XFEL Accelerator R&D Status Fault Diagnosis for the LLRF control system

Annika Eichler, Julien Branlard 12.09.2025

normal/anomaly

Scope of the R&D activity (extension 2024-2027)

Summary

Detect and mitigate anomalies and failures in the LLRF system for increased availability of the European XFEL

Interface

- MSK LLRF (Julien Branlard), Software (Nadeem Shehzad) and Firmware (Burak Dursun)
- Other XFEL proposals: CW LLRF development

Deliverables

- Concept: **Two-step** anomaly classification
- Prototype(s): **Online** anomaly classification

1st step Anomaly cavity signals

detection

2nd step

Anomaly classification

what kind?

HELMHOLTZ

Courtesy: Nick Walker

Achievements in the past year

- Prototype: Online anomaly detection
 - Software implementation
 - Firmware implementation

1st step

Anomaly detection

2nd step

Anomaly classification

- Improvement on the classifier training
 - Efficient classifier (with respect to computation effort/ board resources and delays)

cavity signals

- ► Neural architecture search
- Multi-class classification (instead of binary classifier Quench/no Quench before)
 - ► Labelling as prerequisite

what kind?

- Implementation in C++ utilizing the ChimeraTK software framework to communicate with other servers
- A24 as test station (dedicated hardware had to be installed: 2 servers + dedicated Ethernet communication links)
- Challenges and mitigations
 - Computing load on in-crate CPU → new dedicated server
 - Bandwidth limitations, DAQ packet loss → dedicated
 Ethernet connection
 - Getting the IQ components → data correction
 - Reliable beam information source (different station with a different timing) → synchronization with PIDs

Annika Eichler, MSK, 12.9.2025

Prototype: Online anomaly detection in firmware

- Specifications
 - Implemented on DAMC-TCK7
 - Application clock: 81.25 MHz
 - Throughput: 1/7 clock cycles
 - Latency: 9 clock cycles for residual, 12 clock cycles for GLR, ~50us for K=450
- Challenges and mitigations
 - Sufficient performance and throughput while minimalizing resources → optimized **VHDL implementation** (future with NAS)
 - **Co-simulation** against software implementation
 - Careful scaling for **fixed-point operation** \rightarrow co-simulation (python+SW)

single cavity anomaly detection, red: LLRF controller for 32 cavities)

XFEL Accelerator R&D Status Annika Eichler, MSK, 12.9.2025

Courtesy: Burak Dursun

Software vs firmware

Software	Firmware
Interpulse detection (10Hz) (many faults do not need intrapulse reaction)	Intrapulse detection → intrapulse reaction and mitigation (quenches)
Additional hardware → installation with tunnel access	No additional hardware → rollout without tunnel access
Easy prototyping	Very optimized implementation → time consuming and dedicated personnel
Modular	

HELMHOLTZ

Eichler, A., Shezad, N., et. al. (2025). Enhancing quench detection in SRF cavities at the EuXFEL: Towards machine learning approaches and practical challenges. IPAC25. https://doi.org/ 10.18429/JACoW-IPAC25-THPS134 (to appear)

Neural architecture search (NAS)

- Goal: find a light-weight neural network architecture for FPGA deployment
- Trading of complexity vs. performance by optimization

Anomaly measure	Model	AUROC	FLOPS	SIZE
EUC	NAS	0.9950	11367	10847
	Manual	0.9903	38305	37537
DTW	NAS	0.9662	241	193
	Manual	0.9665	551	471

Boukela, L., Branlard, J., & Eichler, A. (2025). Exploring NAS for anomaly detection in superconducting cavities of particle accelerators. Frontiers in Physics, 13. https://doi.org/10.3389/fphy.2025.1553993

Multi-class classification: Expert labeling

- EVA: tool for eased data labelling
 - Bringing together all information from different sources (QDS, root cause by Nick's data base → note all are event-wise not pulse-wise)

Deviations from plan

- Personal left
 - New personal had to jump in
 - Outsourcing to MSK software and firmware group (schedule of these groups are full → delays)
 - \blacksquare Adaption of content \rightarrow at the beginning less implementation, more algorithmic development (NAS)
- Installation in tunnel
 - Failed hardware and long delivery times
 - Limited access for tunnel installation → delays

Timeline

Date / Period	Milestone Description	New Date/ Period
Q4/2021	Hire software expert	Q2/2022
	Reason: the person hired left, new hire process	
Q4/2023	Module integration of signal calibration (PostDoc)	Q4/2025
	Reason: delays in unifying the firmware and software implementation	
Q2/2023	Online implementation of the trip event logger (PostDoc)	Q4/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	In-depth offline analysis	Q2/2025
	Reason: the person in charge left, new PhD student jumped in	
Q3/2023	Online analysis of the cavity module (PostDoc)	Q3/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	Hire PostDoc	
Q3/2023	Scalable solution of the infrastructure (PostDoc)	Q3/2024
	Reason: Several attempts to get system in tunnel up and running	
	combined with limited opportunity to access tunnel	
Q4/2023	Fault classification and data labeling in one subsystem (PostDoc)	Q4/2025
Q3/2024	Infrastructure updates for feedback to allow system recovery and fault	Q4/2025
	prevention (PostDoc) → good progress, not finished	
Q4/2024	Continuous learning through human in the loop strategy with the active	Q2/2025
	labeling → started, delayed Q4/2025	
Q2/2025	Analysis of the overall system with regard to all modules and capabilities	
	(PostDoc)	

Timeline + Deviations

Date / Period	Milestone Description	New Date/ Period
Q4/2021	Hire software expert	Q2/2022
	Reason: the person hired left, new hire process	
Q4/2023	Module integration of signal calibration (PostDoc)	Q4/2025
	Reason: delays in unifying the firmware and software implementation	
Q2/2023	Online implementation of the trip event logger (PostDoc)	Q4/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	In-depth offline analysis	Q2/2025
	Reason: the person in charge left, new PhD student jumped in	
Q3/2023	Online analysis of the cavity module (PostDoc)	Q3/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	Hire PostDoc	
Q3/2023	Scalable solution of the infrastructure (PostDoc)	Q3/2024
	Reason: Several attempts to get system in tunnel up and running	
	combined with limited opportunity to access tunnel	
Q4/2023	Fault classification and data labeling in one subsystem (PostDoc)	Q4/2025
Q3/2024	Infrastructure updates for feedback to allow system recovery and fault	Q4/2025
	prevention (PostDoc) → good progress, not finished	
Q4/2024	Continuous learning through human in the loop strategy with the active	Q2/2025
	labeling → started, delayed Q4/2025	
Q2/2025	Analysis of the overall system with regard to all modules and capabilities	
	(PostDoc)	

Personal left

- New personal had to jump in
- Outsourcing to MSK software and firmware group (schedule of these groups are full → delays)
- Installation in tunnel
 - Failed hardware and long delivery times
 - Limited access for tunnel installation

Timeline + Deviations

Date / Period	Milestone Description	New Date/ Period
Q4/2021	Hire software expert	Q2/2022
	Reason: the person hired left, new hire process	
Q4/2023	Module integration of signal calibration (PostDoc)	Q4/2025
	Reason: delays in unifying the firmware and software implementation	
Q2/2023	Online implementation of the trip event logger (PostDoc)	Q4/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	In-depth offline analysis	Q2/2025
	Reason: the person in charge left, new PhD student jumped in	
Q3/2023	Online analysis of the cavity module (PostDoc)	Q3/2024
	Reason: the person in charge left, new PhD student jumped in	
Q4/2022	Hire PostDoc	
Q3/2023	Scalable solution of the infrastructure (PostDoc)	Q3/2024
	Reason: Several attempts to get system in tunnel up and running	
	combined with limited opportunity to access tunnel	
Q4/2023	Fault classification and data labeling in one subsystem (PostDoc)	Q4/2025
Q3/2024	Infrastructure updates for feedback to allow system recovery and fault	Q4/2025
	prevention (PostDoc) → good progress, not finished	
Q4/2024	Continuous learning through human in the loop strategy with the active	Q2/2025
	labeling → started, delayed Q4/2025	
Q2/2025	Analysis of the overall system with regard to all modules and capabilities	
	(PostDoc)	

- Content changes
 - Personal left
 - Adapt to skills of personal

Risks to R&D Project

- Helps needed from other groups (software and firmware) → strong involvement
- Personal (difficulties in hiring and keeping personal with the right skill set)

Outlook / Summary

Outlook

- Protoype:
 - ▶ Software solution: Improvements (offline feature, data analysis, etc.) in the LIMP, afterwards testing
 - ► Firmware: **Codesign** and implementation of classifier
- Classifier
 - ► Model training and evaluation
 - Active learning

Publications

- Eichler, A., Shezad, N., et. al. (2025). Enhancing quench detection in SRF cavities at the EuXFEL: Towards machine learning approaches and practical challenges. IPAC25.
- Boukela, L., Branlard, J., & Eichler, A. (2025). Exploring NAS for anomaly detection in superconducting cavities
 of particle accelerators. Frontiers in Physics, 13.
- Boukela, L., Eichler, A., Branlard, J., & Jomhari, N. Z. (2024). A Two-Stage Machine Learning- Aided Approach for Quench Identification at the European XFEL. 12th IFAC SafeProcess
- Eichler, A., Branlard, J., & Timm, J. H. K. (2023). Anomaly detection at the European X-ray Free Electron Laser using a parity-space-based method. Physical Review Accelerators and Beams, 26(1).
 - https://doi.org/10.1103/physrevaccelbeams.26.012801