Sensitivity of the FCC-ee to ALPs decaying into two photons

Motivation

- The SM, while successful in many respects, fails to explain:
 - o cosmological CP violation
 - o baryon asymmetry
 - hierarchy problem
 - neutrino mass
 - gravity
 - dark energy
 - o dark matter
- Yet, with no additional particles and only weak-scale couplings, the SM works remarkably well
- Where should we look next and what might we discover?

FCC-ee (Future Circular Lepton Collider)

- First stage of FCC integrated project is e⁺e⁻ collider
- Serve as Higgs factory, electroweak and top factory at highest luminosities

FCC-ee physics runs

FCC-ee physics runs. Highlights

ALP Lagrangian

 ALP (a) couplings to the SM arise at dimension-5, described by an effective Lagrangian in the unbroken electroweak phase with a new physics scale Λ

 $\mathcal{L}_{\mathrm{eff}}^{D\leq 5} = \underbrace{\frac{1}{2}(\partial_{\mu}a)(\partial^{\mu}a)}_{\text{kinetic term}} - \underbrace{\frac{m_{a}^{2}}{2}a^{2}}_{\text{mass}} + \underbrace{\sum_{f}\frac{c_{ff}}{2}\frac{\partial^{\mu}a}{\Lambda}\bar{f}\gamma_{\mu}\gamma_{5}f}_{\text{to fermions}} + \underbrace{g^{2}C_{GG}\frac{a}{\Lambda}G_{\mu\nu}^{A}\tilde{G}^{\mu\nu,A}}_{\text{gluons}} + \underbrace{g^{2}C_{WW}\frac{a}{\Lambda}W_{\mu\nu}^{A}\tilde{W}^{\mu\nu,A}}_{\text{hypercharge gauge}} + \underbrace{g^{\prime 2}C_{BB}\frac{a}{\Lambda}B_{\mu\nu}\tilde{B}^{\mu\nu}}_{\text{hypercharge gauge}}$

Additional interactions (Higgs interactions) arise at dimension-6 order and higher

$$\mathcal{L}_{ ext{eff}}^{D\geq 6} = egin{aligned} rac{C_{ah}}{\Lambda^2} (\partial_{\mu}a)(\partial^{\mu}a)\phi^{\dagger}\phi + rac{C_{Zh}}{\Lambda^3} (\partial^{\mu}a)ig(\phi^{\dagger}iD_{\mu}\phi + ext{ h.c.}ig)\phi^{\dagger}\phi + \dots \end{aligned}$$

[Georgi, Kaplan, Randall (1986)]

bosons

ALP Lagrangian cont.

• In the electroweak symmetry-broken phase, the ALP interacts with the photon and Z boson through the following couplings:

- Following Bauer, Neubert, Thamm [1808.10323], we will assume ALP couples to hypercharge but not to SU(2)
- Thus, $C_{WW} = 0$ and $Br(a \rightarrow \gamma \gamma) = 1$

Differential cross sections

$$\frac{d\sigma(e^+e^- \to \gamma a)}{d\Omega} = 2\pi\alpha\alpha^2(s)\frac{s^2}{\Lambda^2} \left(1 - \frac{m_a^2}{s}\right)^3 \left(1 + \cos^2\theta\right) \left(|V_\gamma(s)|^2 + |A_\gamma(s)|^2\right),\tag{16}$$

$$\frac{d\sigma(e^{+}e^{-} \to Za)}{d\Omega} = 2\pi\alpha\alpha^{2}(s)\frac{s^{2}}{\Lambda^{2}}\lambda^{\frac{3}{2}}(x_{a}, x_{Z})\left(1 + \cos^{2}\theta\right)\left(|V_{Z}(s)|^{2} + |A_{Z}(s)|^{2}\right),\tag{17}$$

$$\frac{d\sigma(e^+e^- \to ha)}{d\Omega} = \frac{\alpha}{128\pi c_w^2 s_w^2} \frac{|C_{Zh}^{\text{eff}}|^2}{\Lambda^2} \frac{s \, m_Z^2}{(s - m_Z^2)^2} \,\lambda^{\frac{3}{2}} (x_a, x_h) \sin^2\theta \left(g_V^2 + g_A^2\right),\tag{18}$$

$$V_{\gamma}(s) = \frac{C_{\gamma\gamma}^{\text{eff}}}{s} + \frac{g_V}{2c_w^2 s_w^2} \frac{C_{\gamma Z}^{\text{eff}}}{s - m_Z^2 + i m_Z \Gamma_Z}, \qquad A_{\gamma}(s) = \frac{g_A}{2c_w^2 s_w^2} \frac{C_{\gamma Z}^{\text{eff}}}{s - m_Z^2 + i m_Z \Gamma_Z}, \quad (19)$$

$$V_Z(s) = \frac{1}{c_w s_w} \frac{C_{\gamma Z}^{\text{eff}}}{s} + \frac{g_V}{2c_w^3 s_w^3} \frac{C_{ZZ}^{\text{eff}}}{s - m_Z^2 + i m_Z \Gamma_Z}, \qquad A_Z(s) = \frac{g_A}{2c_w^3 s_w^3} \frac{C_{ZZ}^{\text{eff}}}{s - m_Z^2 + i m_Z \Gamma_Z}, \quad (20)$$

UFO model testing

ALPnlo

o recently obtained from Bauer by Abu Dhabi colleagues, no known problem, except lack of phase space factors in decays into fermions

ALP

obtained from Thamm in 2019, only works if mh is put high?

ALP_NLO_UFO

o used for Snowmass report, available in LLP git, seems to yield sensible results only for CWW=0

ALP_linear_UFO

o obtained from Brivio et al., uses different Lagrangian and requires conversion of parameters

See tests of models here (slides 46-52). Using ALP model moving forward

ALP Parameter Space

ALP Parameter Space cont.

Particle decay, width, and lifetime

- Two key quantities associated with decay process
 - decay width (□): measure of the rate of decay
 - \circ lifetime (τ): average time that particle exists before it decays
- Quantities connected through the uncertainty principle

Uncertainty in energy (ΔE) and uncertainty in time (Δt) given by:

Uncertainty in **E** associated with **r** and uncertainty in **t** associated with **r**

$$\Gamma \cdot au \geq rac{\hbar}{2}$$

Rearranging the equation, find expression

$$au \geq rac{\hbar}{2\Gamma}$$

$$\Delta E \cdot \Delta t \geq rac{\hbar}{2}$$

Inverse relationship between decay width and lifetime, sets a theoretical lower limit

$$au=rac{\hbar}{\Gamma}$$

- In HEP, use natural units: Planck constant set to 1, speed of light set to 1
 - o width in units of GeV (as opposed to inverse seconds) and lifetime in units of seconds

ALP lifetime

- From previous slide, lifetime is inverse of total decay width: $au=\dfrac{1}{\Gamma_{\rm total}}$ The branching ratio (BR) gives the fraction of particles decaying into a specific final state: ${
 m BR}_i=\dfrac{\Gamma_i}{\Gamma_{\rm total}}$
- ullet In this analysis, we assume the ALP only couples to photons, which implies: ${
 m BR}({
 m a} o\gamma\gamma)=1$
- ullet This further implies that: $\Gamma_i = \Gamma_{
 m total}$
- Hence, the ALP lifetime is given by: $au=rac{1}{\Gamma_{total}}=rac{1}{\Gamma(a o\gamma\gamma)}$

ALP decay width from Bauer, Neubert, Thamm [1808.10323]

$$\Gamma(a o\gamma\gamma)=rac{4\pilpha^2m_a^3}{\Lambda^2}ig|C_{\gamma\gamma}^{
m eff}ig|^2$$

Derived ALP lifetime (see above)

$$au = rac{1}{\Gamma(a
ightarrow \gamma \gamma)} = rac{\Lambda^2}{4\pi lpha^2 m_a^3 ig| C_{\gamma \gamma}^{
m eff} ig|^2}$$

ALP lifetime (cont.) add z axis scale/units!

ALP lifetime (cont.)

ALP production

• Example Feynman diagrams for possible processes

- Running **MadGraph5_aMC@NLO** ALP model: 1 event, $C_{WW} = 0$, $C_{VV} = C_{BB} = 1$, $m_a = 1$ GeV
- Dash (-) denotes no available phase space at that energy

ALP signature

- Cross sections from previous slide motivate three photon channel, even at higher center-of-mass energies
- See enhancement in cross section at Z-pole, but process is still dominant at higher √s

- As a cross-check, will initially only consider backgrounds from Z-pole study
- Results differ a bit from Elnura's cross sections. Different run_card.dat parameters?

Process	Elnura	$\sqrt{s} = 91.188 \text{ GeV}$	$160~{\rm GeV}$	$240~{ m GeV}$	$365~{ m GeV}$
$e^+e^- o \gamma\gamma$	6.725×10^{1}	5.741×10^{1}	2.191×10^{1}	9.713	4.194
$e^+e^- o \gamma\gamma\gamma$	2.995	4.629×10^{-1}	4.219×10^{-1}	2.777×10^{-1}	1.622×10^{-1}
$e^+e^- \to \gamma\gamma\gamma\gamma$	6.271×10^{-2}	1.124×10^{-3}	3.102×10^{-3}	3.453×10^{-3}	2.844×10^{-3}
$e^+e^- \rightarrow e^+e^-$	4.500×10^3	$4.527 imes 10^3$	1.513×10^3	6.718×10^2	2.941×10^{2}
$e^+e^- \rightarrow e^+e^-\gamma$	1.184×10^{2}	2.989×10^{1}	9.478	7.284	4.583
$e^+e^- \rightarrow e^+e^-\gamma\gamma$	1.993	9.706×10^{-2}	7.171×10^{-2}	7.039×10^{-2}	5.642×10^{-2}
$e^+e^- \rightarrow e^+e^-\gamma\gamma\gamma$	2.369×10^{-2}	1.095×10^{-4}	4.285×10^{-4}	6.023×10^{-4}	6.255×10^{-4}

- Indeed. Now we apply different cut selections to the processing card itself
- Cuts to pT of the photons, cut on ΔR , and cut on η (which is kept the same)
 - ∘ photon pT > 2 GeV, Δ R > 0.01, $|\eta|$ < 2.5

set pta 2.0 set draa 0.01 set etaa 2.5

Process	Elnura	$\sqrt{s} = 91.188 \text{ GeV}$	$160~{ m GeV}$	$240~{\rm GeV}$	$365~{ m GeV}$
$e^+e^- o \gamma\gamma$	6.725×10^{1}	6.725×10^{1}	2.183×10^{1}	9.672	4.198
$e^+e^- o \gamma\gamma\gamma$	2.995	2.942	1.236	6.362×10^{-1}	3.332×10^{-1}
$e^+e^- o \gamma\gamma\gamma\gamma$	6.271×10^{-2}	5.960×10^{-2}	3.382×10^{-2}	2.221×10^{-2}	1.206×10^{-2}
$e^+e^- \rightarrow e^+e^-$	4.500×10^3	$4.547 imes 10^3$	$1.525 imes 10^3$	6.648×10^2	2.940×10^2
$e^+e^- \rightarrow e^+e^-\gamma$	1.184×10^{2}	1.183×10^{2}	3.092×10^1	1.758×10^{1}	9.017
$e^+e^- \rightarrow e^+e^-\gamma\gamma$	1.993	1.966	5.867×10^{-1}	3.772×10^{-1}	2.253×10^{-1}
$e^+e^- \rightarrow e^+e^-\gamma\gamma\gamma$	2.369×10^{-2}	2.309×10^{-2}	1.149×10^{-2}	7.725×10^{-3}	4.996×10^{-3}

• Cuts to pT of the photons, cut on ΔR , and cut on η (which is kept the same)

 \circ photon E > 0.1, photon pT > 0, , $|\eta|$ < 2.6, ΔR > 0

set ea 0.1 set pta 0 set etaa 2.6 set draa 0

Process	$\sqrt{s} = 91.188 \text{ GeV}$	160 GeV	$240~{ m GeV}$	$365~{ m GeV}$
$e^+e^- \rightarrow \gamma\gamma$	5.741×10^{1}	2.191×10^{1}	9.713	4.194
$e^+e^- o \gamma\gamma\gamma$	4.629×10^{-1}	4.219×10^{-1}	2.777×10^{-1}	1.622×10^{-1}
$e^+e^- \to \gamma\gamma\gamma\gamma$	1.124×10^{-3}	3.102×10^{-3}	3.453×10^{-3}	2.844×10^{-3}
$e^+e^- \rightarrow e^+e^-$	4.527×10^3	1.513×10^3	6.718×10^2	2.941×10^2
$e^+e^- ightarrow e^+e^- \gamma$	$2.989 imes 10^1$	9.478	7.284	4.583
$e^+e^- \rightarrow e^+e^-\gamma\gamma$	9.706×10^{-2}	7.171×10^{-2}	7.039×10^{-2}	5.642×10^{-2}
$e^+e^- \rightarrow e^+e^-\gamma\gamma\gamma$	$\gamma = 1.095 \times 10^{-4}$	4.285×10^{-4}	6.023×10^{-4}	6.255×10^{-4}

Process	$\sqrt{s} = 91.188 \text{ GeV}$	$160~{ m GeV}$	$240~{ m GeV}$	$365~{ m GeV}$
$e^+e^- \to \gamma\gamma$	7.054×10^{1}	2.289×10^{1}	1.018×10^{1}	4.408
$e^+e^- \to \gamma\gamma\gamma$	9.020	3.083	1.427	6.656×10^{-1}
$e^+e^- \to \gamma\gamma\gamma\gamma$	5.752×10^{-1}	2.063×10^{-1}	1.037×10^{-1}	6.603×10^{-2}
$e^+e^- \rightarrow e^+e^-$	$4.547 imes 10^3$	$1.525 imes 10^3$	6.648×10^{2}	2.900×10^{2}
$e^+e^- o e^+e^- \gamma$	4.641×10^{2}	$8.423 imes 10^1$	4.022×10^{1}	1.786×10^{1}
$e^+e^- \rightarrow e^+e^-\gamma\gamma$	2.711×10^{1}	3.329	1.813	8.696×10^{-1}
$e^+e^- \rightarrow e^+e^-\gamma\gamma\gamma$	1.378	1.318×10^{-1}	7.332×10^{-2}	3.751×10^{-2}

Cuts applied to signal

• Cuts to pT of the photons, cut on ΔR , and cut on η (which is kept the same)

 \circ photon E > 0.1, photon pT > 0, , $|\eta|$ < 2.6, ΔR > 0

set ea 0.1 set pta 0 set etaa 2.6 set draa 0

Cuts	Process	$\sqrt{s} = 91.188 \text{ GeV}$	$160~{ m GeV}$	$240~{ m GeV}$	$365~{ m GeV}$
	$e^+e^- \to a\gamma, \ a \to \gamma\gamma$ $e^+e^- \to a\gamma, \ a \to \gamma\gamma$	$2.421 \\ 2.463$		$2.037 \times 10^{-2} 2.045 \times 10^{-2}$	

ALP decay modes

ALP decay modes

Cross sections

Effects on sensitivity at low mass

- Distance between two showers (if smaller than Moliére radius of calo, then showers are not separated)
 - o Two photons seen as one or additional uncertainty on mass measurements from uncertainty on energy sharing of clusters
- Impact of long lifetime of ALP on kinematics measurements
 - Mass reco algorithm assumes ALP decays in center of detector (doesn't take into account displaced vertices)
 - Wrong angle used in invariant mass calculation
- What else might contribute at higher center of mass energy?

MadGraph vs. WHIZARD?

- MadGraph doesn't implement ISR, beamstrahlung and beam spectra properly → makes WHIZARD interesting as it accounts for beam
 effects
 - o Beam spectrum files: https://whizard.hepforge.org/circe-files/FCCee/
- According to some sources, MadGraph and WHIZARD are in good agreement at LO but there are differences at NLO
- WHIZARD also supports UFO format, so was able to add ALP model
 - Still figuring out coupling and how to apply cuts
 - O How to compare WHIZARD output to MadGraph?

Sample generation

Using MadGraph5_aMC@NLO + Pythia + Delphes

Delphes cards

Could be interesting to explore different detector configurations/geometries, but maybe only consider this if we have time...

MadGraph scaling with # of events

91.188 set ea 0.1 set pta 0 set etaa 2.6 set draa 0

				set draa 0
	1 event	10 events	100 events	1000 events
e+e- > aa	70.54 +- 0.1523 pb	70.54 +- 0.1523 pb	70.54 +- 0.1523 pb	70.64 +- 0.08462 pb
	9.41s user 2.74s system 218% cpu	9.42s user 2.99s system 202% cpu	9.15s user 3.22s system 190% cpu	9.60s user 3.42s system 162% cpu
	5.559 total	6.118 total	6.477 total	8.013 total
e+e- > aaa	9.02 +- 0.2395 pb	9.02 +- 0.2395 pb	9.02 +- 0.2395 pb	9.462 +- 0.06858 pb
	9.81s user 2.88s system 215% cpu	9.64s user 2.97s system 206% cpu	9.60s user 2.66s system 211% cpu	11.88s user 3.21s system 189% cpu
	5.901 total	6.111 total	5.782 total	7.968 total
e+e- > aaaa	0.5752 +- 0.03925 pb	0.5752 +- 0.03925 pb	0.5392 +- 0.02421 pb	0.6491 +- 0.004412 pb
	10.61s user 3.20s system 193% cpu	10.55s user 2.68s system 201% cpu	14.43s user 2.81s system 159% cpu	39.41s user 2.90s system 161% cpu
	7.152 total	6.580 total	10.812 total	26.272 total
e+e- > e+e-	4547 +- 18.55 pb	4547 +- 18.55 pb	4547 +- 18.55 pb	4494 +- 8.779 pb
	11.97s user 3.01s system 192% cpu	11.84s user 3.50s system 171% cpu	12.02s user 3.54s system 186% cpu	12.08s user 3.11s system 180% cpu
	7.764 total	8.952 total	8.328 total	8.408 total
e+e- > e+e-a	464.1 +- 6.365 pb	464.1 +- 6.365 pb	464.1 +- 6.365 pb	462 +- 3.65 pb
	15.88s user 3.35s system 188% cpu	15.85s user 3.37s system 195% cpu	15.69s user 3.89s system 176% cpu	16.60s user 3.52s system 186% cpu
	10.214 total	9.841 total	11.102 total	10.797 total
e+e- > e+e-aa	27.11 +- 0.6792 pb	27.11 +- 0.6792 pb	27.68 +- 0.5176 pb	28.3 +- 0.2504 pb events : 376
	43.73s user 3.99s system 334% cpu	43.36s user 4.34s system 331% cpu	48.84s user 4.67s system 276% cpu	166.33s user 5.12s system 145% cpu
	14.288 total	14.401 total	19.390 total	1:57.80 total
e+e- > e+e-aaa	1.378 +- 0.049 pb	1.378 +- 0.049 pb	1.382 +- 0.03908 pb	1.466 +- 0.01324 pb events : 277
	604.12s user 6.91s system 501% cpu	602.38s user 6.49s system 510% cpu	638.35s user 8.10s system 421% cpu	2746.21s user 15.85s system 247%
	2:01.72 total	1:59.28 total	2:33.50 total	cpu 18:34.18 total

