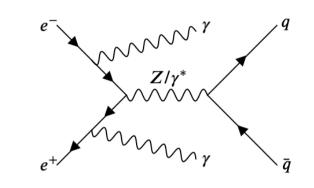
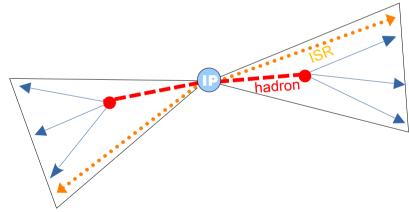
e⁻e⁺ → ss at ILC 250 GeV

Jesús P. Márquez Hernández 15/10/25

(b & c) diquark production in e-e+ collisions

- MC simulations at 250.
 - International Linear Collider (ILC) run plan.
 - Full simulation of the International Large Detector (ILD).
- Topology: Two back-to-back jets.
- Procedure:


Background suppression \rightarrow Selection of $q\overline{q}$ events.

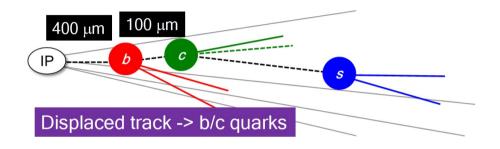

Flavor tagging \rightarrow Selection of $b\overline{b}$ & $c\overline{c}$ events.

Double tagging (b-tag, c-tag).

Charge measurement → Quark-Antiquark identification.

Double charge.

How can we move from here to strange quarks (or u/d quarks)? Can we get ‰-level uncertainties like for the b & c quarks?



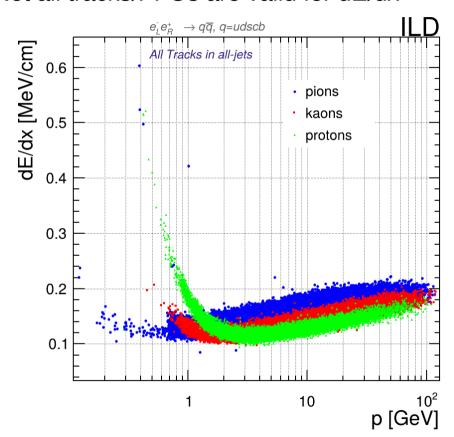
 A_{FB}

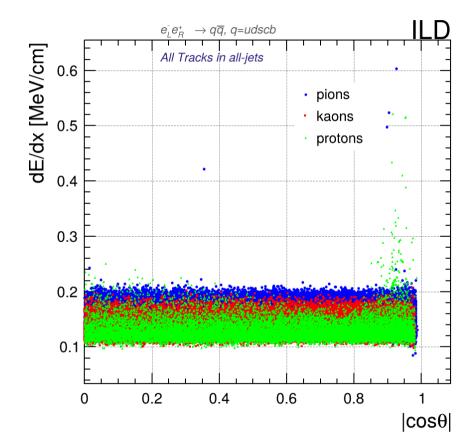
From b/c to strange quark

- Flavor tagging of b and c jets is "easy":
 - Decay of b and c hadrons: Displaced vertexes from de IP, at a distance $(\tau_q \cdot c)$

- But the strange quark produce kaons... no decays in the tracker to be used
 - We need to build/use an s-tag relying on kaon PID
 - Our first attempt is a "classic" cut-based analysis
 - I worked on top of the previous analysis done by Y. Okugawa in his thesis, (directed by R. Poeschl)

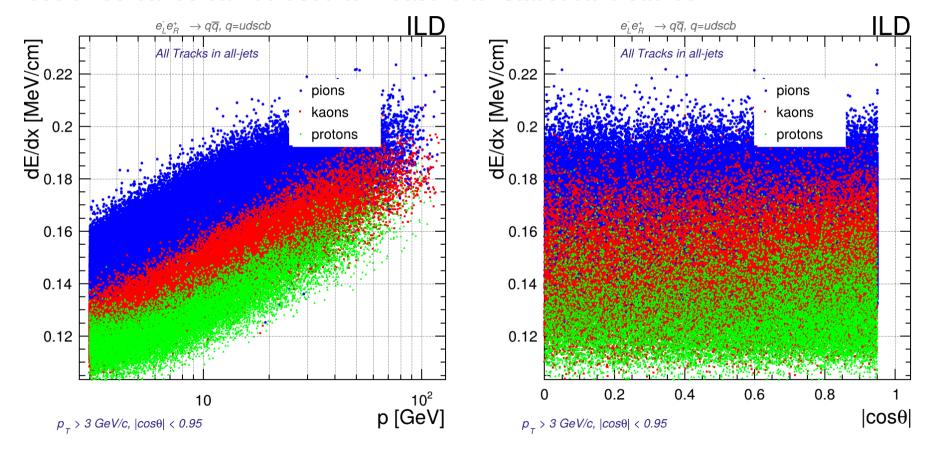
Redoing of the ssbarAnalysis


• Preselection of the diquark signals (Modification of Yuichi Okugawa's analysis)


	#	Name	Quantity	Description		
	1	b-tag	btag < 0.3	Reject events with b-like jets		
uds selection	2	c-tag	ctag < 0.65	Reject events with c-like jets		
	3	nvtx	nvtx = 1	Jets should have only PV as vertex		
	4	Leading momentum	$p_{LPFO} > 15 \mathrm{GeV}$	Leading momentum cut		
Cut-based s-tag (or ud-tag)	5	LPFO acollinearity	$\cos\theta_{LPFO_{1,2}} > 0.97$	LPFOs should be back-to-back		
	6	Offset	$V_0 = \sqrt{d_0^2 + z_0^2} < 1\mathrm{mm}$	Offset cut to reject Λ_0 contribution		
(or du tag)	7a	dE/dx PID (π)	New angular	π^{\pm} identification		
	7b	dE/dx PID (K)	k-distance cuts	K^{\pm} identification		
	8	SPFO	Veto $p_{SPFO} > 10 \mathrm{GeV}$ and	Attenuate the charge migration by rejecting		
Migration correction			charge opposite to LPFO.	oppositely charge LPFO competitor		
	9	Charge	$Q_{LPFO1} \times Q_{LPFO2} < 0$	Charge of LPFOs from both sides has		
			opposite charge.			

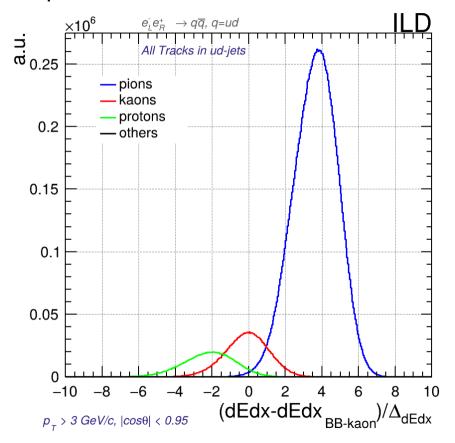
PID via dE/dx: Starting point

Not all tracks/PFOs are valid for dE/dx



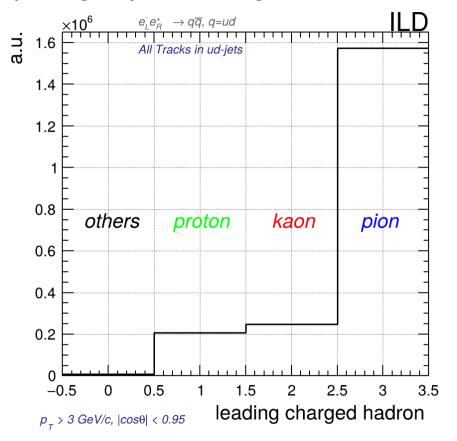
PID: Preselection

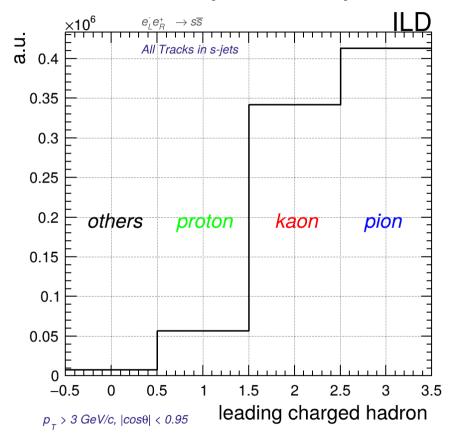
These three bands can be used to measure an statistical distance



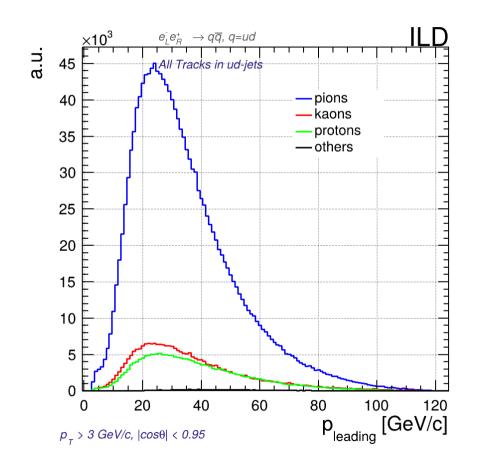
s vs ud: k-distance of tracks

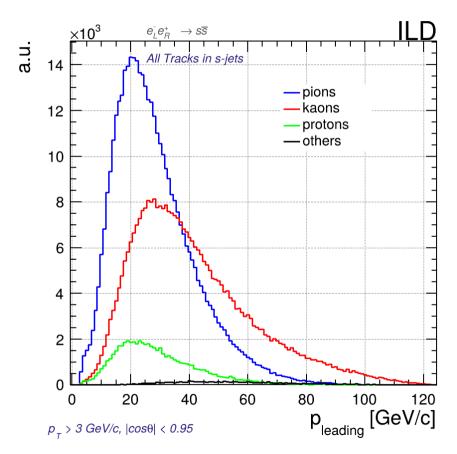
Example of distance from tracks dE/dx and the theoretical values for kaons



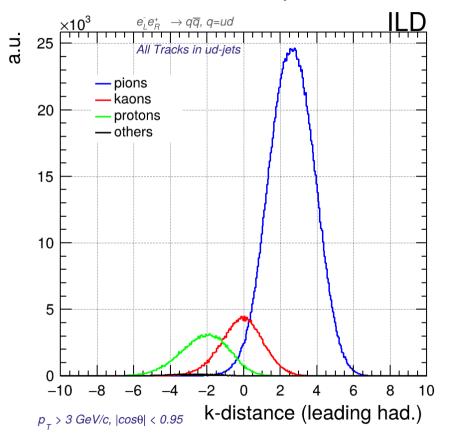


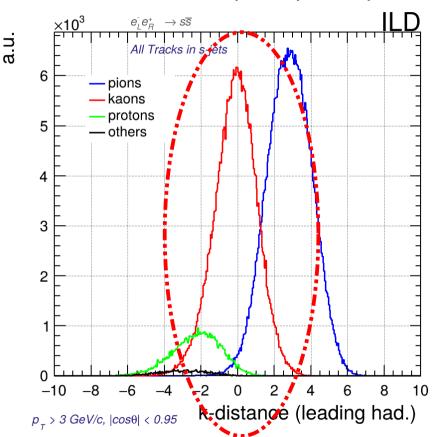
s vs ud: leading charged hadrons


Inspecting only the leading track shows the difference between s-jets and u/d-jets



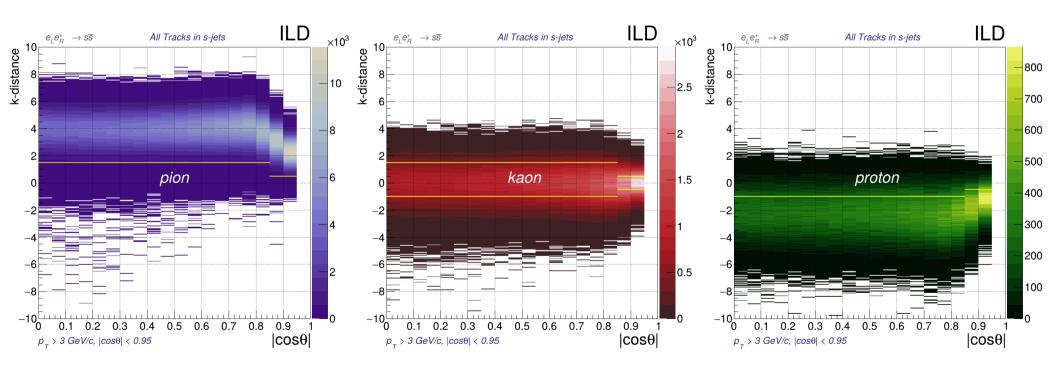
s vs ud: leading charged hadrons





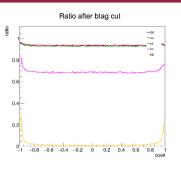
s vs ud: k-dist of leading charged hadrons

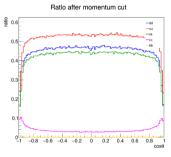
• Similar review was done via pi-distance, but shows similar behavior (as expected)

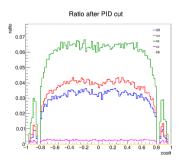

Our target for s-tagging!

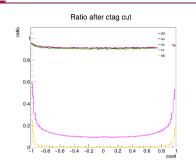
2d view of k-distance (s quarks)

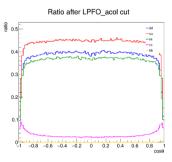
Angular cuts are performed in these distributions for selection of pions/kaons

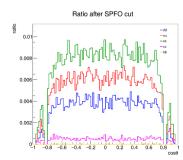

Cuts visualization (K for s-quark selection)

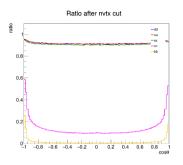


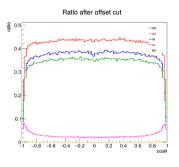

- Results for P(e-,e+)=(-0.8,+0.3)
- Flat when $|\cos(\theta)| < 0.8$

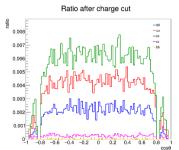

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%


Preliminary results





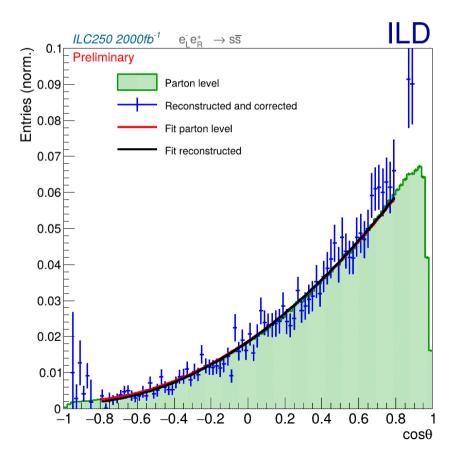


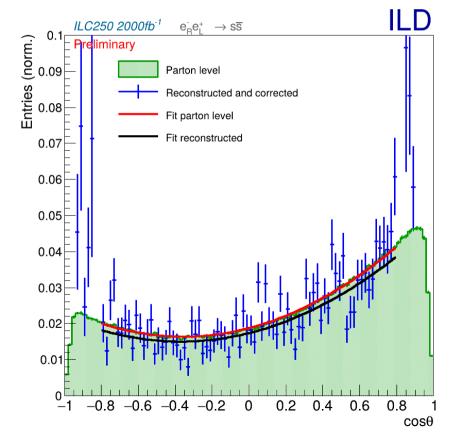


Reconstruction of A_{FB}

- The signal data is estimated by resting the expected backgrounds to the count of events and doing several corrections to it:
 - Efficiency estimation
 - Kaon PID stability
 - Charge migration (p-q method)
- A fit is performed to the corrected signal, following the function:

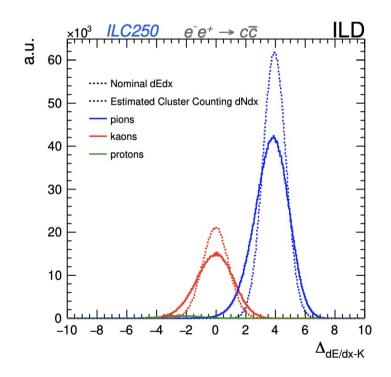
$$\frac{d\sigma}{d\cos\theta} = S\left(1 + \cos^2\theta\right) + A\cos\theta$$


- Pseudo-experiments are performed for an estimation of systematical uncertainties due to the "tagging and correction" process
 - Other systematical uncertainties are not yet consider (beam polarization, diboson backgrounds, angular correlations, etc.), but minor contributions are expected



Fit to reconstructed signal

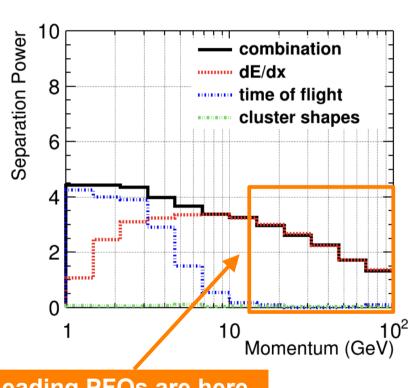
• Fit constrained to $|\cos\theta| < 0.8$ shows good agreement



PID hardware prospects

- A Marlin processor "CheatdEdxProcessor" is used for estimates of better PID cases
 - It uses fits to the bins of the 2D k-distance distribution
 - Then narrows those fits and rewrites the PFO info

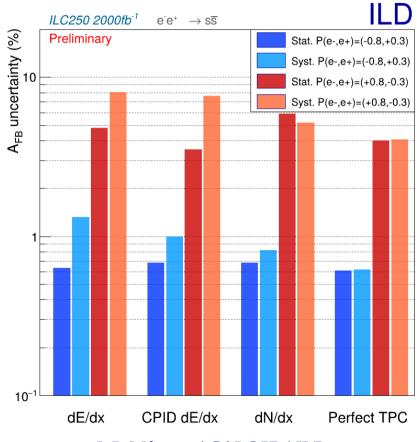
- We consider two different cases:
 - 30% improvement for a pixel TPC PID case (dN/dx)
 - 99% improvement for an ideal TPC PID case
- Caveat: Only PFOs with PID available are improved



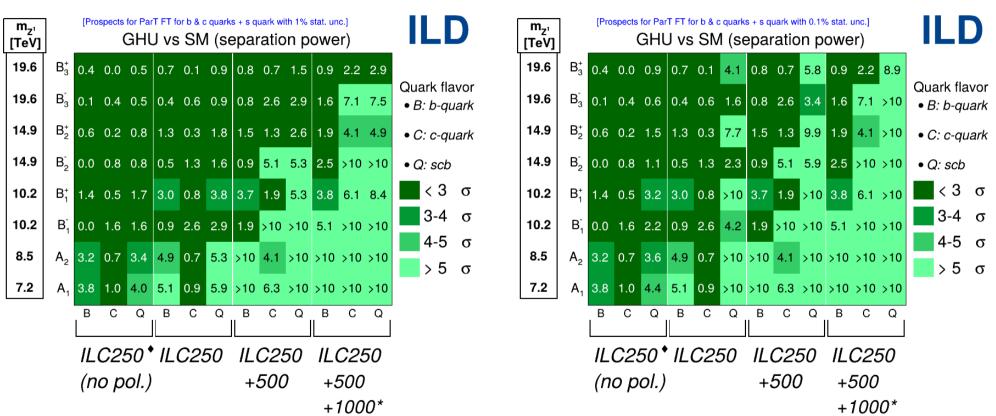
CPID for Kaon/Pion/Proton ID

- Comprehensive Particle ID Marlin processor:
 - Uses different PID inputs (dE/dx, TOF, etc.)
 - Uses a BDT-based ML algorithm for classification
 - Easy to adapt to different MC ids or PID info
- In our case, the CPID was trained tackling our leading PFOS:
 - Only Kaon/Pion/Proton separation
 - 3 GeV < Momentum < 100 GeV

https://arxiv.org/abs/2307.15635 (U. Einhaus)


Leading PFOs are here

Preliminary results


Purer signal as we move from left to right

Application into GHU phenomenology (TBD)

• 1% stat. unc. for s-quark A_{FB} (left) vs 1% stat. unc. for s-quark A_{FB} (right)

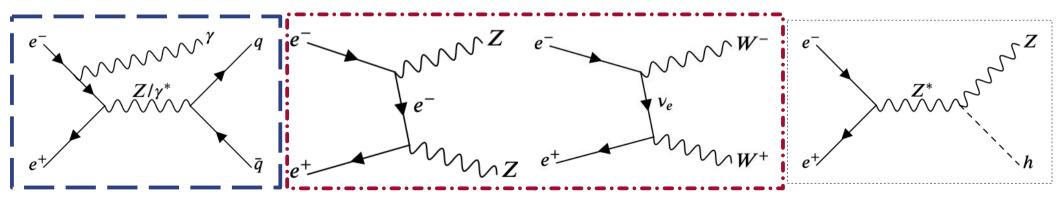
We have a new set of heavier models to explore this further (Thanks to N. Yamatsu)

Conclusions/Overview

- A cut-based analysis has been re-tested and improved considering:
 - Software improvements: Using CPID for optimal dE/dx handling
 - Hardware prospects: A pixel TPC (dN/dx) or a "perfect" TPC
- There seem to be a bottleneck of statistics due to Kaon selection
 - But the ML approach shows potential for reducing systematics
- There are many plans for the future of this analysis:
 - Using more MC simulation data
 - Using Particle Transformer (ParT) s-tagging
 - Running at 500 GeV
 - Re-scaling results to the LCF@CERN
 - Applying the obtained precisions to BSM (GHU prospects)

THANKS FOR YOUR ATTENTION

BACK-UP



Preselection of qq signals

- Once we have the reconstructed pfos of the events with different targets:
 - We cluster the signal in jets (VLC algorithm):
 - The algorithm packs together the PFOs into two jets.
 - Signal is expected in a back-to-back topology (but not the backgrounds!)
 - Most of the background is **radiative return (yqq**)
 - And most of the data is background!
 - x3 for $e_Le_R^+$ and x6 for $e_Re_L^+$ at 250 GeV
 - x4 for $e_Le_R^+$ and x7 for $e_Re_L^+$ at 500 GeV
 - Then we apply different cuts to the signal to remove the background processes

Preselection for 250 GeV

Cuts:

K_{reco} < 35 GeV

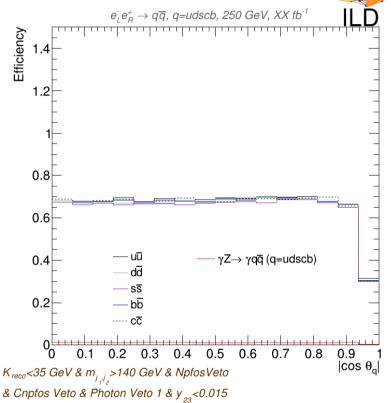
• $m_{2jets} > 140 \text{ GeV}$

Charged N pfos

Photon veto

• $Y_{23} < 0.015$

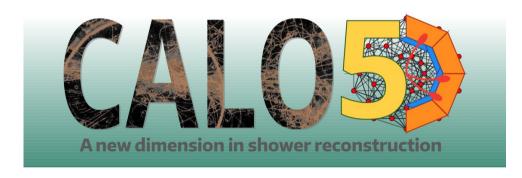
VLC Algorithm parameters:


• R = 1.0

• y = 0.0

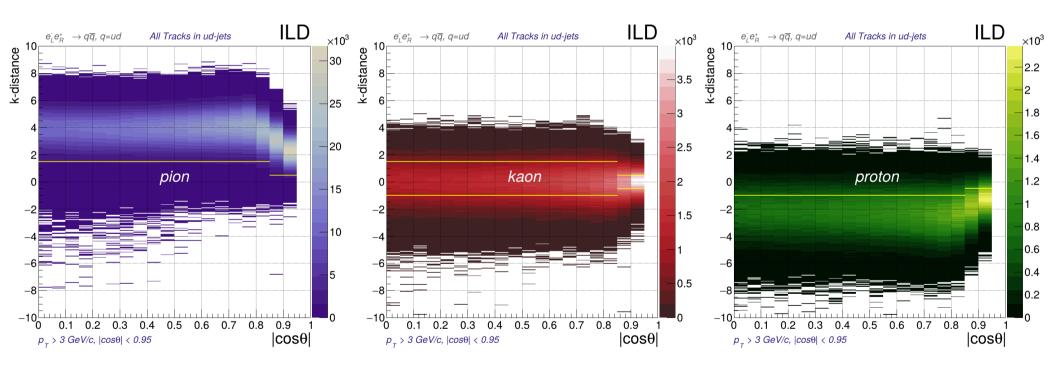
• $\beta = 1.0$

		Efficie	encies (%)			
R	$bar{b}$	$c\bar{c}$	$q\bar{q} \text{ (uds)}$	ISR	S/B	
1.0	64.7	64.6	64.3	0.9	23.7	
1.0	68.3	68.5	68.1	1.1	28.1	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $


Total efficiency of the preselection for the different quark flavours and radiative return for the chosen configuration (y=0). The second row is for $|\cos\theta| < 0.9$

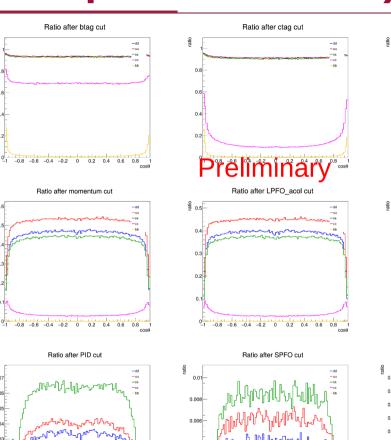
Efficiency of the preselection for the different quark flavours vs the angular distribution of the two jet system (new samples, final configuration)

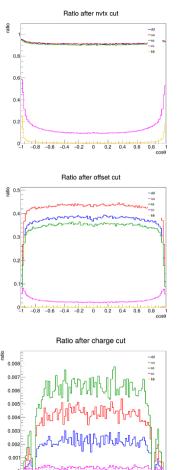
Re-run of previous analysis



2d view of k-distance (ud quarks)

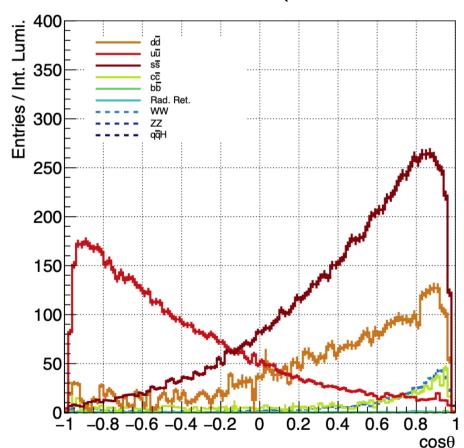
Angular cuts are performed in these distributions for selection of pions

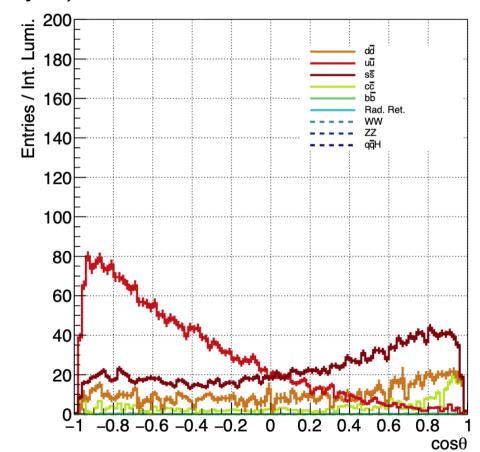




Cuts visualization (K for s-quark selection)

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%
	,	Preli	minaı	V	





Contributions after preselection

After K LPFO selection (Plots from Yuichi's analysis)

Preliminary results (π mode for u/d selection)

- Selecting u/d quarks
 - Results for e⁻Le⁺R
 - (Left) New dE/dx analysis vs (right) CPID dE/dx

CPID dE/dx

B/S=0.23

	dd	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0758%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0485%
+ Cut 7	12.8%	12.9%	5.61%	0.667%	0.0105%	+ Cut 7	19.4%	19.8%	8.74%	1.02%	0.0196%
+ Cut 8	1.72%	1.93%	0.86%	0.162%	0.00287%	+ Cut 8	2.59%	2.97%	1.33%	0.247%	0.00546%
+ Cut 9	1%	1.22%	0.503%	0.0823%	0.00172%	+ Cut 9	1.51%	1.89%	0.778%	0.126%	0.00222%

From 0.23 to 0.23 B/S

Preliminary results (K mode for s selection)

- Selecting s quark
 - Results for e⁻Le⁺R
 - (Left) New dE/dx analysis vs (right) CPID dE/dx

CPID dE/dx

B/S=0.78

	dd	uu	SS	cc	bb		dd	uu	ss	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0758%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0485%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%	+ Cut 7	0.991%	1.43%	4.21%	0.267%	0.00364%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%	+ Cut 8	0.13%	0.228%	0.548%	0.0495%	0.00142%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%	+ Cut 9	0.0674%	0.162%	0.421%	0.0262%	0.000607%

From 1.36 to 0.78 B/S

Preliminary results (π mode for u/d selection)

Selecting u/d quarks

dN/dx

- Results for e⁻Le⁺R
 - (Left) New dE/dx analysis vs (right) dN/dx

B/S=0.20

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%
+ Cut 7	12.8%	12.9%	5.61%	0.667%	0.0105%	+ Cut 7	20.2%	20.6%	7.65%	0.95%	0.0184%
+ Cut 8	1.72%	1.93%	0.86%	0.162%	0.00287%	+ Cut 8	2.5%	2.85%	1.07%	0.215%	0.00482%
+ Cut 9	1%	1.22%	0.503%	0.0823%	0.00172%	+ Cut 9	1.49%	1.85%	0.632%	0.116%	0.00219%

From 0.23 to 0.20 B/S

Preliminary results (K mode for s selection)

Selecting s quark

dN/dx

- Results for e⁻Le⁺R
 - (Left) New dE/dx analysis vs (right) dN/dx

B/S=0.34

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%	+ Cut 7	0.348%	0.524%	3.55%	0.144%	0.0011%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%	+ Cut 8	0.0389%	0.0865%	0.457%	0.022%	0.000438%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%	+ Cut 9	0.0214%	0.0629%	0.366%	0.0109%	0.000219%

From 1.36 to 0.34 B/S

Preliminary results (π mode for u/d selection)

- Selecting u/d quarks
 - Results for e⁻Le⁺R
 - (Left) dNdx vs (right) Perfect TPC PID

Perfect TPC PID

B/S=0.19

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%	+ Cut 1	93.9%	93.9%	93.1%	69.5%	2.66%
+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%	+ Cut 4	45.1%	52.5%	42.3%	4.76%	0.165%
+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%	+ Cut 5	38.2%	44.4%	35.7%	3.94%	0.115%
+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0743%
+ Cut 7	20.2%	20.6%	7.65%	0.95%	0.0184%	+ Cut 7	20.2%	20.6%	7.41%	0.907%	0.017%
+ Cut 8	2.5%	2.85%	1.07%	0.215%	0.00482%	+ Cut 8	2.5%	2.84%	1.04%	0.206%	0.00503%
+ Cut 9	1.49%	1.85%	0.632%	0.116%	0.00219%	+ Cut 9	1.49%	1.85%	0.608%	0.113%	0.00262%

From 0.20 to 0.19 B/S

Preliminary results (K mode for s selection)

- Selecting s quark
 - Results for e⁻Le⁺R
 - (Left) dNdx vs (right) Perfect TPC PID

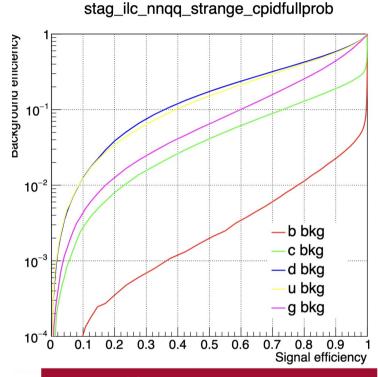
Perfect TPC PID

B/S=0.28

	dd	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%	+ Cut 1	93.9%	93.9%	93.1%	69.5%	2.66%
+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%	+ Cut 4	45.1%	52.5%	42.3%	4.76%	0.165%
+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%	+ Cut 5	38.2%	44.4%	35.7%	3.94%	0.115%
+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0743%
+ Cut 7	0.348%	0.524%	3.55%	0.144%	0.0011%	+ Cut 7	0.385%	0.571%	4.85%	0.185%	0.00175%
+ Cut 8	0.0389%	0.0865%	0.457%	0.022%	0.000438%	+ Cut 8	0.0472%	0.0924%	0.601%	0.0263%	0.000437%
+ Cut 9	0.0214%	0.0629%	0.366%	0.0109%	0.000219%	+ Cut 9	0.0258%	0.0683%	0.497%	0.0146%	0.000218%

From 0.34 to 0.28 B/S

Preliminary results (numbers)



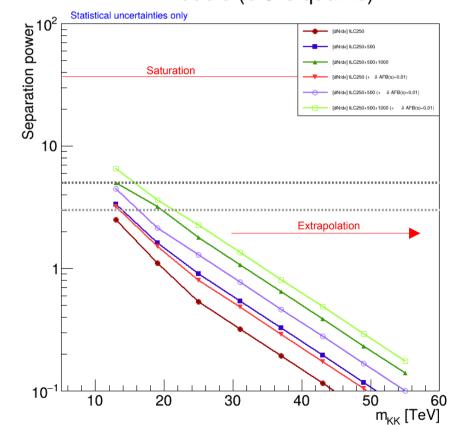
		$e^-e^+ \rightarrow s\bar{s}$											
	$P_{e^-e^+}$	(-0.8, +0.3)		$P_{e^-e^+}$	$P_{e^-e^+}(+0.8, -0.3)$								
	$\delta A_{FB}^{stat}(\%)$	$\delta A_{FB}^{syst}(\%)$	B/S	$\delta A_{FB}^{stat}(\%)$	$\delta A_{FB}^{syst}(\%)$	B/S							
dE/dx	0.63	1.32	1.38	4.80	8.03	2.32							
CPID (dE/dx)	0.68	1.00	0.79	3.53	7.62	1.54							
dN/dx	0.68	0.82	0.37	5.91	5.19	0.58							
Perfect TPC	0.61	0.62	0.28	4.01	4.05	0.48							

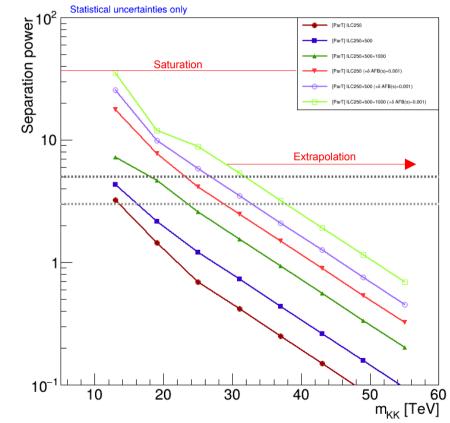
The "holy grail": ParT s-tagging

- Particle Transformers is state-of-the-art ML software
- It uses CPID for the tracks PID
- It can be 10x better than the cut-based approach
 - But how? Is this code available? Trying to get access to it to incorporate it into a chain of analysis
 - Can reduce the cuts in the analysis into:
 - B-tag
 - C-tag
 - S-tag → Much more powerful than kaon ID
 - Migration cuts:
 - Secondary PFO candidate cut
 - Opposite charge LPFO cut

1% ss signal with 0.02% u/d backgrounds? Expected B/S = 0.33

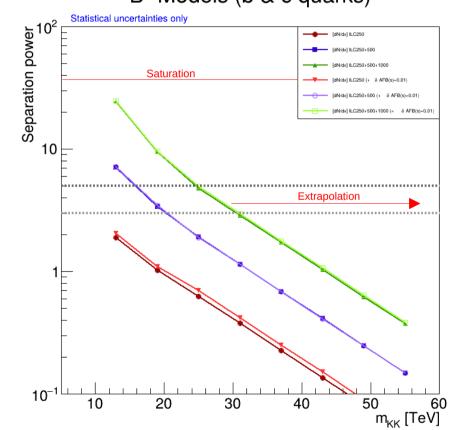
GHU phenomenology

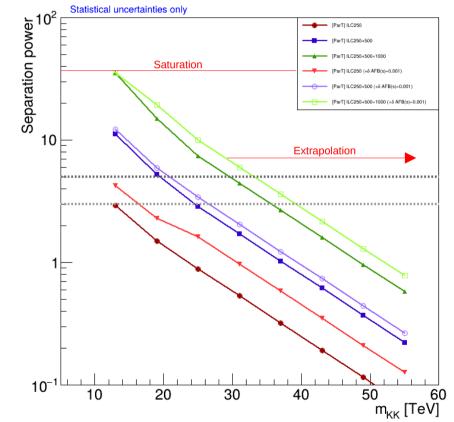




B+ models mass scale

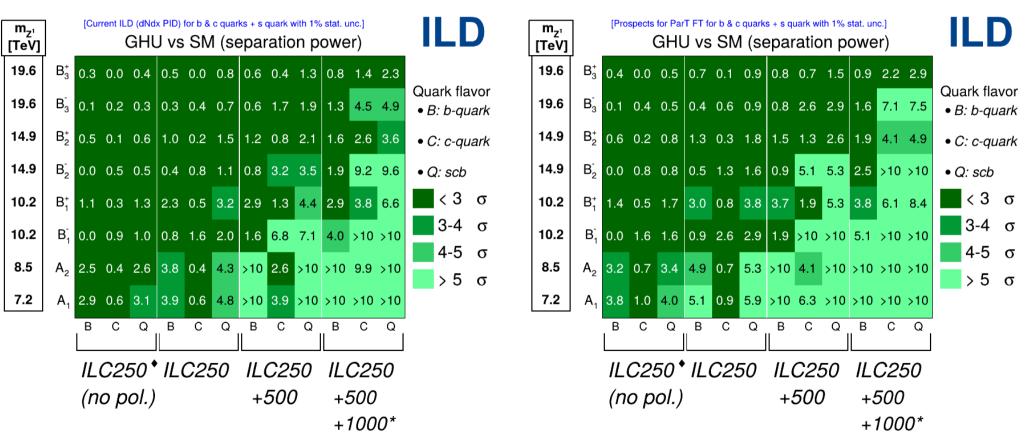
• Worst (dN/dx + 1% δA_{FB} for s-quark) vs best (ParT + 1‰ δA_{FB} for s-quark) prospects B+ Models (b & c quarks) B+ Models (b & c quarks)



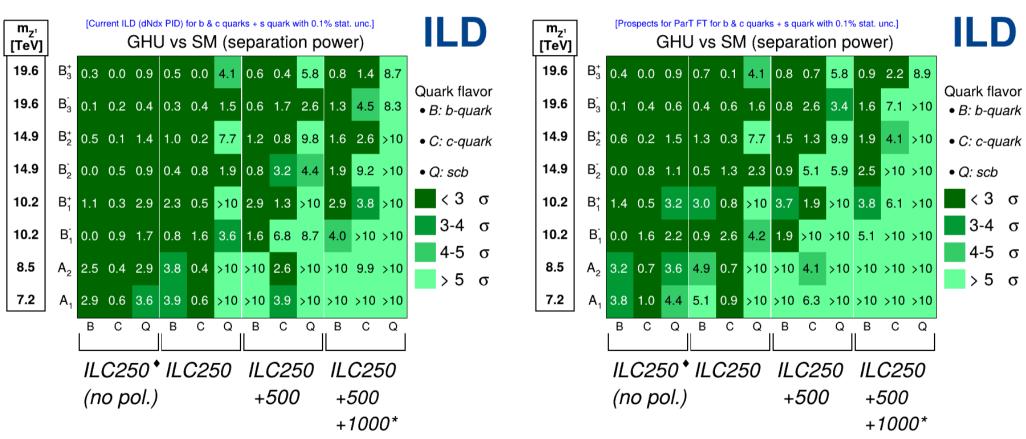


B- models mass scale

• Worst (dN/dx + 1% δA_{FB} for s-quark) vs best (ParT + 1‰ δA_{FB} for s-quark) prospects B- Models (b & c quarks) B- Models (b & c quarks)



Adding s quark (1% relative error)


ILC with pixel TPC (dN/dx for PID) || ILC with prospects using ParT flavour tagging

Adding s quark (1‰ relative error)

ILC with pixel TPC (dN/dx for PID) || ILC with prospects using ParT flavour tagging

