PLASMA WAKEFIELD ACCELERATORS.

Institutions:

DESY, Ivan Franko National University of Lviv

Work done by:

Natalia Mykhailyshyn, Mariia Seniak supervised by professor Vasyl Maslov

HELMHOLTZ

Plasma wakefield accelerators

Why Plasma Accelerators?

- Compact size
- Millimeter-scale acceleration
- Compact alternative to traditional RF accelerators
- High gradients (100 GeV/m range)

Future Applications

- Next-gen light sources
- Medical accelerators
- Compact electron sources for materials science
- PETRA IV, High-energy physics experiments

Acceleration Mechanism

Comparison of conical and cylindrical channels

Cylindrical Channel:

- Bunch trapped in decelerating field
- Self-injected electrons appear

Conical Channel:

- Bunch stays in accelerating field
- Extends acceleration time

Comparison of conical and cylindrical channels

Laser pulse evolution

Laser field energy:

 laser pulses have similar energy and size in both cases at the beginning of channels

Laser field energy in the cylindrical region:

- Faster energy loss during propagation
- Less effective energy transport

Laser field energy in the conical region:

- Higher energy retained over time
- Supports longer wakefield excitation

Comparison of conical and cylindrical channels

Accelerating gradient and electron bunch energy

Accelerating gradient:

In a conical plasma channel, the bubble compresses, reducing the local plasma wavelength $E_z \sim 1/\lambda$ (z).

The peak accelerating field increases by a factor of ~3

Electron bunch energy:

- Cylindrical channel: bunch energy increases by a factor of ~1.5
- Conical channel: energy increases by a factor of ~4.5

Beam loading effect

Wakefield spatial distribution caused by beam loading

Time: 154.7 fs

Time: 95.2 fs

Time: 130.9 fs

Time: 238 fs

Time: 190.4 fs

Effect of external plasma density

Laser field energy in the conical region

External density 4 n_{e0} :

- Bubble remains too wide, indicating weak confinement.
- Low density contrast limits bubble shaping and laser guiding.
- Even reducing cone radius cannot compensate.

External density 10 n_{e0} :

- Improved bubble confinement within the cone.
- Some lateral expansion still present.

Focusing force

Focusing force for the external plasma density $10n_{e0}$

Time: 71.4 fs

Radial Focusing Force:

- Radial force Fr focuses the electron bunch
- Maximum stability occurs where dFr/dz is largest

Time: 238 fs

Plasma Electron Behavior:

- Plasma electrons entering the cavity focus toward the axis.
- This has a stabilizing effect on the bunch, improving confinement and structural integrity.

Comparison of uniform, non-uniform plasma density

Uniform plasma:

- Bunch enters decelerating region
- Risk of self-injection

Field scaling in plasma:

$$Ez = \nabla \varphi = k\varphi \sim 1/\lambda(z) \sim \sqrt{n_0}$$

Non-uniform plasma:

- Accelerating field (~0.874 TV)
- Bunch stays in accelerating field
- Gradient suppresses self-injection and improves control

More real density outside

Uniform plasma(11 n₀):

- Higher initial density.
- Stronger fields, faster bubble formation (full wall at t = 142.8 fs).

Non-uniform plasma:

- Smooth density gradient.
- Bubble not fully formed at t = 142.8 fs.
- Bunch remains longer in the accelerating phase.

Density of the bunch

2 n₀:

- Effective gradient ≈ 6.75 GeV/cm
- Stable

2.5 n₀:

- Lower effective gradient ≈ 6.36 GeV/cm
- Higher instability risk

3 n₀:

Bunch breakup at t = 214.2 fs (unstable)

Bunch Optimization

Stability:

• At 3 n_0 reducing bunch length to 0.314 c/wpe ensured stability at t = 214.2 fs.

Length effect:

 A long bunch overlaps with near-zero accelerating field → inefficient.

Improvement:

- Shortening the range 2.279 \Rightarrow 1.079 c/wpe led to $\frac{1}{3}$ 1.079 c/wpe
- Reduced energy spread: $\Delta E = 45.6 \Rightarrow 26.1$ norm.
- Effective gradient ≈ 9.6 GeV/cm

16

14

Evolution of Accelerating Field (Ez)

Ez rises from $0.82 \rightarrow 2.03 \text{ TV/m}$

Ez decreases to 1.55 TV/m

Bunch energy spread decreases

Focusing Force (F⊥)

- F⊥~Ez bubble contraction strengthens focusing, ensuring transverse compression of the witness.
- Witness remains in the most stable region throughout acceleration.
- Force becomes stronger over time.

Point-like Bunch

- Almost uniform accelerating field.
- Minimal energy spread, strong field maintained longer – very few particles (low charge)
- Gradient ≈ 16.5 GeV/cm. Very small spread: 0.4%

Summary

Demonstrated:

 High energy gain of the witness bunch in plasma wakefield acceleration.

Separately studied:

- Non-uniform plasma density.
- Plasma channel shaping (conical form)

Future step:

- Combine density tailoring with channel shaping for optimized acceleration.
- Higher final energies
- Reduced energy spread

Thank you for your

Units of Measurement

- $1/\omega_{pe} = 4.25 \text{ fs}$
- $c/\omega_{pe} = 1.27 \ \mu m$
- Laser wavelength: $\lambda = 800 \text{ nm}$
- Reference plasma density: $n_{e0} = 1.74 \times 10^{19} \text{ cm}^{-3}$
- Electric field unit: multiply by 0.401 TV/m
- Energy: multiply by 0.511 MeV