

The Standard Model (SM)

- Fundamental particles that constitute matter
- Fundamental forces of nature:
 - Electromagnetic force
 - Weak force
 - Strong force

The Standard Model (SM)

 One of the most successful theories in modern science

The Standard Model (SM)

doi:10.1016/j.physrep.2024.11.005

- One of the most successful theories in modern science
- Excellent agreement between SM theory & measurement
 - ... and a recent milestone discovery!

The Standard Model (SM)

doi:10.1016/j.physrep.2024.11.005

- One of the most successful theories in modern science
- Excellent agreement between SM theory & measurement

... and a recent milestone discovery!

The Standard Model (SM)

doi:10.1016/j.physrep.2024.11.005

 One of the most successful theories in modern science

Excellent agreement between SM theory & measurement

... and a recent milestone discovery!

"Physics would be far more interesting if [the Higgs boson] had not been found"

- Stephen Hawking

Beyond the Standard Model (BSM)

Despite its remarkable success in many respects, still fails to explain:

Why is there more **matter** than **antimatter** in the Universe?

Beyond the Standard Model (BSM)

Despite its remarkable success in many respects, still fails to explain:

Why is there more **matter** than **antimatter** in the Universe?

How to reconcile **general relativity** with **quantum mechanics**?

Beyond the Standard Model (BSM)

Despite its remarkable success in many respects, still fails to explain:

Why is there more **matter** than **antimatter** in the Universe?

How to reconcile **general relativity** with **quantum mechanics**?

Why is the **Higgs mass** so small compared to the Planck scale?

Why is the **CP-violating** θ parameter in QCD so small (or zero)?

What originates the **neutrino mass**?

Why are there **three generations** of quarks and leptons?

Beyond the Standard Model (BSM)

Despite its remarkable success in many respects, still fails to explain:

Why is there more **matter** than **antimatter** in the Universe?

Why is the **Higgs mass** so small compared to the Planck scale?

What is dark energy?

What originates the **neutrino**

Axion-Like Particles (ALPs)

One of the best motivated candidates for new particles beyond the SM

- Could be <u>mediator</u> to the dark sector (axion portal)
- Generic feature of supersymmetry and string theory
- Could explain why electroweak scale ≪ Planck scale

Axion-Like Particles (ALPs)

doi:10.5281/zenodo.3932430

Wide phenomenological parameter space and diverse possibilities for experimental searches

- ALPs can be radiated of a photon (γ) or a Z
 boson and be produced in association with a γ
- Relevant coupling for this process is C_{vv}

Axion-Like Particles (ALPs)

doi:10.5281/zenodo.3932430

6

Wide phenomenological parameter space and diverse possibilities for experimental searches

- ALPs can be radiated of a photon (γ) or a Z
 boson and be produced in association with a γ
- Relevant coupling for this process is C_{vv}

Future Circular Electron-Positron Collider (FCC-ee)

- Proposed next-generation collider at CERN as part of integrated FCC project
- Electron-positron machine in 91 km tunnel
- Run at 4 different centre-of-mass energies

Working Point	Z pole	WW thres.	ZH	t t
√s [GeV]	91.2	160	240	365
Integrated Lumi (L) [ab ⁻¹]	205	19.2	10.8	2.7

IDEA Detector

■ IDEA: Innovative Detector for Electron-positron Accelerators

Analysis Workflow

Event Generation

Detector Simulation

FCCAnalyses

Statistical Framework

- Generate physics process involving ALP in MadGraph
- Set mass, coupling, etc.

Analysis Workflow

Event Generation Detector Simulation LHE

Statistical Framework

- Generate physics process involving ALP in MadGraph
- Set mass, coupling, etc.

- Produce additional photons
- Reconstruct the event and imitate what it would look like in the detector

Analysis Workflow

- Generate physics process involving ALP in MadGraph
- Set mass, coupling, etc.

- Produce additional photons
- Reconstruct the event and imitate what it would look like in the detector
- Select interesting properties
- Apply cuts/selections
- Make histograms

Analysis Workflow

- Generate physics process involving ALP in MadGraph
- Set mass, coupling, etc.

- Produce additional photons
- Reconstruct the event and imitate what it would look like in the detector
- Select interesting properties
- Apply cuts/selections
- Make histograms
- Determine
 expected
 sensitivity to
 ALPs given the
 background

Event Generation

- MadGraph5_aMC@NLO:
 - Machine parameters: \sqrt{s} and L corresponding to physics run
 - ALP mass ranging from 0.01 GeV to 360 GeV
 - Model parameters: $C_{yy} = 1$, $\Lambda = 1$ TeV, $BR(\alpha \rightarrow \gamma \gamma) = 100\%$
 - ~1 million events per signal point, ~1 million per background

Photon Constraints

E ≥ 0.1 GeV pT ≥ 0 GeV $\eta \leq 2.6$ $\Delta R \ge 0$

Signal

Background

Event Generation

- MadGraph5_aMC@NLO:
 - Machine parameters: \sqrt{s} and L corresponding to physics run
 - ALP mass ranging from 0.01 GeV to 360 GeV
 - Model parameters: $C_{yy} = 1$, $\Lambda = 1$ TeV, $BR(\alpha \rightarrow \gamma \gamma) = 100\%$
 - ~1 million events per signal point, ~1 million per background

Photon Constraints

E ≥ 0.1 GeV pT ≥ 0 GeV η ≤ 2.6 ΔR ≥ 0

Signal

Background

√s Comparison

■ At higher centre-of-mass energies we can explore heavier ALPs, though Z pole provides unique opportunity for ALP studies

FCCAnalyses

A framework developed within the FCC project to perform physics analysis on simulated data

FCCAnalyses

A framework developed within the FCC project to perform physics analysis on simulated data

- Runs on event data (EDM4hep format)
- Defines new physics variables

FCCAnalyses

A framework developed within the FCC project to perform physics analysis on simulated data

- Runs on event data (EDM4hep format)
- Defines new physics variables
- Applies event selections (cuts)
- Defines plot parameters

FCCAnalyses

12

A framework developed within the FCC project to perform physics analysis on simulated data

Applying selections

13

Applying selections

13

Applying selections

Selection efficiency at √s = 365 GeV

Reduces background and maintains signal

Sample	No selections	3 reconstructed photons			
Signal					
m _a = 0.01 Gev	1	6.16 x 10 ⁻⁶			
m _a = 91.188	1	0.909			
m _α = 160 GeV	1	0.909			
m _α = 240 GeV	1	0.910			
m _α = 360 GeV	1	0.914			
Background					
e ⁺ e ⁻ →γγγ	1	0.583			

Selection efficiency at √s = 365 GeV

14

Reduces background and maintains signal, but..

Sample	No selections	3 reconstructed photons			
Signal					
m _a = 0.01 Gev	1	6.16 x 10 ⁻⁶			
m _a = 91.188	1	0.909			
m _α = 160 GeV	1	0.909			
m _α = 240 GeV	1	0.910			
m _a = 360 GeV	1	0.914			
Background					
e ⁺ e ⁻ →γγγ	1	0.583			

FCCAnalyses

The energy of the **photon** from the γ/Z decay has a fixed value E, determined by the **recoil formula**

$$E = \frac{s - m_a^2}{2\sqrt{s}}$$

FCCAnalyses

The **invariant mass** of the diphoton system:

$$m_{\gamma\gamma}^2 = (E_1 + E_2)^2 - \|\mathbf{p}_1 + \mathbf{p}_2\|^2$$

where p_i is the 3-momentum for photon i, i = 1,2

photon 0 = highest-energy photon,

photon **1** = second-highest-energy photon,

16

photon 2 = lowest-energy photon

FCCAnalyses

The **invariant mass** of the diphoton system:

$$m_{\gamma\gamma}^2 = (E_1 + E_2)^2 - \|\mathbf{p}_1 + \mathbf{p}_2\|^2$$

where p_i is the 3-momentum for photon i, i = 1,2

Combine

- Limit on cross section for three photon ALP signature at $\sqrt{s} = 365 \text{ GeV}$
- Background only expectation represented by median (dashed line)

ntroduction Overview Analysis Results Discussion

Results

- \blacksquare Compare sensitivity between Z-Pole and $t\bar{t}$ threshold runs
- Lower \sqrt{s} → lower couplings, higher \sqrt{s} → higher masses!

Jannah Abdelhafiz, Christina Dorofeev

ntroduction Overview Analysis Results **Discussion**

Summary

- Strong theoretical motivation to look for Axion-Like Particles
- We developed a full analysis workflow from event generation to limits
- Explored different ALP processes and couplings
- Analyzed process behavior and explored different selections
- Showed that FCC-ee would provide unique sensitivity and reach into previously unexplored parameter space

Jannah Abdelhafiz, Christina Dorofeev

ntroduction Overview Analysis Results Discussion

Outlook

- Further steps: discriminating variables, mass-dependent cuts
- Even further steps: different signatures (mono-photon), different couplings (Higgs)
- **■** The future looks promising!

Jannah Abdelhafiz, Christina Dorofeev

Backup

ALP Lagrangian

■ ALP (a) couplings to the SM arise at dimension-5, described by the effective Lagrangian in the unbroken electroweak phase with new physics scale ∧

$$\mathcal{L}_{\mathrm{eff}}^{D\leq 5} = \frac{1}{2}(\partial_{\mu}a)(\partial^{\mu}a) - \frac{m_{a}^{2}}{2}a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu}a}{\Lambda} \bar{f} \gamma_{\mu} \gamma_{5} f + \underbrace{g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A}}_{\text{f}} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + \underbrace{g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}}_{\text{kinetic term}}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

■ Additional interactions (Higgs) arise at dimension-6 order and higher

ALP Parameter Space

ALP Parameter Space

ALP Parameter Space

Axions and Axion-Like Particles (ALPs)

Axion

- Introduced to solve strong CP problem in QCD
- Compelling candidate for DM

Axion-like Particle

- Need not satisfy strict relationship between mass and coupling
- Wider phenomenological parameter space

Diverse possibilities for experimental searches

IDEA Detector

Process Comparison

■ aZZ has highest cross section but is not accessible at lower √s, assumes more couplings

Process Comparison

- aZZ has highest cross section but is not accessible at lower √s, assumes more couplings
- ay is the selected final state for this analysis (and previous work)

