|Φ|2

M
2
G

�

� Vinf = 3H
2
M

2
G

If the Hubble parameter during inflation is larger than the bare 
Higgs mass,                 , the symmetry is restored during inflation.  Hinf > κM

Φ, Φ̄

During inflation

After inflation

M



General condition
: Symmetry is broken before inflation. 
No significant effects on cosmology. 

Hinf � κM

Hinf � κM : Symmetry is broken after inflation. 
Phase transition associated with monopole 
or domain wall production is ruled out. 

cf) Phase transition associated with cosmic string can be 
constrained by CMB and GWB (Explain later!)

Hinf ∼ κM : Symmetry braking can take place during inflation. 
it is possible that topological defects are sufficiently 
diluted to be free from current constraints but still 
observable by planned experiments especially in inflation 
models in which the Hubble parameter changes rather 
considerably such as chaotic inflation. 



is related to the tensor perturbation of primordial fluctuation:  Hinf

PT =
8

M
2
G

�
H

2π

�2
�����
H=k/a

図 2: 様々なインフレーションモデルのパワースペクトル予想とPlanckおよびLiteBIRDにお
けるBモード測定感度予測。

レーション宇宙からの信号の発見」という二大発見を同時に達成すれば、基礎科学におけるイ
ンパクトは計り知れない。性能仕様を達成し測定を行った結果、もし原始重力波が発見されな
い場合でも、インフレーションのエネルギースケールに上限を与えることが出来るので、観測
の意義は非常に大きい。

1.2 ワーキンググループの目標・特長
本ワーキンググループを LiteBIRDの実現の第一歩と位置づけ、超高感度小型 CMB衛星

(Planckの 100倍の感度) のシステム設計を完成させることを目標とする3。10年後の衛星打
上げと原始重力波精密測定を技術面で確立する。以下に説明する衛星の仕様を出発点として、
設計に関する諸問題に明快な答えを与えることにより、具体的な衛星提案を準備したい。
本ワーキンググループは、現在地上でCMB偏光観測に携わっている研究者、および衛星を
用いた赤外線天文学を推進している研究者を中心に、重力波実験、気球実験、デバイス開発、
高エネルギー物理学、天文学などをホームグラウンドとする研究者の幅広い連携により進めて

3より正確には、、テンソル・スカラー比 rの探索限界値を Planckの 1/100のレベル (r = 0.001のレベル）ま
で改善することを目標とする。ここで前景放射による系統誤差は除去できることを仮定している。

2

r ≡ PT

PS

(LiteBIRD WG proposal)

r � 0.1↔ Hinf � 1013GeV

r � 0.001↔ Hinf � 1012GeV

The scale is a little small 
compared to usual GUT 
scale                 , but other
intermediate symmetry 
that predicts monopole 
production can be severely 
constrained. 

∼ 1016GeV

CMB Polarization



More precise treatment 

-Concrete inflation model: (F-term) Chaotic inflation 
                              (Linde (’83), Kawasaki, Yamaguchi & Yanagida (’00)

-Topological defect: (magnetic) monopole (& cosmic string)

Let us investigate how to pass the current constraint and 
prospects of future observation. 



Monopoles
KK, K.Nakayama & J. Yokoyama



Status of monopole

Distribution and velocity: monopoles are accelerated by
galactic gravitational field: 
galactic magnetic field: {

Mass: Mm =
4πM

gG

vm ∼ 10−3c

vm ∼ 10−3c(Mm/1017GeV)1/2

Mm > 1017GeV

Mm < 1017GeV

: gravitational field is dominant; clumped to the galaxy

: magnetic field is dominant; uniform distribution

Flux on earth: F =
nmvm

4π

number density is enhanced by a factor of cen ∼ 105

At larger scale, any structure will not appear. Quantitatively, from the discussion of Ref.

[22], we conjecture that the largest structure will form at the scale satisfying

exp



− 9

2m2

(
H(tk) −

2m

3

√
c − 1

2

)2


 ∼ 10−2. (51)

This corresponds to the scale kc satisfying

H(tkc) # m

(
2

3

√
c − 1

2
+ 1

)
. (52)

In other words, the power spectrum decays at k < kc.

Now we estimate the distribution and number density of monopoles. For this purpose,

we first consider the distribution of a massless scalar field in the de Sitter background

with Hubble parameter H. Suppose that a massless scalar field χ takes χ = 0 at t = 0

uniformly. This leads to the Gaussian distribution of χ at t > 0 and scale-invariant spectrum,

|χ(k)|2 = H2/2k3. Then, the two-point probability distribution function reads,

ρ2[χ(x1, t) = χ1,χ(x2, t) = χ2]

=
1

2πG(0, t)
√

1 − G2(r, t)/G2(0, t)
exp

{
−χ2

1 + χ2
2 − 2(G(r, t)/G(0, t))χ1χ2

2G(0, t)[1 − G2(r, t)/G2(0, t)]

}
, (53)

where

G(0, t) = 〈χ2(x, t)〉 =
H3t

4π2
, (54)

G(r, t) = 〈χ(x1, t)χ(x2, t)〉 =
H3t

4π2

(
1 − 1

Ht
log(Hr)

)
, r ≡ |x1 − x2| > H−1. (55)

Since ρ2 expresses the probability at t that the value of χ is χ1 at x = x1 and χ2 at x = x2,

any correlation function 〈F [χ(x1, t), χ(x2, t)]〉 is written by

〈F [χ(x1, t),χ(x2, t)]〉 =

∫ ∞

−∞
dχ1

∫ ∞

−∞
dχ2F [χ1,χ2]ρ2[χ1,χ2, t]. (56)

Note that a monopole exists between two separate points if all the signs of three scalar fields

are opposite at these two points. Then, the probability of existence of monopoles between

x1 and x2 is

P (t) =

(∫ 0

−∞
dχ1

∫ ∞

0

dχ22ρ2[χ1,χ2, t]

)3

=
1

π3

{
cos−1

(
G(r, t)

G(0, t)

)}3

=
1

π3

{
cos−1

(
1 − 1

Ht
log(Hr)

)}3

. (57)
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(B ∼ 3× 10−6Gauss)



Current constraints
•Do not overclose the Universe: ρm

s
=

Mmnm

s
< 4× 10−10GeV

•(Extended) Parker bound; Do not dissipate galactic magnetic 
field (at present and the beginning of the galaxy formation): 

F < 1.2× 10−16

�
Mm

1017GeV

�
cm−2sr−1s−1

•Several constraints from direct detection: 

Figure 8: 90% CL flux upper limits vs mass for intermediate and high mass
nuclearites with β = 10−3 obtained from various searches with NTDs. A
combined flux from the MACRO and SLIM experiments is also shown.

experiments onboard stratospheric balloons and in space are given [45–49].
The three uppermost horizontal lines in the figure indicate the measured
flux assuming that unusual events found in cosmic rays could be due to
SQM [35, 50–52]. The fluxes expected according to different models for
SQM propagation in the Galaxy and in the atmosphere are indicated in
Fig. 9 by the dotted line and the grey band [53, 54]. Limits for small mass
strangelets could come from satellite experiments as for example AMS-2 on
the International Space Station which will have an estimated sensitivity at
the level of ∼ 10−12 cm−2s−1sr−1 [55].

Q-balls are hypothesized coherent states of squarks q̃, sleptons l̃ and
Higgs fields predicted by minimal supersymmetric generalizations of the
Standard Model of particle physics [6]. They may carry some conserved
global baryonic charge Q and possibly also a lepton number. Q-balls could
have been copiously produced in the early Universe and may have survived
till now as a dark matter component. They are classified into two groups (i)
neutral Q-balls, generally called SENS (Supersymmetric Electrically Neu-
tral Solitons) that should be massive and may catalyse proton decay and
(ii) charged Q-balls called SECS (Supersymmetric Electrically Charged Soli-

12

e.g.) MACRO experiment (catalyzed decay);

F < 3× 10−16cm−2sr−1s−1

Giacomelli+(ʼ11)

Extended Parker bound is 
severest around: 

1015GeV � Mm � 1017GeV



EXOTICS WITH ICECUBE
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       catalyzing monopoles, strangelets)

Figure 3: Current Limits [12, 13, 14] and Projected
Sensitivities for Slowly Moving Massive Particles
that may be seen by IceCube

Outlook and Conclusion

Each year, IceCube’s capability to search for ex-
otic particles will increase dramatically. With the 9
string detector alone, competitive limits on the flux
of relativistic magnetic monopoles are achievable.
However, these results are preliminary and will be
refined. Background simulation will start with cos-
mic ray air showers produced by CORSIKA. Since
only the high energy events are considered, weight-
ing methods will be used. The asymmetry of the
detector will require further analysis of the signa-
tures produced at different angles. Finally, a log
likelihood or neural network analysis may be em-
ployed to refine and optimize the cuts. With the
additional analysis for slow moving exotics, Ice-
Cube will become a valuable tool in the search for
these particles.
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IceCube may constrain or detect monopoles up to

F ∼ 10−19cm−2sr−1s−1

IceCube collaboration (ʼ06)



Monopole production during chaotic inflation

Interestingly enough, as noted earlier, the phase transition may take place just before

the end of inflation. In such a case the dilution of monopoles is rather mild, and observable

amount of monopoles may be left in the Universe. The precise constraint on the symmetry

breaking scale M depends on when the phase transition took place. It is interesting if the

phase transition takes place slightly before the end of inflation, because monopole searches

such as IceCube [34], combined with the detection of B-mode, will provide us with useful

information on the GUT symmetry breaking. We will investigate in detail the possibility of

the phase transition and monopole production during inflation in the next section.

III. MONOPOLE PRODUCTION IN CHAOTIC INFLATION

A. Monopole Production during Chaotic Inflation

In this section, we investigate monopole production during chaotic inflation in supergrav-

ity [18]. The energy scale at the end of chaotic inflation is around 1013 GeV, which is close

to the reasonable GUT and other intermediate symmetry breaking scales. Therefore, it is

worth focusing on this specific inflation model.

The Kähler and superpotential for the model we adopt here are

K =
1

2
(Φ + Φ†)2 + |X|2 + |S|2 + |Σ|2, (9)

W = mXΦ + κS
(
TrΣ2 − M2

)
, (10)

where Φ is the inflaton and X is an additional singlet, m is the inflaton mass and M is the

symmetry breaking scale. We impose R-symmetry and discrete Z2 symmetry in order to

suppress all other unwanted couplings such as XΦ2, SΦ, etc4. Charge assignments on the

fields are shown in Table I. In this model, the imaginary part of Φ, ϕ ≡ ImΦ/
√

2 acts as

the inflaton because the shift symmetry in the Kähler potential, Φ → Φ + ic where c is a

real parameter, protects it from obtaining the exponential growth of the scalar potential.

4 Notice that the term εSΦ2 in the superpotential is allowed by these symmetries but it breaks the shift
symmetry of Φ. Taking the inflaton mass m as an order parameter of the shift symmetry breaking, we
expect that the coupling constant ε is suppressed enough, say ε ∼ m2 ∼ 10−10 in Planck units. Thus
following discussion does not change.
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In order to estimate the present abundance of monopoles, 
we must clarify when the number of monopoles is determined. 

Langevin equation for the long-wave mode of the Higgs field

when the slow-roll conditions for the Higgs fields are violated and their dynamics is governed

by the classical potential force. However, in the present case where the effective mass is

time dependent, this treatment may not be valid. In order to treat the behavior of the

Higgs fields around the epoch of phase transition appropriately, we adopt the stochastic

approach [39, 40]. When the Higgs field is in the slow-roll regime with |V ′′(Σ = 0)| !
H2(ϕ), a corse-grained or a long wavelength mode of the Higgs field obeys the Langevin

equation [39, 40],
dσ(x,N )

dN = − V ′(σ)

3H2(N )
+

f(x,N )

H(N )
, (23)

where N ≡ log a(t) − log a(t0) is the number of e-folds from t0 to t (t0 is an initial time

that can be taken arbitrarily) and f(x,N ) is a stochastic noise whose correlation function

is given by

〈f(x,N1)f(x,N2)〉 =
H4(N1)

4π2
δ(N1 −N2), 〈f(x,N )〉 = 0. (24)

The first term in Eq. (23) represents the classical force and the second one represents the

stochastic force. When the first term overwhelms the second term,
∣∣∣∣
V ′(〈σ2(N ′)〉1/2)

3H2(N )

∣∣∣∣ %
〈f 2(N )〉1/2

H(N )
=

H(N )

2π
, (25)

classical equation of motion begins to determine the dynamics of the Higgs field. After that,

its dynamics is decisive. We expect that monopole distribution is determined at this time.

Noting that the Hubble parameter is written by

H2(N ) = H2
0 − 2N

3
m2, (26)

where H2
0 = m2ϕ(t0)2/2, Eq. (23) reads

dσ(x,N )

dN = −
(

1 − κ2M2

3H2
0 − 2Nm2

)
σ(x,N ) +

f(x,N )√
H2

0 − 2N
3

m2

. (27)
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We conjectured that the number of monopoles are 
determined when classical force becomes stronger than 
stochastic force using the evaluation of �σ2(x,N )�

where we have defined c ≡ κ2M2/m2. Using the approximate expression,

erf(x) "






x (x # 1),

1 (x $ 1)
(34)

we find

〈σ2(N )〉 "
(
〈σ2

0〉 +
m2

8
√

2π3/2

c3e1/2(1+c)

√
2(1 + c)

)
exp

(
2

c
N 2

)
, (35)

for N $
√

c/2. Thus 〈σ2(N )〉 starts to grow exponentially at that time and soon satisfies

the condition Eq. (25). Therefore, we conclude that the dynamics of the Higgs field enters

the classical regime at N "
√

c/2. 6 This corresponds to the Hubble parameter

Hf ≡ H(tf) "
m√
3

(
c −

√
2c

)1/2
, (36)

where tf is defined as the monopole formation time. Inflation continues after the phase

transition. The number of e-folds thereafter reads

∆N =
3H2

f

2m2
− 1

2
" 1

2
(c −

√
2c − 1). (37)

Next we estimate the power spectrum of the distribution of the Higgs field in order

to estimate the number density of monopoles. Naively, one may assume that the mean

separation of monopoles would be the Hubble length at its formation time. However, due to

the inflationary expansion, scalar fields are correlated beyond the horizon scale, and hence

its mean separation becomes larger than the Hubble length. The mode function of the Higgs

field obeys the equation of motion,

σ̈k(t) + 3Hσ̇k(t) +

(
k

a(t)

)2

σk(t) + m2
σ(t)σk(t) = 0. (38)

Defining a variable as σ̃k ≡ a3/2(t)σk, Eq. (38) can be rewritten as

¨̃σk +

[(
k

a(t)

)2

+ m2
σ(t) − 3

2
Ḣ − 9

4
H2

]
σ̃k = 0. (39)

6 Here we have neglected the quartic term in the potential. This can be validated when κ # 8
√

2π3/2c3/2.
This condition is derived from the condition that the minimum of the Higgs potential at the number of
e-folds N is larger than 〈σ2(N )〉1/2 at small N .

12

where we have defined c ≡ κ2M2/m2. Using the approximate expression,

erf(x) "






x (x # 1),

1 (x $ 1)
(34)

we find

〈σ2(N )〉 "
(
〈σ2

0〉 +
m2

8
√

2π3/2

c3e1/2(1+c)

√
2(1 + c)

)
exp

(
2

c
N 2

)
, (35)

for N $
√

c/2. Thus 〈σ2(N )〉 starts to grow exponentially at that time and soon satisfies

the condition Eq. (25). Therefore, we conclude that the dynamics of the Higgs field enters

the classical regime at N "
√

c/2. 6 This corresponds to the Hubble parameter

Hf ≡ H(tf) "
m√
3

(
c −

√
2c

)1/2
, (36)

where tf is defined as the monopole formation time. Inflation continues after the phase

transition. The number of e-folds thereafter reads

∆N =
3H2

f

2m2
− 1

2
" 1

2
(c −

√
2c − 1). (37)

Next we estimate the power spectrum of the distribution of the Higgs field in order

to estimate the number density of monopoles. Naively, one may assume that the mean

separation of monopoles would be the Hubble length at its formation time. However, due to

the inflationary expansion, scalar fields are correlated beyond the horizon scale, and hence

its mean separation becomes larger than the Hubble length. The mode function of the Higgs

field obeys the equation of motion,

σ̈k(t) + 3Hσ̇k(t) +

(
k

a(t)

)2

σk(t) + m2
σ(t)σk(t) = 0. (38)

Defining a variable as σ̃k ≡ a3/2(t)σk, Eq. (38) can be rewritten as

¨̃σk +

[(
k

a(t)

)2

+ m2
σ(t) − 3

2
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Power spectrum of the Higgs field at             determines monopole abundance. H = Hf

Noting that

a = a(tk)e
N = a(tk) exp

[
3

2m2
(H(tk)

2 − H(t)2)

]
, (46)

∫ t

tk

S(t′)dt′ =
3

m2

∫ H(tk)

H(t)

(
κ2M2 − m2

2
− 3H ′2

4

)1/2

dH ′

=
3

m2

{
H(tk)

4

√
2(2κ2M2 − m2) − 3H2(tk) −

H(t)

4

√
2(2κ2M2 − m2) − 3H2(t)

− 1√
3

(
κ2M2 − m2

2

) 

tan−1 H(tk)√
4
3(κ

2M2 − m2/2) − H2(tk)

− tan−1 H(t)√
4
3(κ

2M2 − m2/2) − H2(t)










# 3

m2

[√
κ2M2 − m2

2
(H(tk) − H(t)) −

(
H3(tk) − H3(t)

8
√

κ2M2 − m2/2

)
+ · · ·

]
, (47)

we obtain

σk #
√

H2(tk)

2k3

(
S(tk)

S(t)

)1/2

exp

[
− 9

4m2
(H2(tk) − H2(t)) +

3

m2

√
κ2M2 − m2

2
(H(tk) − H(t))

]

=

√
H2(tk)

2k3

(
S(tk)

S(t)

)1/2

exp



− 9

4m2

(
H(tk) −

2m

3

√
c − 1

2

)2

+
9

4m2

(
H(t) − 2m

3

√
c − 1

2

)2


 .

(48)

Here we neglect the term higher than H(tk)3 − H(t)3, which are suppressed by numerical

factors that are smaller than O(10−1). The exponential factor in the power spectrum of

the Higgs field has a peak at the scale k/a(tk) # (2/3)m
√

c − 1/2, which characterizes the

power spectrum. At larger scales, the power spectrum decays exponentially.

From Eq. (48), the power spectrum of the Higgs field at t = tf is estimated as

Pσ = |σk|2 #
H2(tk)

2k3

(
S(tk)

S(t)

)
exp



− 9

2m2

(
H(tk) −

2m

3

√
c − 1

2

)2

+
(2 −

√
3)2c

4



 . (49)

The power spectrum decays quickly at the scale that satisfies

exp



− 9

2m2

(
H(tk) −

2m

3

√
c − 1

2

)2


 $ 1. (50)
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monopole distributes at the scale:  
kc < k < Hf

decays at scales larger than k < kc

M. Nagasawa, I Yokoyama / Phase transitions in inflationary universe 483

relative amplitude

101

100 - -

i0-~
100 101 102 i0~ i0~

wavelength
Fig. 1. Magnitude of the mode function Ixk(tI)I for f = 3/16 and c = 5 as expressed in eq. (39).
Plotted values are relative amplitude to (H~’/2k3)’/2. Abscissa corresponds to the wavelength

2i~-a(t
1)/kin units of H1 ‘.

time in sect. 4, we are now in a position to apply them to find the spectrum of
topological defects produced. Following our two step approximation described in
sect. 3, this is accomplished by calculating spatial distribution of the scalar field at
t = tf. Thanks to the properties of the vacuum state realized as a result of
inflationary expansion, x(x, t~) is classically given by summing up its Fourier
modes as

x(x, t~)= ~6Xk(x, t1) + C.C.,
k (41)

~Xk(X, tf) = ~Xk(tf) I
where I ~xk(tf) is a random value which has a gaussian distribution with disper-

sion I Xk(tf) 2 and tk is a random phase-factor.
Ifwe find the sign of x positive (negative) at a certain point at t = tf, it will fall

down to the minimum of x = + u( — u) as the phase transition proceeds, since its
dynamics has been deterministic by this time in typical domains. Thus we may
consider that domain walls are produced between two regions with opposite signs
of x at this time.

We have first done three-dimensional simulations as illustrated in fig. 2a, in
which we have calculated the value of x(x, tf) through eq. (41) at each point of 32~

P
1
/
2

σ
/
(H

f/
k

3
/
2
)

(k/Hf)−1

k−1
c

Nagasawa & Yokoyama(’92)

For Ht ! 1 and Hr " e, it can be approximated as

P (t) " 23/2

π3(Ht)3/2
. (58)

Let us relate P (t) to the distribution of monopoles. Define n(V ) as the number density

of monopoles. Here V ∼ l3, where l is the mean separation of monopoles. In other words, V

is the volume where a monopole occupies. The possible value of V is H−3 ! V ! H−3e3Ht.

P (t) can be understood as the probability that there is a monopole within a distance of e/H.

Thus, it can be expressed as

P (t) " e3H−3

∫ H−3e3Ht

H−3

n(V, t)dV. (59)

Comparing Eq. (58) and Eq. (59), we arrive at the relation,

n(V, t) ∝ V −α, α " 1, (60)

for large Ht. Therefore, we conclude that if Higgs field has a scale-invariant power spectrum,

the resultant number density of monopoles would be n(V ) ∝ V −1. The possible value of V

is determined by the scales where the scale invariance holds.

From the discussion above, the average number density of monopoles can be estimated

as

nm(tf) "
∫ (kc/a(tf))−3

H−3
f

n(V, tf)dV "

∫ (kc/a(tf))−3

H−3
f

V −1dV
∫ (kc/a(tf))−3

H−3
f

dV
=

3 log(Hfa(tf)/kc)

(kc/a(tf))−3 − H−3
f

. (61)

Note that k/a(tf) is written as

k

a(tf)
=

a(tk)

a(tf)

k

a(tk)
= exp

[
− 3

2m2
(H(tk)

2 − H(tf)
2)

]
H(tk). (62)

Exponential expansion of the Universe continues after the phase transition until inflation

ends at H " He =
√

1/6mϕe/MG " m/
√

3. The number of e-folds between the phase

transition and the end of inflation has been estimated in Eq. (37). Therefore, monopoles

produced at the phase transition are diluted and the average number density of monopoles

at the end of inflation is estimated as

nm(te) " nm(tf) exp

[
−3

2
(c −

√
2c − 1)

]
. (63)

At larger c, nm(te) behaves as

nm(te) "
4m3c5/2

27
e−2c =

4(κM)5

27m2
exp

[
−2κ2M2

m2

]
. (64)
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Even after monopole formation, inflation continues, 

where we have defined c ≡ κ2M2/m2. Using the approximate expression,

erf(x) "






x (x # 1),

1 (x $ 1)
(34)

we find

〈σ2(N )〉 "
(
〈σ2

0〉 +
m2

8
√

2π3/2

c3e1/2(1+c)

√
2(1 + c)

)
exp

(
2

c
N 2

)
, (35)

for N $
√

c/2. Thus 〈σ2(N )〉 starts to grow exponentially at that time and soon satisfies

the condition Eq. (25). Therefore, we conclude that the dynamics of the Higgs field enters

the classical regime at N "
√

c/2. 6 This corresponds to the Hubble parameter

Hf ≡ H(tf) "
m√
3

(
c −

√
2c

)1/2
, (36)

where tf is defined as the monopole formation time. Inflation continues after the phase

transition. The number of e-folds thereafter reads

∆N =
3H2

f

2m2
− 1

2
" 1

2
(c −

√
2c − 1). (37)

Next we estimate the power spectrum of the distribution of the Higgs field in order

to estimate the number density of monopoles. Naively, one may assume that the mean

separation of monopoles would be the Hubble length at its formation time. However, due to

the inflationary expansion, scalar fields are correlated beyond the horizon scale, and hence

its mean separation becomes larger than the Hubble length. The mode function of the Higgs

field obeys the equation of motion,

σ̈k(t) + 3Hσ̇k(t) +

(
k

a(t)

)2

σk(t) + m2
σ(t)σk(t) = 0. (38)

Defining a variable as σ̃k ≡ a3/2(t)σk, Eq. (38) can be rewritten as

¨̃σk +

[(
k

a(t)

)2

+ m2
σ(t) − 3

2
Ḣ − 9

4
H2

]
σ̃k = 0. (39)

6 Here we have neglected the quartic term in the potential. This can be validated when κ # 8
√

2π3/2c3/2.
This condition is derived from the condition that the minimum of the Higgs potential at the number of
e-folds N is larger than 〈σ2(N )〉1/2 at small N .

12

Monopoles are diluted accordingly. 

Taking into account the cosmic expansion after inflation, 
the present monopole abundance is evaluated as

B. Constraints on the model parameter

Let us estimate the present monopole abundance. After inflation, the inflaton starts

damped oscillation and the Universe expands like the matter dominated era. Eventually the

inflaton decays into radiation and the Universe is reheated. The monopole-to-entropy ratio

is fixed after the reheating, and it is estimated as

nm

s
(tR) ! 3

4

(
g∗
gs∗

)
TR

m2M2
G

nm(te), (65)

where TR is the reheating temperature and g∗ ! gs∗ ! 200 are the relativistic degrees of

freedom. If there are no late-time entropy production processes, this quantity is conserved

until the present time.

The abundance of monopoles are constrained by the condition that it must not exceed

the dark matter abundance. The present dark matter abundance is given by [38]

ΩDMh2 ! 0.11, (66)

where h ≡ H0/(100 km sec−1Mpc−1) ≈ 0.7 and H0 is the present Hubble parameter. This

can be rewritten in terms of the dark matter energy density-to-entropy ratio,

ρDM

s
! 4.1 × 10−10 GeV. (67)

On the other hand, from Eqs. (5) and (65), the present monopole abundance is estimated

as

ρm

s
=

Mmnm

s
!3.2 × 10−8

(
M

1015GeV

)(
0.5

gG

)(
g∗
g∗s

) ( m

1013GeV

) (
nm(te)

m3

)
TR. (68)

Therefore, the constraint on the monopole abundance is expressed as

TR < 1.3 × 10−2GeV ×
(

M

1015GeV

)−1 ( gG

0.5

) (
g∗s
g∗

) ( m

1013GeV

)−1
(

nm(te)

m3

)−1

. (69)

Next we consider the constraint from the flux of monopoles. The average number density

of monopoles estimated above corresponds to the flux of monopoles as

F =
nmvm

4π
!9.1 × 10−9cm−2sr−1s−1

×
(

βm

10−3

)(
g∗
g∗s

) ( m

1013GeV

) (
TR

106GeV

)(
nm(te)

m3

)
, (70)
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Constraints

FIG. 1: The allowed region of the reheating temperature (longitudinal axis) and the symmetry

breaking scale M (horizontal axis). Dashed (yellow) line suggests the IceCube 3-year sensitivity.

Here we set κ = 10−3(10−1) on the upper (lower) panel and βm = 10−3(10−2).

C. Realistic Models

Thus far, we have studied general features of phase transitions during F-term (chaotic)

inflation. Then, a natural question is whether this mechanism can be embedded in specific

models of SUSY GUTs. In this section, we comment on this issue using some realistic GUT

models. We also note that in some symmetry breaking patterns, not only monopoles but

also domain walls could be produced and the constraint would become severer than our

estimate in the previous section.

One of the simplest candidates of SUSY GUT is an SU(5) model [45]. In this model, we

can realize the symmetry breaking SU(5) → SU(3)c × SU(2)L × U(1)Y by introducing an
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can realize the symmetry breaking SU(5) → SU(3)c × SU(2)L × U(1)Y by introducing an
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Constraints

FIG. 2: The allowed region of the reheating temperature (longitudinal axis) and the coupling

constant κ (horizontal axis). Dashed (yellow) line suggests the IceCube 3-year sensitivity. Here we

set M = 1016(1014)GeV on the upper (lower) panel and βm = 10−3(10−2).

adjoint Higgs multiplet Φ and assume a superpotential, such as

W = S(µ2 − αTrΦ2) − βTrΦ3. (76)

However, this model turns out to have separated minima with different gauge symmetries,

namely, SU(4) × U(1) and SU(3) × SU(2) × U(1). In our scenario, Higgs field can fall

into both of the minima. These minima are topologically disconnected and hence domain

walls should be formed as well as monopoles. Thus we do not have a consistent cosmological

evolution scenario in this case, unless the symmetry breaking occurs well before the comoving

Hubble scale today left the Hubble radius during inflation. Thus we cannot hope to detect

magnetic monopoles.
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Status of String
string tension: 

parameterized by only this parameter

Distribution: scaling distribution

Strings in a Hubble volume intersect each other and generate 
loops. Loops shrinks emitting gravitational waves. As a result,  
there are always a few long strings and several loops, which we 
call “scaling distribution”. 

µ � πM2



Current constraints
(Do not) contribute to the CMB fluctuation: 

2

reaction on the network. Thus our CMB calculations for
strings are the first to include a consistent mechanism for
decay and backreaction.

A feature of field theory simulations is a very low den-
sity of string loops [15], in sharp distinction to Nambu-
Goto simulations on which the conventional cosmic string
scenario is based. Further work is needed to understand
the origin of the difference, on which bounds from cosmic
rays [15] or gravitational wave production [9] sensitively
depend, but CMB calculations depend on the large-scale
properties, about which there is broad agreement. In-
deed the USM has enough flexibility to approximate our
power spectrum: the left hand graph of Fig. 1 of the er-
ratum to [11] is similar to Fig. 13 of [5]. However, the
USM does not reproduce the detailed shape of the power
spectra, nor can it give limits on the string tension µ
without reference to simulations such as ours. Our cal-
culations represent a significant step forward in reliability
and accuracy, deserving careful comparison to the data.

Data fitting approach.— The form of the cosmic string
contribution to the temperature power spectrum is shown
in Fig. 1, where it is compared to observational data and
the best-fit standard inflation model. The normalization
of the inflation and string power spectra components are
free parameters, with that for strings being proportional
to (Gµ)2 (where G is the gravitational constant and µ is
the string tension). For Fig. 1 the normalization of the
string component has been set to match the data at mul-
tipole ! = 10, corresponding to Gµ = (2.04±0.13)×10−6,
a factor of 2-3 higher than the corresponding value from
previous work [10, 11, 16]. Clearly a string component
this large is ruled out and we hence introduce the param-
eter f10, the fractional contribution from cosmic strings
to the temperature power spectrum at ! = 10.

Recalculating the inflationary component at a particu-
lar cosmology takes only a few seconds, but for the string
contribution this takes many hours and it therefore ap-
pears that a full Markov chain Monte Carlo (MCMC)
multi-parameter fit is unfeasible. However, following [17],
we fix the form of the string component and vary only
its normalization, via Gµ. Given that any changes in the
cosmological parameters are small and that the strings
are sub-dominant, this amounts to a small error in the
total inflation plus strings prediction, below the uncer-
tainties in the CMB data [27] and the MCMC results
are unaffected. We hence use a version of the standard
CosmoMC [18] code, modified to incorporate the fixed-
form cosmic string component.

We primarily consider four different models: two pa-
rameterizations of the primordial power spectrum, both
with and without strings. We always allow for variations
in the Hubble parameter h, the physical baryon and total
matter densities Ωbh2 and Ωmh2, as well as the optical
depth to last scattering τ . We then either take Harrison-
Zeldovich (scale-invariant) adiabatic primordial pertur-
bations with amplitude As or add the additional freedom
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FIG. 1: The temperature power spectrum contribution from
cosmic strings, normalized to match the WMAP data at
! = 10, as well as the best-fit cases from inflation only (model
PL) and inflation plus strings (PL+S). These are compared
to the WMAP and BOOMERANG data. The lower plot is
a repeat but with the best-fit inflation case subtracted, high-
lighting the deviations between the predictions and the data.
Note that the string contribution is identical to that shown in
Fig. 14 of [5], but here has a linear horizontal axis for ! > 100.

of a power-law tilt ns: A2
s → A2

s (k/k0)ns . This yields
the two zero-string models which we label as HZ and PL
respectively, with PL being the established inflationary
concordance model and HZ being a restriction of this:
ns = 1. We add strings to these two models yielding
models HZ+S and PL+S, which therefore have the ex-
tra parameter (Gµ)2. Then, in the later stages of our
discussion, we also consider primordial tensor perturba-
tions and a finite running of the scalar spectral index
dns/d ln k, but we will assume negligible neutrino mass
and flat space throughout.

Results using only CMB data.— The results when
using measurements from the WMAP, ACBAR,
BOOMERANG, CBI and VSA projects [7] are illustrated
in Fig. 2. This shows the marginalized 2D likelihood sur-
faces for f10 versus h, Ωbh2, A2

s and ns for both HZ+S
(points) and PL+S (contours). For PL+S, there is a
significant degeneracy, involving primarily these five pa-
rameters, that allows large values of f10 to fit the data
[28]. The result is f10 = 0.11 ± 0.05, which is a 2σ de-
tection of strings. It also yields ns = 1.01 ± 0.04 which
is significantly larger than in model PL, or the result of
ns = 0.964±0.019 found in [9] for PL+S using the USM.

Figure 1(lower) shows the deviations between the best-
fit PL+S case, the best-fit PL case and the CMB data.
Given that the best-fit PL+S case is given by f10 = 0.099
and ns = 1.00 (see endnote [29] for the other parameter
values), it is clear that not only is ns = 1 under no pres-
sure if cosmic strings are included, but it is able to fit the

N. Bevis (’08)

Gµ < 1.7× 10−7

⇔M < 2× 1015GeV Dvorkin (’11)

WMAP+SPT: 

high l & B-mode in future observation are promising for detection. 

宇宙ひもによる!"#$の温度揺らぎ$

!"#$%&'(')$
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Current constraints
String loops generates gravitational waves consistently 
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FIG. 1: The gravitational wave energy density per log frequency from cosmic strings is plotted as a function of frequency for
various values of Gµ, with α = 0.1 and γ = 50. Note that current millisecond pulsar limits have excluded string tensions
Gµ > 10−9 and LISA is sensitive to string tensions ∼ 10−16 using the broadband Sagnac technique, shown by the bars just
below the main LISA sensitivity curve. The dotted line is the Galactic white dwarf binary background (GCWD-WD) from A.J.
Farmer and E.S. Phinney, and G. Nelemans, et al., [70, 71]. The dashed lines are the optimistic (top) and pessimistic (bottom)
plots for the extra-Galactic white dwarf binary backgrounds (XGCWD-WD) [71]. Note the GCWD-WD eliminates the low
frequency Sagnac improvements. With the binary confusion limits included, the limit on detectability of Gµ is estimated to be
> 10−16.

E. High Frequency Modes, Kinks, and Cusps

Calculations are done which include higher mode be-
havior of the loops; this sends some of the gravitational
wave energy into higher frequencies for each loop. Adding
higher modes tends to smooth out, to a larger degree, the
curves and slightly lower the peaks on the spectra. When
applied to the power per volume per log frequency as in
Fig. 2 we see a less steep high frequency tail at each time
and a slight decrease in the amplitude of the peak. From
Fig. 7 a comparison of the fundamental mode versus the
fundamental mode with higher modes included shows: a)
the peak decreases, b) the peaked portion widens slightly,
and c) the red noise amplitude remains relatively un-
changed.

Fig. 7 demonstrates a calculation in which ∼ 50% of
the power is in the fundamental mode and the power
coefficients go as n−4/3 in the higher modes. For the
fundamental mode P1 = 25.074, and the next five modes
are P2 = 9.95, P3 = 5.795, P4 = 3.95, P5 = 2.93, and
P6 = 2.30. Their sum is

∑

Pn = γ = 50. The amplitude
of the peak shifts from 1.202 × 10−9 to 1.122 × 10−9, a
6.7% decrease. The frequency of the peak shifts more

substantially, from 3.162× 10−7 Hz to 7.080× 10−7 Hz,
an increase of 124%. This increase in frequency of the
peak does not affect the limits of detection by LISA be-
cause the amplitude shrinks very little. Note that the
high frequency red noise region is essentially unchanged,
and for Gµ = 10−12 this is the region in which LISA is
sensitive.

Plots of spectra for other Gµ with high frequency
modes show changes similar to those in Fig. 7. The peak
amplitude drops slightly and the frequency of the peak
is increased. Overall, the limits from Table II remain un-
changed by the introduction of 50% of the power in the
higher frequency modes.

Cusps and kinks in the loops are responsible for high
frequency “bursts” of gravitational wave energy [47, 48,
49, 50]. They are two different manifestations of string
behavior: cusps are catastrophes that occur approxi-
mately once every oscillation, emitting a directed burst
of gravitational radiation; while kinks are small wrin-
kles which propagate on the loops, emitting a higher fre-
quency of directed gravitational energy. The light strings
make it less likely to detect these random bursts; in par-
ticular they are more difficult to pick out from their own

from loops formed 
in matter dominated era

from loops formed 
in radiation dominated era

ΩGWh2

log f [/Hz]

ΩGWh2 ∝ f−1/3

ΩGWh2 = const
Loops in matter era: 

Loops in radiation era: 

Pulsar timing array 
constraint: 

R. van Haasteren (’11)

Gµ < 4.0× 10−9

⇔M < 4× 1014GeV

M.R.DePies (’08)

http://arxiv.org/find/astro-ph/1/au:+Haasteren_R/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Haasteren_R/0/1/0/all/0/1


Pulsar timing array constraint is much severer than that of CMB. 
Is searching for their signatures in CMB hopeless? 

Our scenario can change the situation!
If loop formation starts recently due to the appropriate dilution 
during inflation, cosmic strings with 
can be detected in CMB while GWs are damped. 

Gµ � 10−7 − 10−8

FIG. 1: GWB spectrum of cosmic strings for various tsc. The observational limit for the

frequency of 1year−1 or 3×10−8Hz according to [7] is shown as an arrow. The lines are in the

case of tsc = 3.8× 105year(recombination), 107year, 108year, 109year from top. In the case of

α = 10−1(left graph), there is no contradiction if cosmic strings begin to satisfy scaling rules

from recombination. But if α is smaller, tsc should be later than recombination. In the case

of α = 10−4, strings should not satisfy scaling rules until (few)× 108year.
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During “standard” inflation, the energy density ρ is determined by potential energy, so

Friedmann equation becomes H2 = 1
3M2

G
ρ ∼= 1

3M2
G
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2 # 1, the factor e
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Since the kinetic terms of the scalar fields are given by −Kij∂µφi∂µφ∗
j in the minimal

model, K contains the square of scalar fields. So we can expand the exponential factor after

diagonalization

e
K

MG
2 = 1 +

φiφi∗

M2
G

+ · · · (12)

Therefore, potential V contains the term 3H2φiφi∗. This means the field φi receives

correction to its mass term. This is called “Hubble-induced mass”, these fields can restore

6

If Planck detect tensor perturbation, 
parameter region where

κ � O(0.1), M � 1014−15GeV

would be interesting!Pre
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Summary
-Topological defects are good tool of exploring the early Universe 
and high energy physics. 

-Hubble induced mass during F-term inflation can trigger the phase 

transition after/during inflation.

-We can constrain the symmetry breaking scale via CMB B-mode 
detection. 

-Monopoles can be diluted enough but still observable future 
experiments such as IceCube. 

-Cosmic Strings can be detected by CMB high l scale or B-mode 

observation. 

-Interesting scale is around                            .  κM � 1013GeV


