

Optimizing TauFinder For The MAIA Detector Concept

Cyrus Kianian, Moses Glassman, Abdollah Mohammadi, Sridhara Dasu

The MAIA Detector Concept

- Designed for 10 TeV muon collider environment
- Mitigates intense beam-induced backgrounds (BIB)
- 95% reconstruction efficiency with full **BIB overlay** (central region)
- High-resolution, all-silicon tracking system
- Supports precision Higgs and new physics searches

Maia Detector Illustration [1]

τ-Generation & Simulation

Generation:

• 15,000 single τ^- MCParticle Events written to LCIO file

Simulation:

• Simulated τ^- MCParticle decays and interactions with MAIA detector in GEANT4

generation randomly and uniformly

Decay Mode	Sim. Br. Ratios (%)	True Br. Ratios (%)
$\pi^- u_ au$	12.3	10.8
$\pi^-\pi^0 u_ au$	28.4	25.5
$\pi^-\pi^0\pi^0 u^ au$	9.86	9.26
$\pi^-\pi^0\pi^0\pi^0 u^ au$	0.0	1.04
$\pi^-\pi^+\pi^- u^ au$	10.9	8.99
$\pi^-\pi^+\pi^-\pi^0 u^ au$	0.0	2.74
$ u_e e^- u_{ au}$	19.4	17.8
$ u_{\mu}~\mu^-~ u_{ au}$	19.2	17.4

Simulated and true branching ratios for the τ^-

τ-Hadronic Decay Reconstruction

- τ -s decay hadronically ~65% of the time
 - $\langle \tau \rangle \approx 10^{-13}$ s, doesn't reach the detector
 - Visible components are primarily charged (π^{\pm}) and neutral (π^0 s) pions
 - ~60% of these τ -s have π 0s
- TauFinder reconstructs τ -s via decay products:
 - Decay products are reconstructed by ACTS and PandoraPFA as particle flow objects (PFOs)
 - Doesn't reconstruct π^0 , reconstructed γ act as pseudo- π^0
 - TauFinder associates PFOs to a τ^- candidate
 - Selection cuts retain only high quality τ -s

Default TauFinder Selection Cuts

Hadronic τ - Decays With π^0 s [2]

 τ -M_{inv} < 2 GeV/c₂

0 < Charged Tracks Associated to $\tau^- <$ Particles Associated to τ - < 10 τ -E_{iso} < 5 GeV

Default TauFinder selection criteria. All accepted reconstructed τ^- Pass these thresholds.

Default 7-Reconstruction

Losing large portion of reconstructed τ - with default selection criteria:

- Maximum isolation energy (E_{iso}) criteria on the τ candidates cuts ~14%
- Maximum invariant mass (M_{inv}) criteria on the τ candidates cuts ~ 10%

The default cone size (0.05 rad) cuts too many π^{\pm} at low p_T

• Suggests the need for a shrinking p_T dependent cone

of reconstructed π^{\pm} cut by different search cone angles vs. reconstructed $\tau^- p_T$

Reco π^{\pm} Cut by Cone Size

7-Reconstruction Efficiencies Search Cone Angle =

Loose cuts on E_{iso} and M_{inv}:

• Boosts 1-Prong + π^0 s efficiency by ~15%

Shrinking cone:

- Added to the loose cuts
- Boosts low p_T (< 50) efficiencies by ~20%
- Creates ~1000 new τ-candidates
- Reduces low p_T fake rate by ~40%

Confusion Matrix View

Electron Results (Moses)

Electron Intro (Moses)

Note: These plots aim to maximize efficiency assuming BIB is sufficiently mitigated, in a BIB environment compromises will be made to reduce fake rate.

 p_T , the dotted line represents default cuts.

Sources

[1] Bell, Charles, et al. "MAIA: A new detector concept for a 10 TeV muon collider." (2025)

[2] Neutelings, Izaak. "Hadronic tau decay." TikZ.net, (2017)

Next Steps

- Simulate rare π^0 decay modes
- Improve π^{\pm} reconstruction efficiency
- Introduce BIB
 - Fine-tune on the fake rate
- Moses next steps or other points

0