

HELMHOLTZ

Axion dark matter

- > Axion motivated by solution to strong CP problem
- Abundant production by vacuum realignment and topological defects
- > Popular dark matter candidate
- > Axions within a magnetic field induce an effective current: $\mathbf{J}_a = g_{a\gamma}\mathbf{B}\dot{a}$ (modified Maxwell)
- Equivalence between frequency and mass: well motivated mass range in RF band (0.3 GeV to 300 GeV)

Axion landscape with MADMAX projection Yellow band: benchmark QCD axion models

Experiment types

MADMAX

(Haloscopes)

- Non-relativistic dark matter axions
- Usage of RF cavities

BabylAXO

(Helioscopes)

- Relativistic solar axions
- X-Ray detector → no RF technology

ALPS II

(Light-Shining-Through-Wall Experiments)

- Relativistic laboratory axions
- Laser technology
- RF signal after optical down conversion

MADMAX

Booster principle

- Axion current J_a from coupling to magnetic field
- Couples to electric field within booster
- > Signal power $P_{sig} \propto |\int_V dV J_a \cdot E|^2$
- Dielectrics allow to shape the booster mode
 - → Booster enhances SNR!

MADMAX prototype booster system

Schematic of electric field within booster

MADMAX

Receiver chain principle

- > ADC noise floor at ~ −120 dBm
- > Signal at thermal noise level
 - \sim -170 dBm
 - \rightarrow Amplification of $> 50 \, dB$ needed!
- Heterodyne system
- Amplification of signal and noise!

Closed booster receiver chain

Open booster receiver chain

Experiment

> Baseline shape subtracted using savitzky golay filter

- Baseline shape subtracted using savitzky golay filter
- > Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t_{int}}}$ known
 - ightarrow Power excess can be translated to units of σ (with some extra steps)

- Baseline shape subtracted using savitzky golay filter
- > Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t_{int}}}$ known
 - ightarrow Power excess can be translated to units of σ (with some extra steps)
- > Potential outcomes:
 - $1 \geq 5\sigma$ excess found:
 - \rightarrow potential discovery, perform rescan
 - 2 No $\geq 5\sigma$ excess found, set bin-by-bin limit:
 - $\rightarrow g_{a\gamma}$ that is ruled out by measurement with 95 % confidence (requires P_{sig} !)

Booster simulation

- > Closed booster is a circular waveguide
- > Allowed modes depend on radius
- Focus on TE11 mode (fundamental mode)
- > Transverse part given by theory
- Longitudinal part sum of all reflected waves

Booster system

Transverse field of TE11 mode

Booster mode identification

- > Frequency of TE11 mode resonance verified by bead pull measurement
- Alternative methods:
 - Press against mirror, see which feature moves on VNA
 - "Poor persons beadpull": glue absorber to different parts of the mirror

Electric field as measured by bead pull

Booster simulation

Longitudinal part

- > Lot's of free parameters:
 - Disk positions
 - Disk thicknesses
 - Losses
 - . ..
- > Extracted from reflectivity measurement
- Similar to cavity simulation (determining Q-factor and coupling)
- > Allows to determine expected signal power P_{sig}

Reflectivity measurement

Reflectivity fit

Receiver chain calibration

Receiver chain

Calibration using known matched noise source

- > Best case: simple linear amplification by gain $G \rightarrow P_{meas} = GP_{sig}$
- > Second best case: linear amplification G and added noise P_n : $\rightarrow P_{meas} = GP_{sig} + P_n$
- > Third best case: linear amplification G, added noise P_n , added mismatch (receiver chain reflects Γ_r): $\rightarrow P_{meas} = G(1 - |\Gamma|^2)P_{sig} + P_n$
- $ightarrow P_{meas}$ given by affine function of P_{sig}

Receiver chain noise model

Why is it needed?

Noise measurement fit

- > P_{sig} already given by booster simulation
- > Receiver chain is only for measurement shouldn't change a thing?
- Mismatched receiver: part of signal reflected back into booster
 - ightarrow Receiver chain changes P_{sig} !
- lacksquare Quantifying this requires knowledge of Γ_r as "seen" from booster
 - ightarrow also requires knowledge of receiver chain position

Receiver chain noise model

LNA noise as two voltage noise sources

- LNA noise modelled by correlated noise sources
- Connected device modelled by reflectivity
- Noise parameters determined by measuring known standards
- > DUT emits noise of

$$P_n = k_B B T_{phys} (1 - |\Gamma_{DUT}|^2)$$

Receiver chain noise model

LNA noise as two voltage noise sources

- LNA noise modelled by correlated noise sources
- Connected device modelled by reflectivity
- Noise parameters determined by measuring known standards
- > DUT emits noise of $P_n = k_B B T_{phys} (1 |\Gamma_{DUT}|^2)$

LNA noise as voltage and current source

LNA connected to standards with simulation

Receiver chain + closed booster

- ➤ LNA and booster parameters fixed
 → Full noise spectrum simulation possible
- > Distance LNA ↔ booster as fit parameter
- > Allows to calculate change of P_{sig} due to receiver
- > Now serves as additional calibration tool!

Noise measurement and model

Receiver chain + open booster

- Open booster simulation more tricky
- > Bead pull method used instead
- Noise model uses booster reflectivity measurement instead of model

Noise model fit using reflectivity measurement

Final results

Axion limit using closed booster

Dark photon limit using open booster

Receiver chain + cavity

- Model also applicable to cavities
- LNAs at lower frequencies usually better matched
- > Still, effect non-negligible
- Circulators often used to bypass this effect

Lower frequency LNA model

Noise model for cavity

Summary

- Haloscope experiments are very sensitive microwave detectors
- > MADMAX uses a combination of:
 - (Super) heterodyne receiver
 - Waveguides
 - Gaussian beam optics
 - Transmission line theory

to build and simulate such a broadband detector

> Methods applicable to other haloscope experiments as well