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Why Plasma Accelerators?

• Compact size

• Millimeter-scale acceleration

• Compact alternative to 

traditional RF accelerators

• High gradients (100 GeV/m 

range)

Plasma wakefield accelerators
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Future Applications

• Next-gen light sources

• Medical accelerators

• Compact electron sources for 

materials science

• PETRA IV, High-energy physics 

experiments



Acceleration Mechanism
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Comparison of conical and cylindrical channels
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Time = 130.9 fs

Cylindrical Channel:

• Bunch trapped in decelerating field

• Self-injected electrons appear

Conical Channel:

• Bunch stays in accelerating field

• Extends acceleration time



Comparison of conical and cylindrical channels
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Laser field energy in the 
cylindrical region:
• Faster energy loss during 

propagation
• Less effective energy 

transport

Laser field energy in the 
conical region:
• Higher energy retained 

over time
• Supports longer wakefield

excitation

Laser field energy:

• laser pulses have similar
energy and size in both 
cases at the beginning of 
channels

Laser pulse evolution
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Comparison of conical and cylindrical channels
Accelerating gradient and electron bunch energy

Accelerating gradient:
In a conical plasma channel, the bubble 
compresses, reducing the local plasma 
wavelength Ez ~ 1 ∕ λ (z).
The peak accelerating field increases by a 
factor of ~3

Electron bunch energy:
• Cylindrical channel: bunch energy 

increases by a factor of ~1.5

• Conical channel: energy increases by a 
factor of ~4.5



Beam loading effect
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Time: 95.2 fs

Wakefield spatial distribution caused by beam loading

Time: 130.9 fs

Time: 190.4 fs Time: 238 fs

Time: 154.7 fs



Effect of external plasma density
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Laser field energy in the conical region

External density 10 𝒏𝒆𝟎:

• Improved bubble confinement within the cone.

• Some lateral expansion still present.

External density 4 𝒏𝒆𝟎:

• Bubble remains too wide, indicating weak confinement. 

• Low density contrast limits bubble shaping and laser guiding.

• Even reducing cone radius cannot compensate.



Focusing force
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Focusing force for the external plasma density 10𝑛𝑒0

Time: 71.4 fs

Plasma Electron Behavior:

• Plasma electrons entering the cavity focus toward the axis. 

• This has a stabilizing effect on the bunch, improving 

confinement and structural integrity.

Radial Focusing Force:

• Radial force 𝐹𝑟​ focuses the electron bunch

• Maximum stability occurs where 𝑑𝐹𝑟/𝑑𝑧 is largest

Time: 71.4 fs

Time: 238 fs



Field scaling in plasma:

Ez = ∇φ = kφ ~ 1/λ(z) ~ √n0

Comparison of uniform, non-uniform plasma density
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Time = 190.4 fs

Uniform plasma:

• Bunch enters decelerating region

• Risk of self-injection

Non-uniform plasma:

• Accelerating field (~0.874 TV)

• Bunch stays in accelerating field

• Gradient suppresses self-injection and 

improves control

12.09.2025
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Uniform plasma(11 n0):

• Higher initial density.

• Stronger fields, faster bubble formation (full 

wall at t = 142.8 fs).

Non-uniform plasma:

• Smooth density gradient.

• Bubble not fully formed at t = 142.8 fs.

• Bunch remains longer in the accelerating 

phase.

More real density outside

t = 59.5 fs t = 142.8 fs t = 190.4 fs
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2 n0 2.5 n0
3 n0

Density of the bunch

2 n0:

• Effective gradient ≈ 6.75 GeV/cm

• Stable

2.5 n0:

• Lower effective gradient ≈ 6.36 GeV/cm

• Higher instability risk

3 n0:

• Bunch breakup at t = 214.2 fs (unstable)
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Stability:

• At 3 n0 reducing bunch length to 0.314

c/ωpe ensured stability at t = 214.2 fs.

Improvement:

• Shortening the range 2.279 → 1.079 c/ωpe led to:

• Reduced energy spread: ΔE = 45.6 → 26.1 norm.

• Effective gradient ≈ 9.6 GeV/cm

Bunch Optimization

t = 154.7 fs

t = 214.2 fssigma 0.314 c/ωpe

Length effect:

• A long bunch overlaps with near-zero

accelerating field → inefficient.
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t = 142.8 fs

Evolution of Accelerating Field (Ez)

t = 59.5 fs t = 154.7 fs t = 190.4 fst = 142.8 fs

Ez rises from 0.82 → 2.03 TV/m
Ez decreases to 1.55 
TV/m

Bunch energy spread 
decreases

15
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t = 142.8 fs

Focusing Force (F⊥)

• F⊥∼Ez — bubble contraction strengthens

focusing, ensuring transverse

compression of the witness.

• Witness remains in the most stable region

throughout acceleration.

• Force becomes stronger over time.

t = 59.5 fs
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t = 59.5 fs t = 166.6 fs t = 238 fs

Point-like Bunch

• Almost uniform accelerating field.

• Gradient ≈ 16.5 GeV/cm. Very

small spread: 0.4%

• Minimal energy spread, strong

field maintained longer – very few

particles (low charge)



Summary
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Demonstrated:

• High energy gain of the witness bunch

in plasma wakefield acceleration.

Separately studied:

• Non-uniform plasma density.

• Plasma channel shaping (conical form)

Future step:

• Сombine density tailoring with channel

shaping for optimized acceleration.

• Higher final energies

• Reduced energy spread



Thank you for your 
attention



Units of Measurement

• 1/ωₚₑ = 4.25 fs
• c/ωₚₑ = 1.27 μm

• Laser wavelength: λ = 800 nm
• Reference plasma density: nₑ₀ = 1.74 × 10¹⁹ cm⁻³
• Electric field unit: multiply by 0.401 TV/m

• Energy: multiply by 0.511 MeV
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