XFEL Accelerator R&D Status Report RP-214: Basic CW gun research with the PITZ photo injector

European XFEL

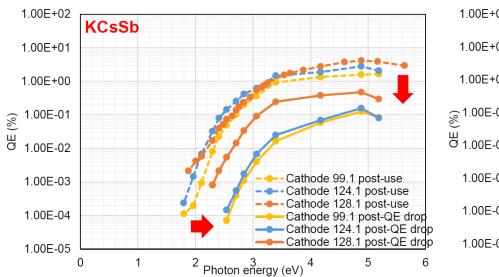
Frank Stephan, <u>Mikhail Krasilnikov</u> 12.09.2025

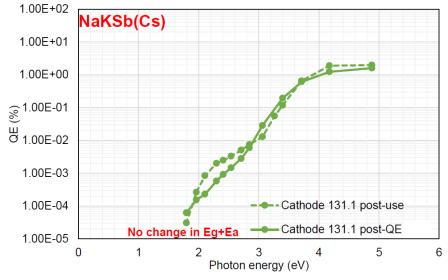
Scope of the R&D activity

- **Beam dynamics** results relevant for electron sources running in CW (HDC) operation \rightarrow beam quality at different:
 - gun gradients from 20MV/m to 60MV/m (assumed to be an upper limit for CW SRF gun)
 - types of photocathodes: green vs Cs₂Te (reference case), their emission properties / usability at CW gradients
 - various shapes of photocathode laser pulse (in close connection to RP-216: Photo Cathode Laser Shaping)
 - simulation studies for SRF photo injector combined with start-to-end XFEL simulations aiming to figure out a
 correlation between beam brightness at the undulator with beam performance after the photo injector
- Studies on cathode material, sensitive to the VIS laser (Green cathodes):
 - Green cathode production system at LASA INFN Milano setup to deliver green cathodes to PITZ for tests with RF gun at high gradients.
 - First tests with KCsSb at PITZ: good QE, lower thermal emittance, short response time, but high dark current and short life time
 - Improvements of the green cathode recipe toward high quality green cathodes for CW (HDC) operation
 - Nanostructured photocathodes (intended for use in the CW SRF photogun) are also planned to be tested under high-gradient, long-RF-pulse conditions → collaboration established

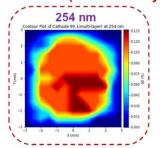
Achievements in 2024: Post-Usage Analysis of the Second Batch of Green Cathodes

- 4 cathodes were produced:
 - 3 KCsSb (modified recipes) → QE ~ 8-9.6%@514nm
 - 1 NaKSb(Cs) \rightarrow QE ~ 0.006%@514nm
- All of these cathodes were successfully transported and tested in the PITZ RF gun
 - No major vacuum events occurred during operation
 - Dark current remained stable over time but was higher than that of the Cs₂Te cathode
 - Measured thermal emittance was approximately
 x2 higher than the first batch and theoretical expectations; the reason is unknown (partially measurement discrepancy)
 - QE degradation (< 1%) in ~3 days of operation
 - No visible color change is observed after use
- One month after the initial spectral analysis, KCsSb cathodes showed color change and QE drop, while NaKSb(Cs) cathode remained unchanged

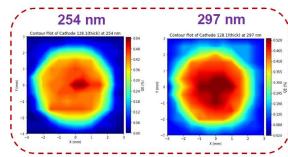




Achievements in 2024: Green cathodes, post QE-drop investigations


QE drop one month after the initial spectral analysis:

- Eg + Ea increased for all three KCsSb cathodes (from 1.9 eV to ~2.54 eV), while there was no change for NaKSb (Cs)
- RGA analysis → no major contamination detected
 → No conclusive evidence from RGA to explain the observed QE drop in KCsSb cathodes
- QE maps (measured for all four cathodes at different wavelengths post-QE drop) showed reasonable uniformity.



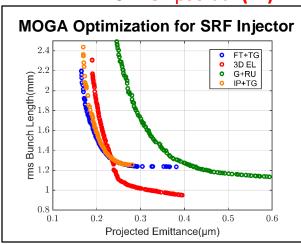
Cathode 99.1 (Thin multi-layer)

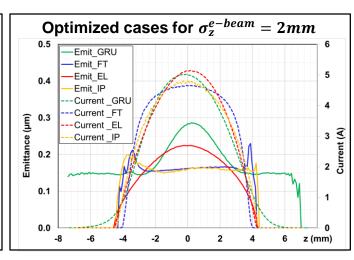


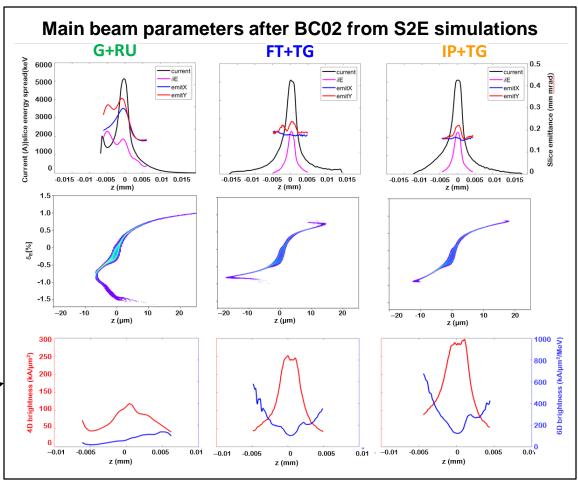
Cathode 128.1 (Modified thick)

M. Krasilnikov, scientist / PITZ, 12.09.2025

Cathode 131.1 (NaKSb(Cs))

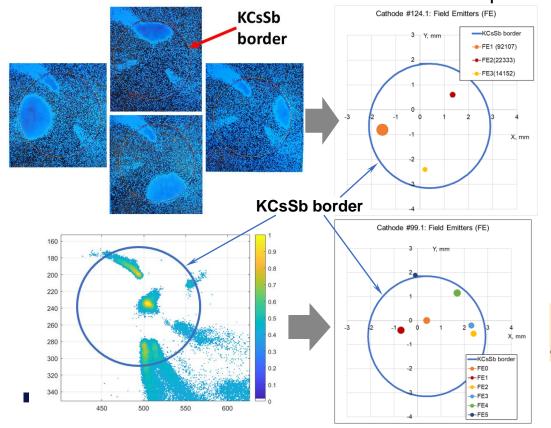

PhD Thesis "Development of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors" was defended by Sandeep Mohanty at University of Hamburg, PUBDB-2024-07054

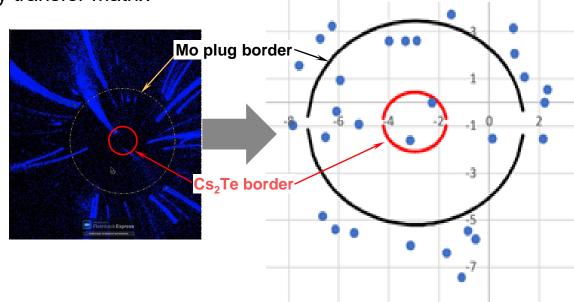



Achievements in the past year: BD simulations for SRF Photoinjector \rightarrow Benchmarking at PITZ

- Comparison of photocathode laser pulse profiles:
 - Temporal: Gaussian (G), flattop (FT), inverted parabolic (IP)
 - Transverse: radially uniform (RU), truncated Gaussian (TG)
 - 3D: ellipsoidal (EL)

- Optimized Photoinjector (100pC from SRF gun + A1)
 - → further track (S2E, incl BCs) to undulator -
- \rightarrow Laser pulses with IP+TG are promising, brightness B_{4D,6D}:
- from the injector: comparable to EL
- after BC02 (S2E simulations): better as compared to FT
- With less technically challenges to produce these shapes




Achievements in the past year: Dark current imaging at PITZ → for SRF Gun

- Method for Localizing Field Emitters (FE Mapping) at the Cathode Plane of the RF Photogun

 Based on dark current imaging; developed and tested at PITZ for both KCsSb and Cs₂Te photocathodes
 - Use photoelectron beam with controlled laser spot positioning (via virtual cathode camera)
 - Identify borders of active photocathode area using a large laser spot

Localize field emitters with a small laser spot → apply transfer matrix

→ The method is anticipated to be applicable to the SRF CW gun (Ts4i)

Cs₂Te cathode #755.1

Deviations from plan

- PITZ Timeline Update (2024–2025) → Gun5 for XFEL is the highest priority !!!:
 - Gun5.1 was dismounted for refurbishment, including the cathode hole and contact spring \rightarrow not for use at XFEL
 - Gun5.2 since January 2025 in operation at PITZ (conditioning + characterization with e-beam) → XFEL Sept.2025
 - Gun5.3, now FALCO (single-side power coupler) → PITZ in October 2025+ symmetric power coupler (once ready), with conditioning and characterization planned to start at the end of 2025
 - Several major technical failures significantly disrupted the characterization schedule:
 - ▶ Water leak in the bucking solenoid, requiring its replacement along with one RF window. This necessitated opening the gun vacuum system, leading to a ~3-week shutdown and a subsequent re-conditioning period
 - ▶ Campus-wide *power outage* at DESY Zeuthen on 21.04.2025, resulted in ~2.5 weeks of down-time
 - ► Failure of the RF1 (booster) klystron modulator capacitor bank, causing an estimated ~4-week delay.
- 2nd batch green cathodes was tested with the Gun5.1 at PITZ in summer 2024, still not expected performance, post-use analysis done. Since January 2025 Gun5.2 in operation at PITZ → risk of contamination → no further green cathode tests → all milestones with green cathodes test at PITZ are not achievable (prioritization)
- Additional studies with Gun5.2 using flattop laser pulses from NEPAL-P were carried out at 60 MV/m. Tests at *lower gradients* were postponed due to limited operation time and the priority given to **long-term high-gradient studies of Gun5.2**. It is not clear whether this milestone can be reached by the end of 2025 by using Gun5.3.

Timeline of this R&D activity

Proposed Date	Milestone Description	Updated Date
	Poor shows to vivation and amission proporties at CO MV/m (Supporting to CM/SC gup) with allipseidal and other	nortially done
Q4/2023	Beam characterization and emission properties at 60 MV/m (~upper limit for CW SC gun) with ellipsoidal and other	partially done
Q4/2025	advanced laser pulse shapes and Cs2Te cathodes	Q3/2021
	Some further studies done with Gun5.2 and flattop laser pulses from NEPAL-P	Q3/2025
Q4/2023	Beam characterization and emission study at realistic NC CW gun gradients	partially done
Q4/2025	(probably in the range 20-30 MV/m) with flat-top laser pulse shapes and Cs2Te cathodes	Q3/2021
	Due to the limited operating time of Gun5.2, we did not have time to perform these studies as the characterization at	
	60MV/m had higher priority for the XFEL operation. It is not clear whether this can be reached by the end of 2025.	
Q1/2023*	First beam characterization and emission study at realistic NC CW gun gradients	partially done
Q1/2024*	(probably in the range 20-30 MV/m) with flat-top laser pulse shapes and green cathodes	Q3/2024
Q2/2023*	Further development of deposition method for the production of green cathodes allows to reach longer lifetime and lower	partially done
Q4/2023*	vacuum sensitivity. Improvements are observed but are not sufficient yet.	Q4/2022 and Q3/2024
Q2/2023*	Beam characterization and emission study at ~40 MV/m with Cs2Te or/and green cathodes	Partially done
Q4/2023*		Q3/2024
Q2/2024	Robustness of green cathodes is increased so that they can be operated at 60 MV/m	highly unlikely to be
Q4/2025*	First beam characterization and emission study at 60 MV/m with flat-top laser pulse shapes and green cathodes	achievable achievable
	Reproducible production of high-quality green cathodes for continuous operation	
	Beam characterization and emission study at 60 MV/m with ellipsoidal laser pulse shapes and green cathodes	

Risks to R&D Project

Green cathode test:

 Due to the prioritization of Gun5 (Gun5.2 and Gun5.3 for XFEL), operation with green cathodes is not foreseen before the end of 2025 (last 4 month of the project)

Gun5 operation at PITZ:

- Gun5.1 was dismounted for refurbishment (incl. the cathode hole and contact spring), currently not for use
- Gun5.2 is on the way to XFEL
- Gun5.3, after pre-conditioning at FALCO with a single-side power coupler, is expected to be delivered to PITZ
 (October 2025), will be equipped then with a symmetric power coupler, with conditioning and
 characterization planned to start in Fall/Winter 2025.

Other risks:

- Hardware failures (e.g., RF systems; three major technical failures already in 2025)
- Conflicts with other tasks

Outlook / Summary

- XFEL Accelerator R&D activities RP-214: "Basic CW gun research with the PITZ photo injector" in 2025:
 - Beam characterization and emission studies with flattop laser pulses at 60 MV/m in Gun5.2
 - Green cathode tests: performance still below expectations; post-use analysis ongoing
 - Collaboration on nanostructured photocathodes (for CW SRF photogun) established
 - Dark current imaging (FE mapping) procedure developed and tests → to be applied at CW SRF gun (Ts4i)
- Plan for a follow-up proposal:
 - Specific studies for HDC (Scenario 3 / Gun5)
 - Developments and testing of components (e.g., nanostructured cathodes) for CW XFEL operation

List of publications:

- S. Mohanty, "Development of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors", PhD Thesis,
 University of Hamburg, PUBDB-2024-07054
- S. Zeeshan et al., "Beam dynamics optimization in high-brightness Photo Injector with various photocathode laser pulse shapes", in Proc. IPAC'25, Taipei, Taiwan, Jun. 2025, pp. 1454-1457. doi:10.18429/JACoW-IPAC25-TUPS019

