XFEL Accelerator R&D Status Report RP-421: THz Generation at PITZ

European XFEL

Continuing R&D of accelerator-based THz source for pump-probe experiments at the European XFEL

DESY

Frank Stephan, <u>Mikhail Krasilnikov</u> 12.09.2025

Scope of the R&D activity

- THz@PITZ is R&D towards an accelerator-based THz source for pump-probe experiments at the European XFEL. After successful demonstration of 3THz generation at PITZ, this follow-up proposal targets the following goals:
 - Experimental verification of remaining key challenges that will influence the conceptual layout
 - ▶ Demonstrating continuous **tunability** (1-5 THz) of the undulator source, understanding and improving seeding options for better radiation stability, and engaging the bunch compressor for different modes of operation. A key tool to achieve this is to use and tune the now available advanced photo-cathode laser pulse shaping (6 weeks beam time).
 - ▶ Demonstrate **broadband** THz radiation generated through coherent transition or diffraction radiation (CTR/CDR) using compressed or modulated electron bunches (2 weeks beam time).
 - ▶ Demonstrate that the **high electric field strength** (>1-2 MV/cm) can be reached (6 weeks beam time).
 - Conceptual layout of a photoinjector-based facility optimized as a tunable, high-power THz source for pump probe experiments at the European XFEL
- Start Q3/2025

Achievements in 2025: July-August

- 2 Postdocs employed:
 - Dr. Namra Aftab (THz diagnostics, simulations, experiments planning)
 - Dr. Siriwan Pakluea (EOS design, advanced THz diagnostics)
- Standard THz diagnostics setup:
 - TD3 refurbished to upgrade Michelson interferometer (+reference signal)
 - TD1 (after BC) redesigned
- 2 Run blocks (22 shifts in week 28 + 6 shifts in week 35)
 - Restored 3THz lasing, transverse distribution with THz camera
 - Upgraded Michelson Interferometer commissioning
 - First 5THz light generated
- First EOS design considerations using available laser systems at PITZ
- Supplementary simulations for THz generation at PITZ:
 - 5THz proof-of-principle experiment
 - Waveguide and wakefield effect estimation
 - Bunch compressor (BC) case studies: THz FEL and superradiance

Achievements in 2025: THz diagnostics

Upgrade of THz diagnostics Station (TD3)

- adding reference signal

3THz spot vs camera position (+BPF)

Design Considerations for Electro-Optic Sampling (EOS) at THz FEL at PITZ - Amplitude encoding spectra interferometry: Temporal profile measurement

Parameter	PHAROS		NEPAL-P		
rarameter	OSC	PA	OSC	PA	
Wavelength	1030 nm	1030 nm	1030 nm	1030 nm	
Pulse length	80 fs	254 fs	300 fs	1 ps	
Bandwidth	18 nm	5 nm	5 nm	2.5 nm	EQS.M02
Pulse energy	4 nJ	20 μJ	2 nJ	40 μJ	EOS.M03
Rep.rate	72 MHz	1 MHz	54 MHz	4.5 MHz	TD3.M2
Expected time resolution	- Step scan: 80 fs - Spectral encoding: 1.5 ps - Amplitude encoding: 80 fs	 Step scan: no Spectral encoding: 2.76 ps Amplitude encoding: 254 fs 	- Step scan: no - Spectral encoding : 3 ps - Amplitude encoding: 300 fs	no	EOS.M01 TD3.M1
	BS	EOS.M.	EOS.M2	Pyroe detect	EOS.M06 Reference After EO sampling Envelope
Rlaser	HWP	g		ctrometer or	5 10 15 20 25 30 35 40 45 : Time (ps)

Achievements in 2025: Supplementary simulations for THz generation at PITZ

Deviations from plan

- PITZ Timeline Update (2024–2025) → Gun5 for XFEL is the highest priority !!!:
 - Gun5.2 in operation at PITZ (conditioning + characterization with e-beam) 14.01.2025- 31.08.2025 → XFEL Sept.2025
 - Gun5.3, now FALCO (single-side power coupler) → PITZ in October 2025+ symmetric power coupler (once ready), with conditioning and characterization planned to start at the end of 2025
- Up to now 28 shifts (67% of 42 shifts planned for 2025) operation for THz generation

Timeline of this R&D activity

Propose d Date	Milestone Description	Updated Date	
Q3/2025	Personnel assigned to THz@PITZ	Done	
Q3/2026	Continuous tunability of the undulator source from 1 - 5 THz demonstrated	Started	
Q4/2026	Initial structure (TOC) of the conceptual layout report defined		
Q2/2027	CTR/CDR broadband THz radiation demonstrated at PITZ		
Q4/2027	Initial layout of a THz source at XFEL is available		
Q2/2028	High electric fields of > 1-2 MV/cm demonstrated		
Q3/2028	Conceptual layout report completed		

Risks to R&D Project

- Gun5 operation at PITZ:
 - Gun5.2 is on the way to XFEL → only 1.3 week operation of 2 weeks planned for 2025
 - Gun5.3, after pre-conditioning at FALCO with a single-side power coupler, is expected to be delivered to PITZ (October 2025), will be equipped then with a symmetric power coupler, with conditioning and characterization planned to start in Fall/Winter 2025. → maybe no 1.7 week operation is possible in 2025
- Other risks:
 - Hardware failures (e.g., RF systems; three major technical failures already in 2025)
 - Conflicts with other tasks

Outlook / Summary

- XFEL Accelerator R&D activities RP-751: "THz Generation at PITZ" is started from Q3/2025:
 - 2 Postdocs employed:
 - Standard THz diagnostics setup upgrade and commissioning
 - 2 Run blocks (28 shifts): 3THz recovered, THz radiation transverse distribution imaging, upgraded MIF commissioning and first 5THz light
 - First EOS design considerations using available laser systems at PITZ
 - Supplementary simulations for THz generation at PITZ
 - Next steps: continue tunability + spectrum, pulse train flatness, CTR with BC, "ideal" facility layout

List of presentations/publications:

- M. Krasilnikov et al., "High Power Single Pass THz FEL in Operation at PITZ", talk and paper (IEEE) at 50th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2025)
- N. Aftab "Overview of THz Diagnostics at PITZ", talk and paper (IEEE) at 50th International Conference on Infrared,
 Millimeter, and Terahertz Waves (IRMMW-THz2025)
- S. Pakluea "Design Considerations for Electro-Optic Sampling at THz FEL at PITZ", poster at student workshop of IRMMW-THz2025

