Optimizing TauFinder For The MAIA Detector Concept Cyrus Kianian, Moses Glassman, Abdollah Mohammadi, Sridhara Dasu ## The MAIA Detector Concept - Designed for 10 TeV muon collider environment - Mitigates intense beam-induced backgrounds (BIB) - 95% reconstruction efficiency with full **BIB overlay** (central region) - High-resolution, all-silicon tracking system - Supports precision Higgs and new physics searches Maia Detector Illustration [1] ## τ-Generation & Simulation #### **Generation:** • 15,000 single τ^- MCParticle Events written to LCIO file #### **Simulation:** • Simulated τ^- MCParticle decays and interactions with MAIA detector in GEANT4 generation randomly and uniformly | Decay
Mode | Sim. Br.
Ratios (%) | True Br.
Ratios (%) | |------------------------------|------------------------|------------------------| | $\pi^- u_ au$ | 12.3 | 10.8 | | $\pi^-\pi^0 u_ au$ | 28.4 | 25.5 | | $\pi^-\pi^0\pi^0 u^ au$ | 9.86 | 9.26 | | $\pi^-\pi^0\pi^0\pi^0 u^ au$ | 0.0 | 1.04 | | $\pi^-\pi^+\pi^- u^ au$ | 10.9 | 8.99 | | $\pi^-\pi^+\pi^-\pi^0 u^ au$ | 0.0 | 2.74 | | $ u_e e^- u_{ au}$ | 19.4 | 17.8 | | $ u_{\mu}~\mu^-~ u_{ au}$ | 19.2 | 17.4 | Simulated and true branching ratios for the τ^- ## τ-Hadronic Decay Reconstruction - τ -s decay hadronically ~65% of the time - $\langle \tau \rangle \approx 10^{-13}$ s, doesn't reach the detector - Visible components are primarily charged (π^{\pm}) and neutral (π^0 s) pions - ~60% of these τ -s have π 0s - TauFinder reconstructs τ -s via decay products: - Decay products are reconstructed by ACTS and PandoraPFA as particle flow objects (PFOs) - Doesn't reconstruct π^0 , reconstructed γ act as pseudo- π^0 - TauFinder associates PFOs to a τ^- candidate - Selection cuts retain only high quality τ -s #### **Default TauFinder Selection Cuts** Hadronic τ - Decays With π^0 s [2] τ -M_{inv} < 2 GeV/c₂ 0 < Charged Tracks Associated to $\tau^- <$ Particles Associated to τ - < 10 τ -E_{iso} < 5 GeV Default TauFinder selection criteria. All accepted reconstructed τ^- Pass these thresholds. ### Default 7-Reconstruction Losing large portion of reconstructed τ - with default selection criteria: - Maximum isolation energy (E_{iso}) criteria on the τ candidates cuts ~14% - Maximum invariant mass (M_{inv}) criteria on the τ candidates cuts ~ 10% The default cone size (0.05 rad) cuts too many π^{\pm} at low p_T • Suggests the need for a shrinking p_T dependent cone # of reconstructed π^{\pm} cut by different search cone angles vs. reconstructed $\tau^- p_T$ Reco π^{\pm} Cut by Cone Size ## 7-Reconstruction Efficiencies Search Cone Angle = Loose cuts on E_{iso} and M_{inv}: • Boosts 1-Prong + π^0 s efficiency by ~15% Shrinking cone: - Added to the loose cuts - Boosts low p_T (< 50) efficiencies by ~20% - Creates ~1000 new τ-candidates - Reduces low p_T fake rate by ~40% ## **Confusion Matrix View** Electron Results (Moses) ## **Electron Intro (Moses)** Note: These plots aim to maximize efficiency assuming BIB is sufficiently mitigated, in a BIB environment compromises will be made to reduce fake rate. p_T , the dotted line represents default cuts. Sources [1] Bell, Charles, et al. "MAIA: A new detector concept for a 10 TeV muon collider." (2025) [2] Neutelings, Izaak. "Hadronic tau decay." TikZ.net, (2017) ### **Next Steps** - Simulate rare π^0 decay modes - Improve π^{\pm} reconstruction efficiency - Introduce BIB - Fine-tune on the fake rate - Moses next steps or other points 0