More ROC Tests

Alexey Petrukhin, DESY Daniel Pitzl, DESY

CMS Tracker Upgrade 29.11.2011

- ROC functionality
- DAC correlations
- Trimming and Time walk
- PH for different DACs
- Control plots for charge injection

ROC functionality [AdrDec]

- Pulse each pixel and count number of data words. Fill a pixel word map if nwords = 25 (chip Header + pixel Address + analog Pulse Height). Normalize it to 1
- Not fast procedure 8 min. in total

DAC correlations

- Standard way at DESY:
 - > activate one pixel
 - > send 9 triggers
 - > scan CalDel DAC for each value of VthrComp
 - > measure PH for each bin in VthrComp and CalDel space
 - > scanning time = 2 min. / chip \rightarrow Not too fast

DAC correlations and delay [DacDac]

- Standard way at PSI:
 - > activate one pixel
 - > send 5 triggers
 - read FPGA data: count number of readouts for each bin. Data are transferred in blocks = 19999 words each → needs a time delay between FPGA and USB before transferring to PC. Bigger data block size → corrupt data starting
 - this time delay affects the DAC correlations (i.e BC)
- Solution: use DESY way (delay independent sample) as reference to calibrate USB timing
 - New delay = 5.5 sec. Total PSI procedure time = 0.5 min. → still 4 times faster than DESY procedure

Trimming and Time walk

 Trimming procedure: unify individual pixel thresholds by 4 trim bits and scale with Vtrim DAC. Threshold variation reduced from ~300 → 80 e (chip 8). Good for chip efficiency (more clusters per event), unify different chip behavior.

2.5 smaller TW after the trimming procedure !

A. Petrukhin: More chip tests

.

DESY CMS Upgrades, 29.11.2011

Trimming and Time walk

In VthrComp & Vcal space: Smaller TW after Trimming

PH vs Vcal vs different DACs [PhScan] New procedure to test Vcal DAC:

- - Activite one pixel
 - For 27 ROC DACs and 3 TBM DACs:
 - Change values of DACs with a given step
 - Scan Vcal from 0 to 256 for each given value of other DACs

Time consuming procedure: takes 4 min. per ROC. Can be used for cross check and final tuning of DAC parameters

PH maps [PH]

- Standard way at DESY via USB:
 - Activate pixels in all dcolumns for the row
 - Measure PH for each pixel in dcolumns
 - > Disable pixels and come to the next row
 - > 6 sec. procedure

- Standard way at PSI via FPGA:
 - Pulse pixels 1 by 1 from FPGA
 - Measure PH for each pixel (fast reading of FPGA data)
 - > 2 sec. procedure

Similar results, faster procedure via GUI (PSI)

Arm Pad, Xtalk (reminder)

- Three ways to inject charge: <u>Standard</u> (used so far), via '<u>pad</u>' and through '<u>Xtalk</u>'
- Different signals can be used for bump bonding test of modules, cross calibration of ROCs and some other purposes ?

Control plots [Thr]

• Inject charge by 3 different ways and measure Vcal thresholds before and after trimming. One Vcal DAC = 65e ("Standard")

- All ways follow the trimming procedure
- "Standard" Mean=6400e before trim and 4000 after; RMS=380 before trim and 97 after (chip 6)
- A. Petrukhin: More chip tests

Summary

- New way of ROC functionality test is presented
- Fast GUI procedure for DAC parameters optimization is adapted at DESY
- Time Walk is reduced after Trimming procedure by factor of 2.5
- New PH test can be used for optimization of DACs
- Different PH mapping procedures show the similar results
- Control plots for different ways of charge injection confirm utility of Trimming procedure

Psi46 Pixel Readout Chip

psi46 pixel readout chip

A. Petrukhin: More chip tests

DESY CMS Upgrades, 29.11.2011

psi46 DACs

13	VIBias_Bus	30
14	Vbias_sf	10
15	Voffset0p	55
16	VIbias0p	115
17	V0ffsetR0	120
18	VIon	115
19	VIbias_PH	130
20	Ibias_DAC	122
21	VIbias_roc	220
22	VIColOr	100
23	Vnpix	Θ
24	VSumCol	Θ
25	Vcal	200
26	CalDel	L25
27	RangeTemp	- 0

DAC correlations and delay

- Standard way at PSI:
 - > activate one pixel
 - > send 5 triggers
 - read FPGA data: count number of readouts for each bin. Data are transferred in blocks = 19999 words each → needs a time delay between FPGA and USB before transferring to PC. Bigger data block size → corrupt data starting
 - > This time delay affects the DAC correlation (i.e BC)
- Solution: use DESY way (delay independent sample) as reference to calibrate USB timing
 - New delay = 5.5 sec. Total PSI procedure time = 0.5 min. → still 4 times faster than DESY procedure

