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Higgs Boson in the Standard Model and Beyond

The 2012 discovery of the Higgs boson was a landmark event in
Particle Physics.

Any deviation from the SM prediction of the Higgs boson decay
channels would be a strong indication of new particles, pointing to
Physics Beyond the Standard Model.
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The Inert Doublet Model (IDM)

The IDM extends the Standard Model by adding a second
scalar doublet. These two doublets are distinguished by an

exact Z2 symmetry.

Standard Model Doublet (H1):
q H1

Z2−→ H1.
q Acquires a VEV, breaking

electroweak symmetry.
q Gives mass to SM particles.

H1 =

(
G+

1√
2(v + h0 + iG0)

)

Inert Doublet (H2):
q H2

Z2−→ −H2.
q Does not acquire a VEV.
q The lightest scalar particle is stable.

H2 =

(
H+

1√
2(H

0 + iA0)

)
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The Tree-Level Higgs Potential

The tree-level potential V(H1,H2) in the Inert Doublet Model is
crucial for defining the masses and interactions of the scalar sector.

V(H1,H2) = µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4

+ λ3|H1|2|H2|2 + λ4|H†
1H2|2 +

1
2λ5[(H†

1H2)
2 + h.c.]

(1)

q Mass Terms (µ2
1, µ

2
2)

q Self-Interaction Terms (λ1, λ2)
q Mixed Interaction Terms (λ3, λ4, λ5)
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The Scalar Masses at Tree Level
Following electroweak symmetry breaking, the scalar sector gives
rise to five physical Higgs bosons [1]:

M2
h = λ1v2 (2)

M2
H = µ2

2 +
1
2λ345v2 (3)

M2
A = µ2

2 +
1
2 λ̄345v2 (4)

M2
H± = µ2

2 +
1
2λ3v2 (5)

where λ345 ≡ λ3 + λ4 + λ5 and λ̄345 ≡ λ3 + λ4 − λ5.

The lightest inert boson is a prime candidate for dark
matter due to the Z2 symmetry preventing it from decaying

into Standard Model fermions.
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The Low-Energy Higgs Theorem

The Higgs low-energy theorem is a powerful tool that
relates the amplitudes of two processes which differ by the

insertion of a Higgs-boson leg with zero external
momentum [2, 3].

Ah =
∂A
∂h (6)

q First Assumption: pµh → 0
q From the translational invariance, it follows that:

[pµ, h] = i∂µh = 0 → constant field h
q Redefinition of all the masses of the theory that are acquired

through the Higgs mechanism: mi → mi
(
1 + h

v
)

.
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q Second Assumption: mh ≪ mloop
By integrating out heavy degrees of freedom, we get an Effective
Lagrangian for a generic decay h → XX:

Lh
eff ⊃ −1

4ChXX h XµνXµν (7)

in which the coupling is defined as:

ChXX =
∂

∂hΠXX(p2 = 0)
∣∣∣∣
h=0

(8)

and ΠXX is the gauge boson’s vacuum polarization.

The effective coupling, ChXX, is given by the HLET relation:

ChXX =
∂ΠXX
∂h =

∂ΠXX
∂mloop

∂mloop
∂h (9)

This is a computational shortcut, as the derivative with respect to the loop mass
(mloop) is equivalent to the derivative with respect to the Higgs field (h) itself.
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Methods and objectives

My work explores one-loop-induced Higgs boson decays [4].

Figure: Top loop and W boson loop contributions

q Application of the Background Field Method [5, 6] and t’Hooft-Feynman gauge
fixing (ξQ = 1) for the quantum fields.

q Comparison between the SM results, both in the HLET approximation and the
full loop calculation, and the IDM ones.

q Study of the decoupling regime as a function of the λ3 coupling and the H±

mass.
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HLET Application to h → γγ

The effective operator [1] obtained with the HLET is:

Leff ⊃ −1
4ChγγhFµνFµν (10)

and the coupling Chγγ reads:

Chγγ =
∂

∂hΠγγ(p2 = 0)
∣∣∣∣
h=0

(11)

q The vacuum polarization function Πγγ(p2) is defined from the
photon self-energy tensor:

Σµν
γγ(p2) = (p2gµν − pµpν)Πγγ(p2). (12)
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Comparison between SM and IDM decay widths

The IDM Feynman diagrams for h → γγ include additional
contributions from the charged Higgs boson H+:

q The HLET one-loop main contributions in the decay width [7]
are given by the following terms:

Γ(h → γγ) =

√
2α2

emGFm3
h

16π3

∣∣∣I (1)t + I (1)W + I (1)H±

∣∣∣2 (13)

where the IDM adds: I (1)H± = − 1
12

(
1 − µ2

2
m2

H±

)
= − 1

24

(
λ3v2

m2
H±

)
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H± contributions in the decay width

q Suppression of the H± loop contribution in the high mass limit in line with the
decoupling theorem;

q Enhancement of the contribution for higher values of the λ3 coupling.
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H± contributions: relative difference between full
amplitude and HLET approximation

q The HLET approximation becomes accurate (< 1%) for MH± > 600GeV.
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λ3 = 1

q The HLET underestimates the decay widths both for SM and IDM;
q The IDM width converges to the SM prediction for MH± > 500 − 600GeV;
q The mixed approach (green line SM + HLET for H±) is accurate in the

decoupling limit of  MH± → ∞.
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λ3 = 10

Nataly Debellis DESY Summer Student Programme 2025 13/18



HLET Application to h → Zγ

q Effective Lagrangian for Zγ :

Leff ⊃ −1
4F0µνZ0

0µνΠ
0
Zγ(0), (14)

where Π0
Zγ(0) is the Zγ self-energy at zero external momentum. [2]

q Decay width:

Γ(h → Zγ) =
√

2α2
emGFm3

h
128π3

(
1 − m2

z
m2

h

)3 ∣∣∣J (1)
t + J (1)

W + J (1)
H±

∣∣∣2 (15)

where J (1)
t , J (1)

W , J (1)
H± are respectively the top loop, W boson and H±

amplitude contributions.
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H± contributions in the decay width

q Suppression of the H± loop contribution in the high mass limit in line with the
decoupling theorem;

q Enhancement of the contribution for higher values of the λ3 coupling.
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λ3 = 1

q The HLET here overestimates the decay widths both for SM and IDM;
q The IDM width converges to the SM prediction for about MH± > 600GeV as

well;
q The mixed approach (green line SM + HLET for H±) remains accurate in the

decoupling limit of MH± → ∞.
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λ3 = 10
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Conclusions

q Comparison between full SM and HLET results
The Low-Energy Theorem fails to accurately describe the W
loop contribution because the assumption mh ≪ mW is
invalid, resulting in a ~30% error. As a consequence, the
HLET underestimates the Γ(h → γγ) decay width and
overestimates Γ(h → Zγ).

q IDM contributions
The IDM introduces contributions from the charged Higgs
boson which, in the decoupling limit (MH± → ∞), approach
zero, as expected.

q HLET high-mass validity in the IDM
The HLET approximation (SM Total + HLET H±) is shown
to be reliable at high values of MH± .
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Thank you!



Appendix:
HLET One-Loop Corrections for Γ(h → γγ)

The one-loop corrections to the Higgs to di-photon decay width
[7] are given by the following terms:

Γ(h → γγ) =

√
2α2

emGFm3
h

16π3

∣∣∣I(1)t + I(1)W + I(1)H±

∣∣∣2 (16)

The expressions for the one-loop contributions read:

q I(1)H± = − 1
12

(
1 − µ2

2
m2

H±

)
= − 1

24

(
λ3v2

m2
H±

)
q I(1)t = −4

9

q I(1)W = 7
4



Appendix: Mathematica calculation steps
Calculation Procedure:

1. Amplitude generation using FeynArts for:
q Top quark loop contribution
q W-boson loop contribution
q H± loop contribution (IDM)

2. Algebraic manipulation with FeynCalc:
q Projection with projPiµν (p)
q Tensor reduction via TID
q Expression in terms of

Passarino-Veltman integrals
3. Dimensional regularization (D = 4 − 2ϵ):

UV divergence expansion:
q A0(x) → ϵA0e(x)+Afin

0 (x)+ x
ϵ
+O(ϵ2)

q B0(x) → ϵB0e(x)+Bfin
0 (x)+ 1

ϵ
+O(ϵ2)

q C0(x) → ϵC0e(x) + Cfin
0 (x) + O(ϵ2)

4. Finite part evaluation at p2 → 0:

Finite contributions:
q Afin

0 (x) → x
(

1 − log
(

x
Q2

))
q Bfin

0 (p2, x, x) →
(p2)2
60x2 + p2

6x − log
(

x
Q2

)
+ O(p4)

q Cfin
0 (0, 0, y, x, x, x) →

− y
24x2 − 1

2x + O(y) (valid for y « x)

HLET Implementation for h → γγ:

q A(h → γγ) = AW + At + AH±

W-boson contribution:

q AW ∝ ∂
∂h Π

W
γγ (h)

∣∣∣∣
h=0

q mW(h) = mW
(

1 + h
v

)
q D[Pizero$G /. mW -> mW (v + h)/v, h] /.

h -> 0
Top quark contribution:

q At ∝ ∂
∂h Π

t
γγ (h)

∣∣∣∣
h=0

q mt(h) = mt
(

1 + h
v

)
q D[Pizero$t /. mt -> mt (v + h)/v, h] /.

h -> 0
Charged Higgs contribution (IDM):

q AH± ∝ ∂
∂h Π

H±
γγ (h)

∣∣∣∣
h=0

q D[Pizero, h] /. h -> 0



Appendix:
Background Field Method and Gauge fixing

q Calculation performed using the Background Field Method
(BFM) [5, 6]

- Splits fields: Aµ = Âµ + aµ (background + quantum)
- Preserves gauge invariance for background fields
- Breaks gauge symmetry only for quantum fluctuations

q ’t Hooft-Feynman gauge fixing (ξQ = 1) for quantum fields
- Significant simplification of loop algebra

The BFM preserves background gauge symmetry while
breaking symmetry only for quantum fluctuations.
The choice ξQ = 1 streamlines calculations without

affecting physical results.



Appendix:
Theoretical Constraints on the Higgs Potential

q Vacuum Stability
The scalar potential must be bounded from below.

q λ1 > 0, λ2 > 0
q λ3 + λ4 + λ5 +

√
λ1λ2 > 0

q Perturbative Unitarity
Scattering probabilities of scalar particles must not violate
unitarity.

q Inert Vacuum Condition
The model requires that the Standard Model-like vacuum
(⟨H1⟩ ̸= 0, ⟨H2⟩ = 0) is the global minimum of the potential.

q m2
H2

= µ2
2 +

1
2λ3v2 > 0
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