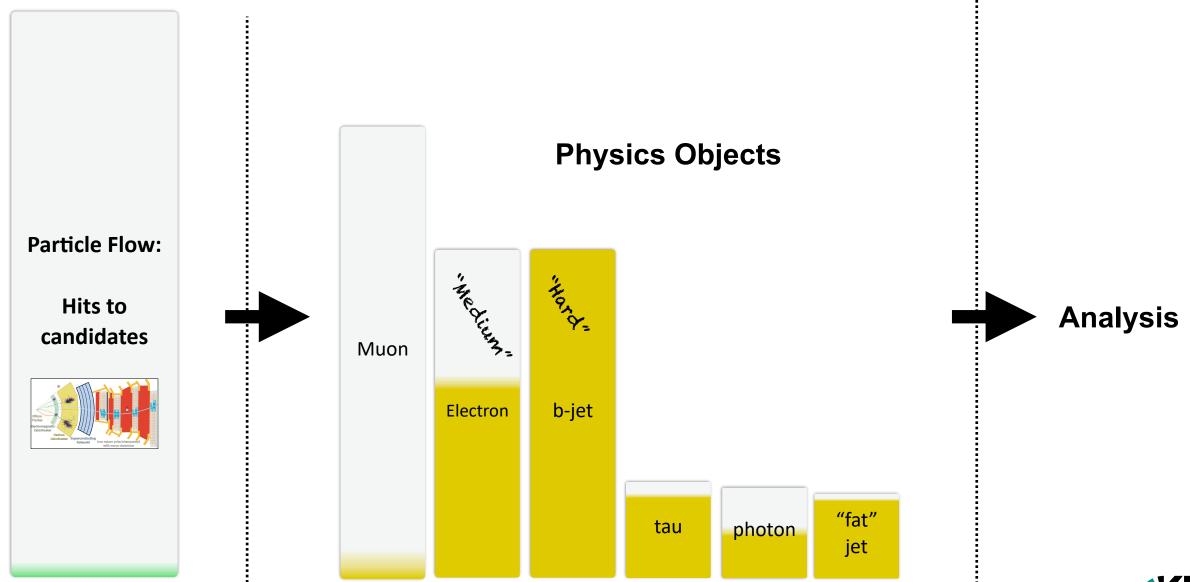


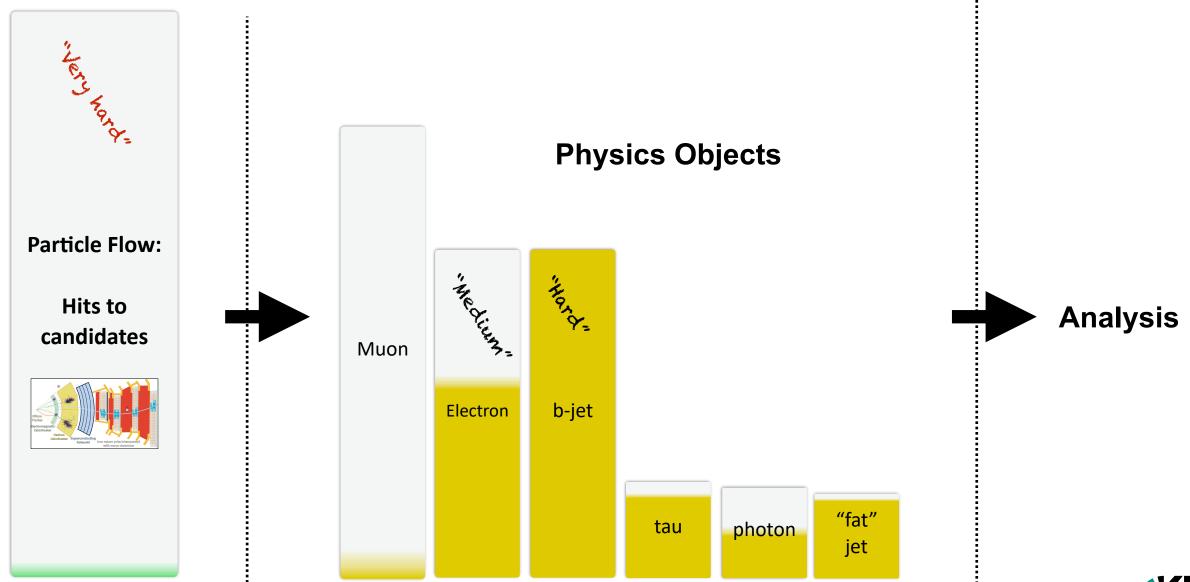
Conceptual Considerations for ML-based Reconstruction

Jan Kieseler

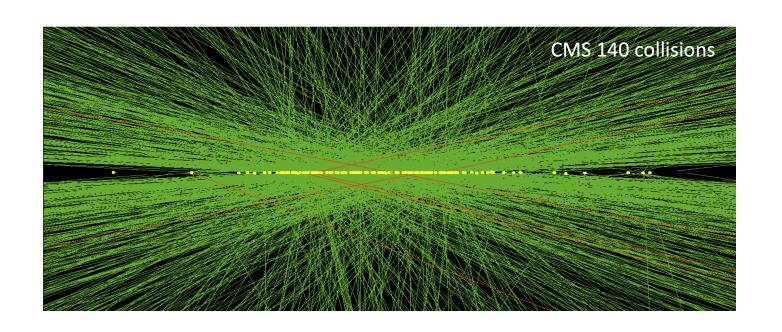
ML in the analysis chain (in CMS)

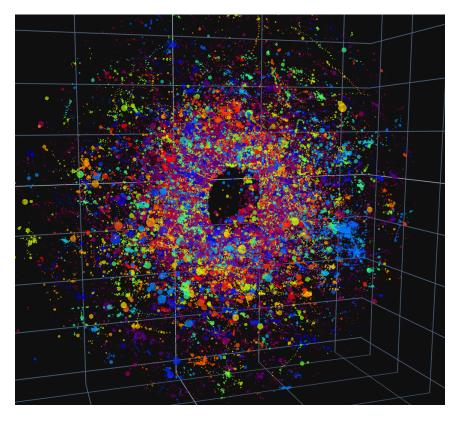


ML in the analysis chain (in CMS)



The need for better algorithms



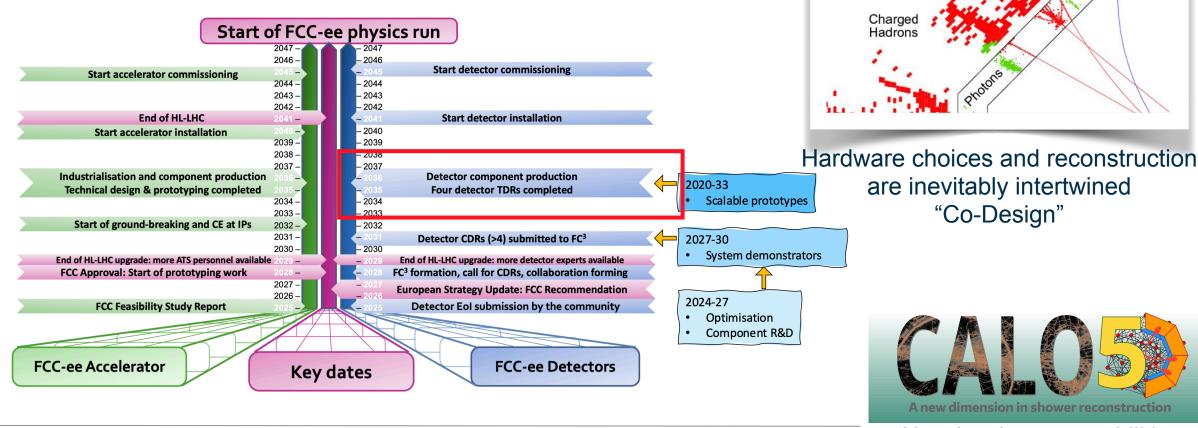


More complex and overlapping patterns to reconstruct to particles: ML

Strain on computing ressources: parallelisable algorithms (ML) on GPUs

More need for better algorithms: ML approaches are highly flexible

FCC Week, Vienna



19.05.2025

→ ML means: adaptive algorithms, low turn-around, possibility for (gradient based) detector optimisation

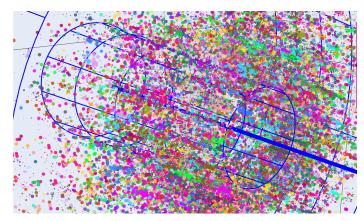
New hardware capabilities

12

Electron

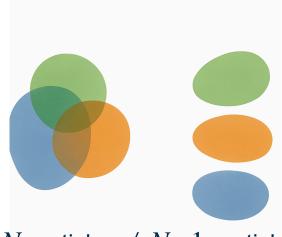
Mogens Dam / NBI Copenhagen

Conceptual Considerations: Particle Flow



High input multiplicities: Demand on resources

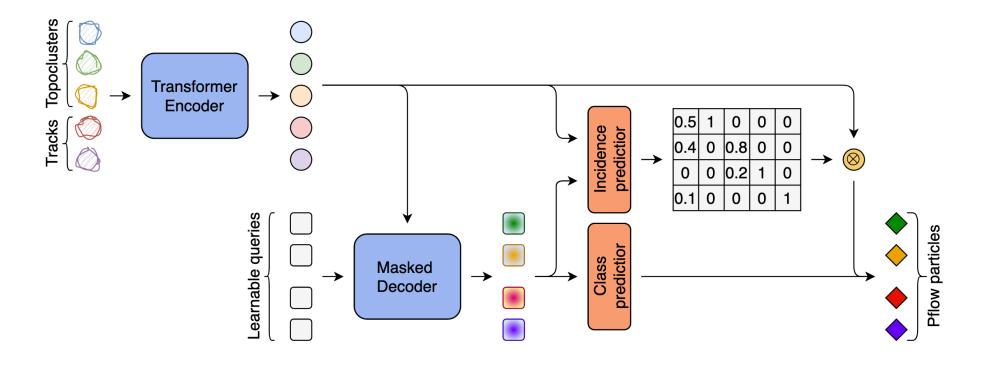
Physics robustness: Careful target definition



N particles $\neq N \cdot 1$ particle advanced concepts

GLOW

arXiv:2508.20092



Trained and applied to CLIC detector dataset O(100) inputs

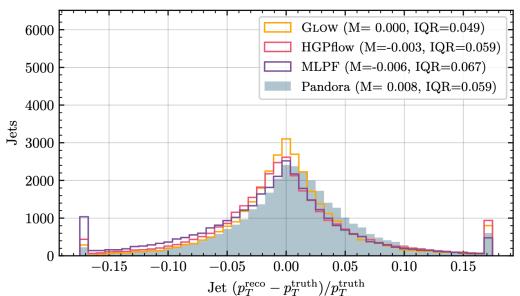
Targets particles with at least a track or calorimeter deposit

Counts particles globally*

GLOW

arXiv:2508.20092





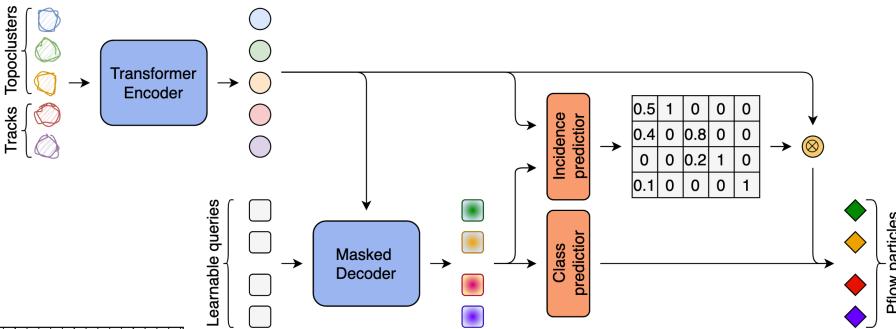
Trained and applied to CLIC detector dataset O(100) inputs

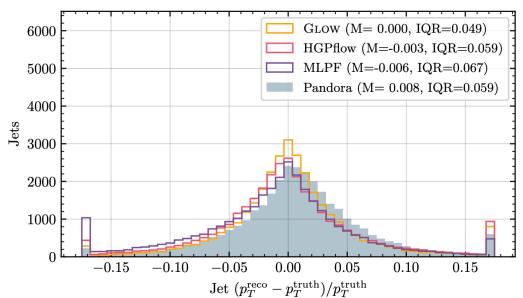
Targets particles with at least a track or calorimeter deposit

Counts particles globally*

GLOW

arXiv:2508.20092





Trained and applied to CLIC detector dataset O(100) inputs

Targets particles with at least a track or calorimeter deposit

Counts particles globally*

Prior probabilities from the training dataset

For illustration:
$$P(H_0 | x) = \frac{f(x | H_0)\pi_0}{f(x | H_0)\pi_0 + f(x | H_1)\pi_1}$$

CMS MLPF

Aims:

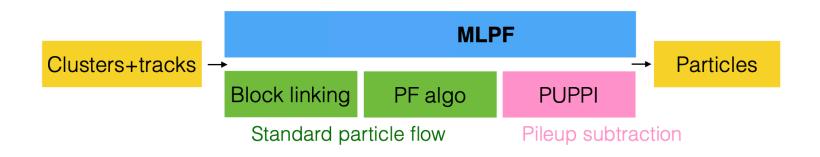
Simplified pipeline
Faster runtime
Improved physics performance

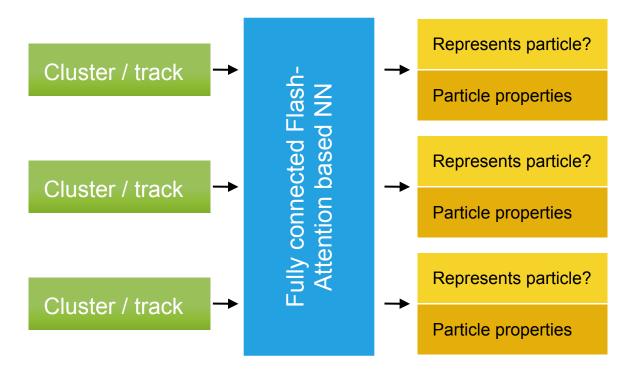
O(1000) inputs

Define targets:

- Charged: by track
- Neutral: merge all in one cluster
- Pre-define one representative point

Fully supervised training on $t\bar{t}$, QCD, $Z \rightarrow \tau \tau$

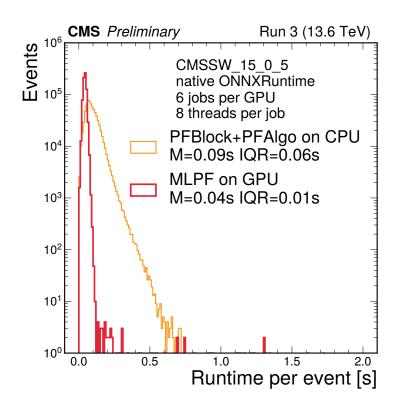


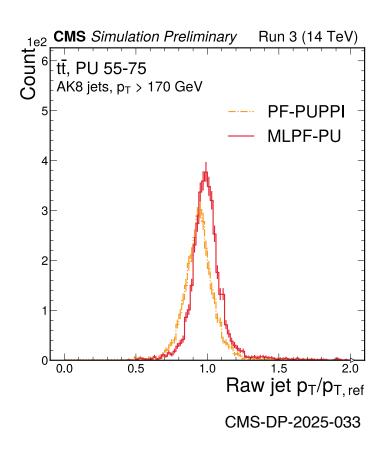


Adapts to different geometries nicely (e.g. FCC det.)

F. Mokhtar, et al, https://arxiv.org/abs/2503.00131

It's hard but worth it: Improving physics and runtime





- **→** Improved jet resolution over standard PF with identical inputs
- **⇒** Fast runtime
- **→** Including timing information in ML models is straight forward

Locality as a must

Calibration procedures heavily rely on independence of particles reconstructed in (very) different detector regions

Z/gamma jet balance

Tag & Probe

Event mixing

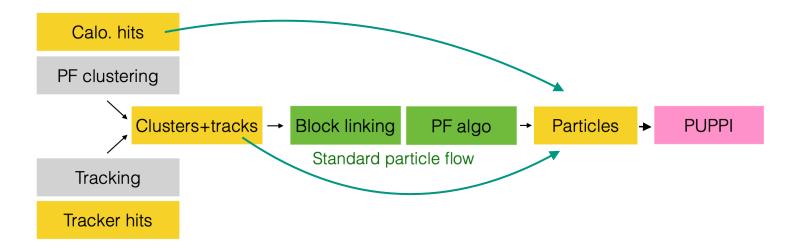
AD bump hunts

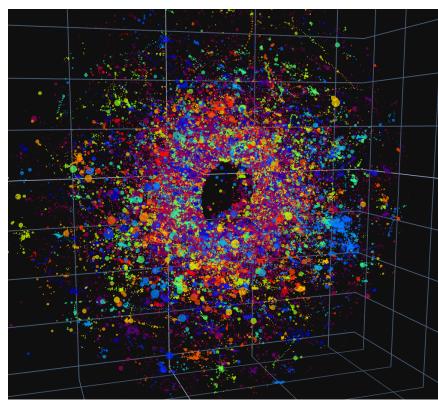


Include Calorimeter Hits: towards "end-to-end"

Utilise higher granular inputs from calorimeter hits

First reconstruct all particles, then perform pileup subtraction (depends on PV definition)





MLPF approach not applicable anymore: target, concepts, and resources

The target matters

With ML calorimeter clustering, a new more granular and general definition is needed for a robust algorithm

Why:

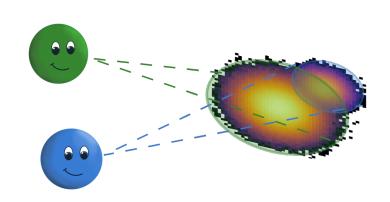
Example from classification:

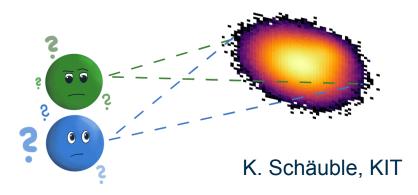
$$P(H_0 \mid x) = \frac{f(x \mid H_0)\pi_0}{f(x \mid H_0)\pi_0 + f(x \mid H_1)\pi_1}$$
 the

Prior probabilities from the training dataset

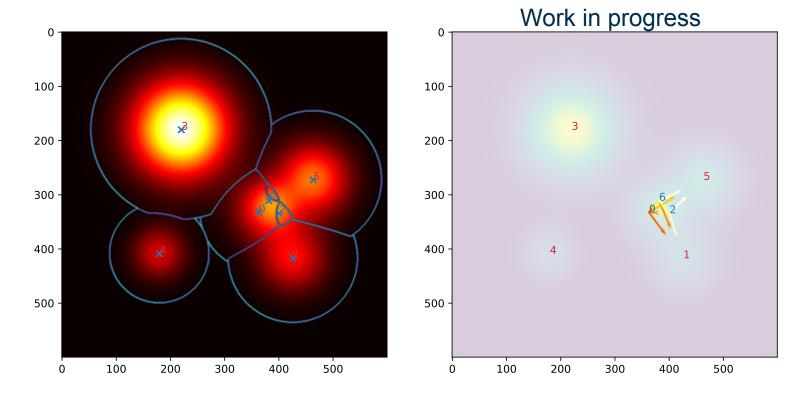
The more the algorithm guesses the more it relies on the priors: the less it generalises to different physics scenarios.

A good truth definition leads to a robust algorithm, it relies on what we consider in principle resolvable by the detector.





Truth merging

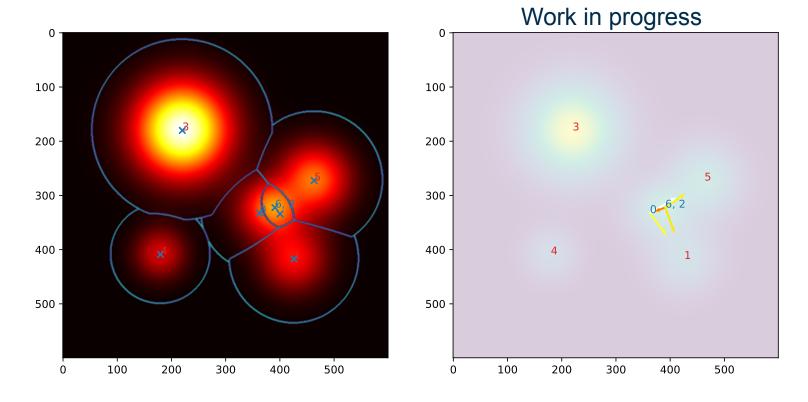


Based on resolvability w.r.t sensors: implement detector geometry in a generic way

Creates a directed graph: avoids over-merging

Performs resolvability-ordered merging: adds IRC safety

Truth merging

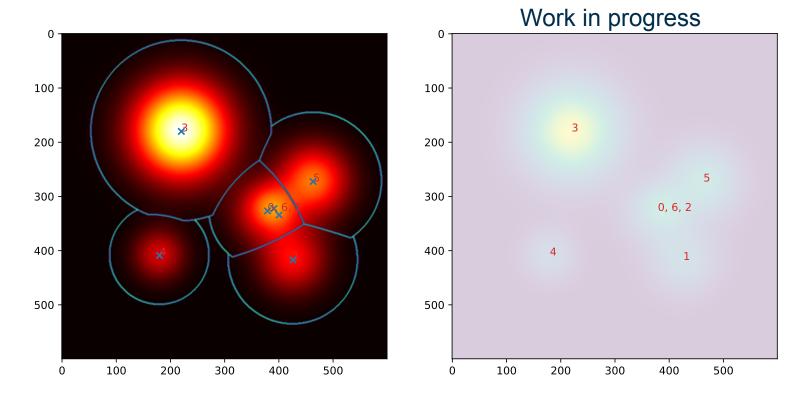


Based on resolvability w.r.t sensors: implement detector geometry in a generic way

Creates a directed graph: avoids over-merging

Performs resolvability-ordered merging: adds IRC safety

Truth merging



Based on resolvability w.r.t sensors: implement detector geometry in a generic way

Creates a directed graph: avoids over-merging

Performs resolvability-ordered merging: adds IRC safety

Processing a large number of sensors: GravNet

Qasim, JK, et al arXiv:1902.07987

High input dimensionality

 N^2 connections \rightarrow local connections $N \cdot K$ - what are the 'best' connections?

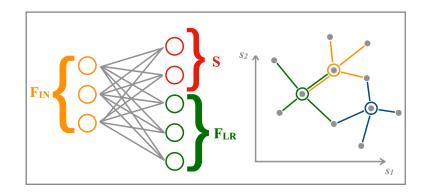
Increase robustness

event topology prior → local particle *density* prior

GravNet:

Distance weighted information exchange

Distance weighted information exchange
$$x_{j} = \left(\sum_{i \in N_{j}} \left(\exp(-d_{ij}^{2})x_{i}\right), \max_{i \in N_{j}} \left(\exp(-d_{ij}^{2})x_{i}\right)\right) \checkmark \text{ interpretable}$$



Processing a large number of sensors: GravNet

Qasim, JK, et al arXiv:1902.07987

High input dimensionality

 N^2 connections \rightarrow local connections $N \cdot K$ - what are the 'best' connections?

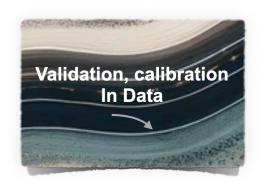
Increase robustness

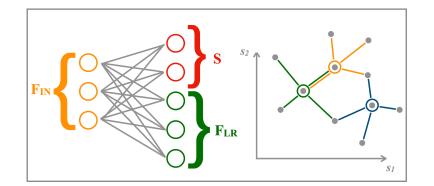
event topology prior → local particle *density* prior

GravNet:

Distance weighted information exchange

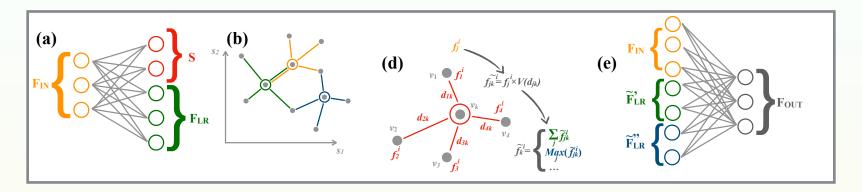
Distance weighted information exchange
$$x_{j} = \left(\sum_{i \in N_{j}} \left(\exp(-d_{ij}^{2}) x_{i}\right), \max_{i \in N_{j}} \left(\exp(-d_{ij}^{2}) x_{i}\right)\right) \checkmark \text{ interpretable}$$





- ⇒Explicitly learns the graph topology
- ⇒Saves 10-100x in terms or resources w.r.t. similar approaches
- → Adaptive explicitly translation equivariant variants being actively developed

GravNet: a faster EdgeConv/DGCNN?



Instead of generic message passing, use powerful attention

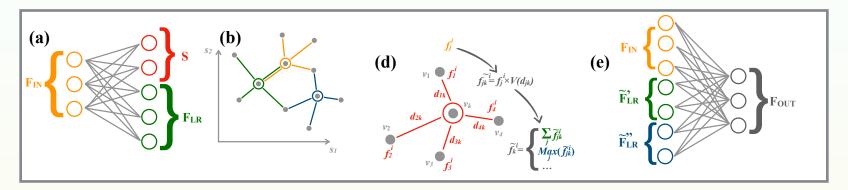
$$y_j = \prod_{i \in N(j)} a(x_j, x_i) \cdot \mathsf{MLP}(x_i)$$
Does not depend on j

- Can be rewritten $\tilde{x}_i = \text{MLP}(x_i)$ $y_j = \prod_{i \in N(j)} a(x_j, x_i) \cdot \tilde{x}_i$
- Brings a factor of about factor 100 speedup

EdgeConv / DGCNN
$$y_j = \prod_{i \in N(j)} MLP(x_j, x_j - x_i)$$
Per edge MLP:
$$N \times K \times F$$

arXiv:1902.07987

Building the graph topology through attention

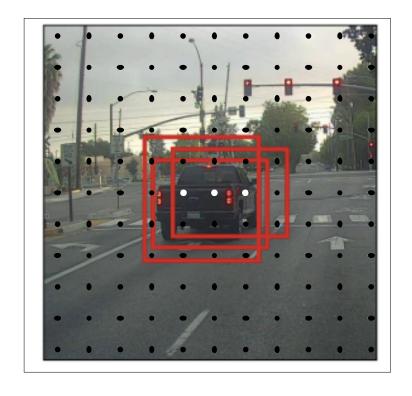


Attention scales the information exchange: higher value → more exchange

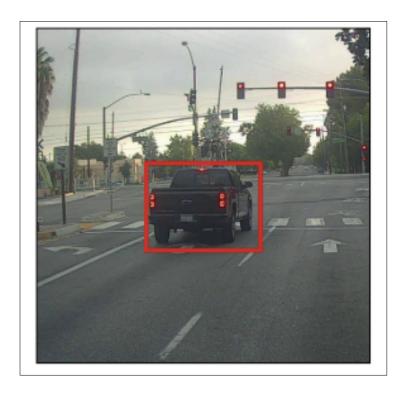
$$y_j = \prod_{i \in N(j)} a(x_j, x_i) \cdot \tilde{x}_i$$

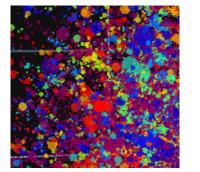
- Learn an embedding space S for each point (low dimensional: fast)
- Chose $a(x_i, x_j)$ such that close-by means a lot of information exchange: $a(x_i, x_j) = \exp(-10 \cdot d_{ij}^2)$: distance weighted
- → The K nearest points are the ones that need to exchange the most information: graph topology build

Multi-object detection: A look at computer vision



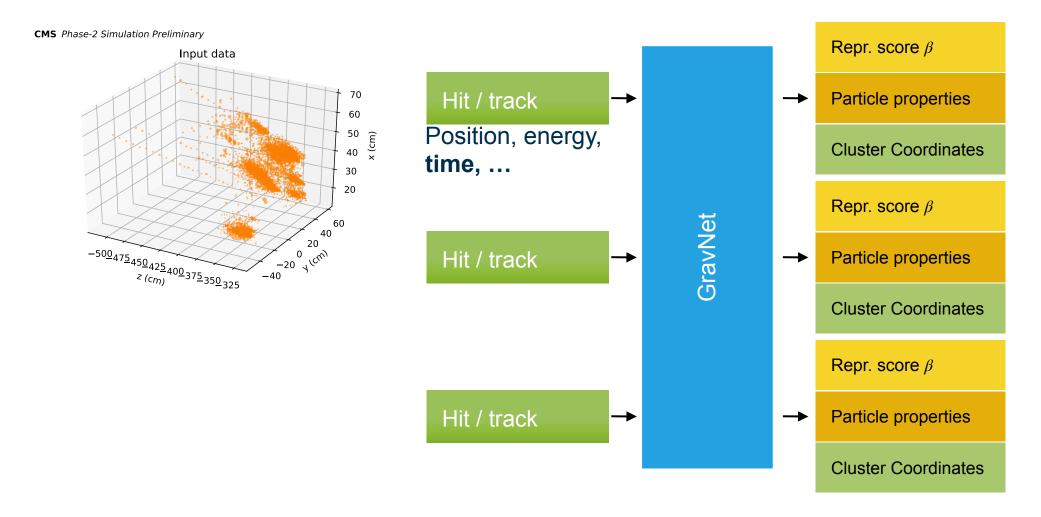
Overlap removal





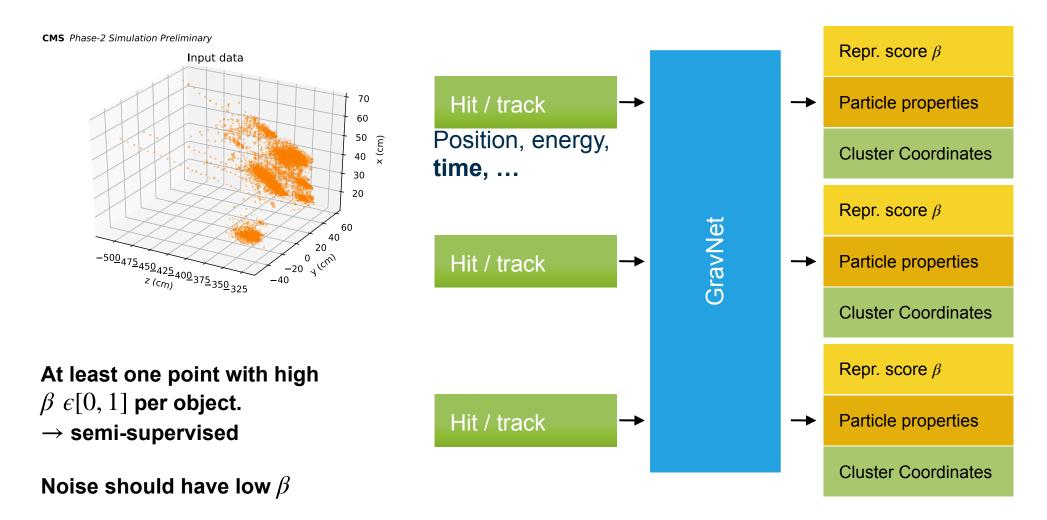
Multi-Particle Detection: Object Condensation

J.K., EPJC 2020



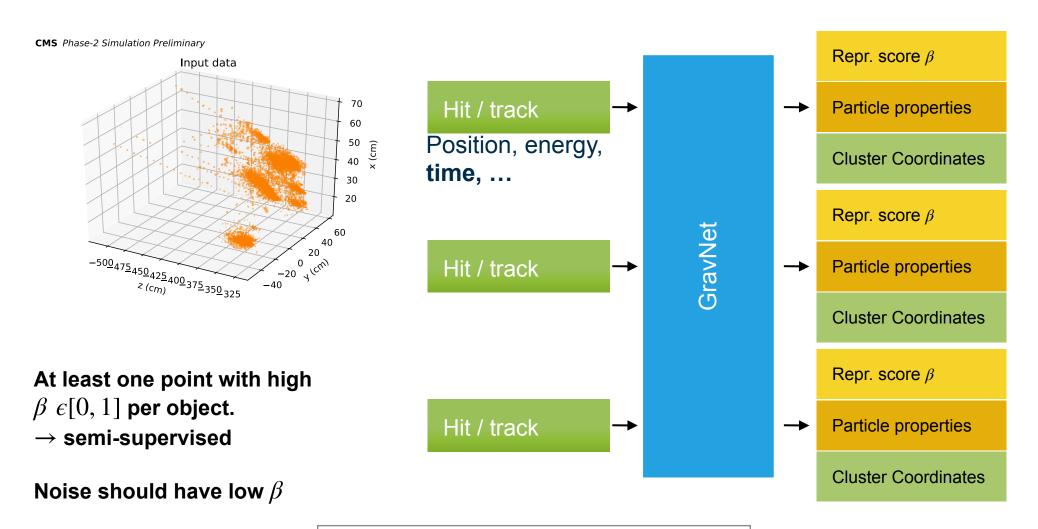
Multi-Particle Detection: Object Condensation

J.K., EPJC 2020

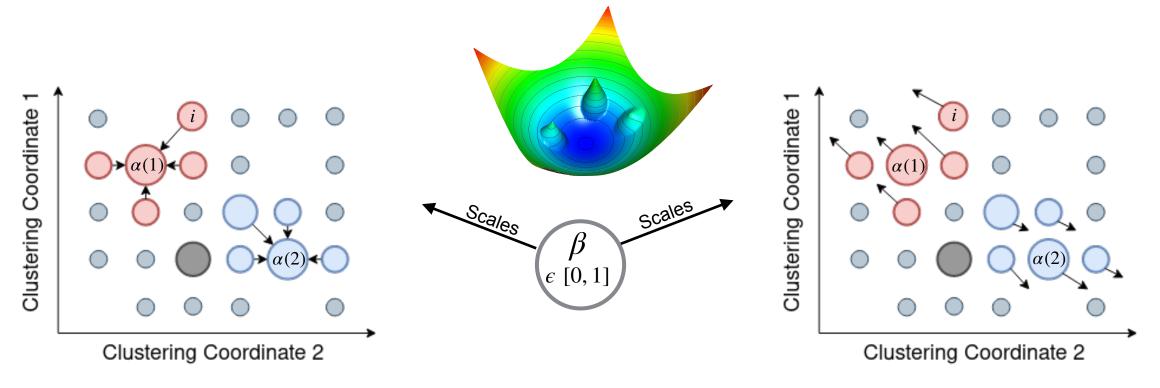


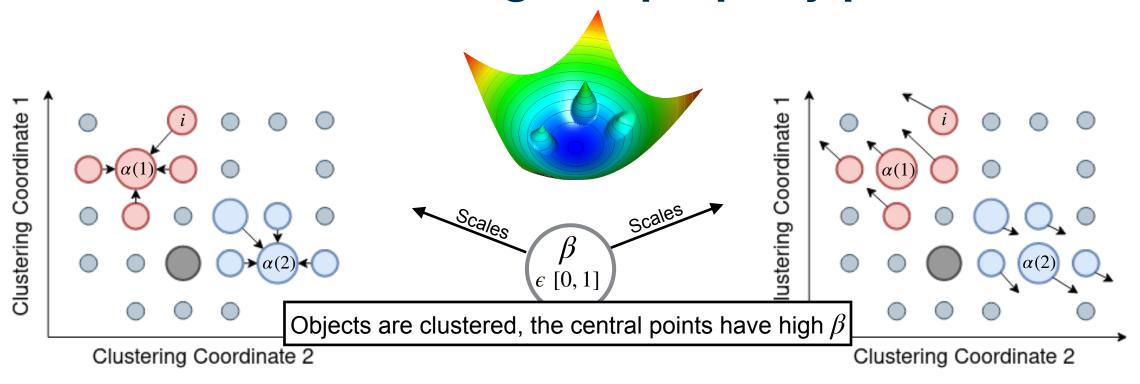
Multi-Particle Detection: Object Condensation

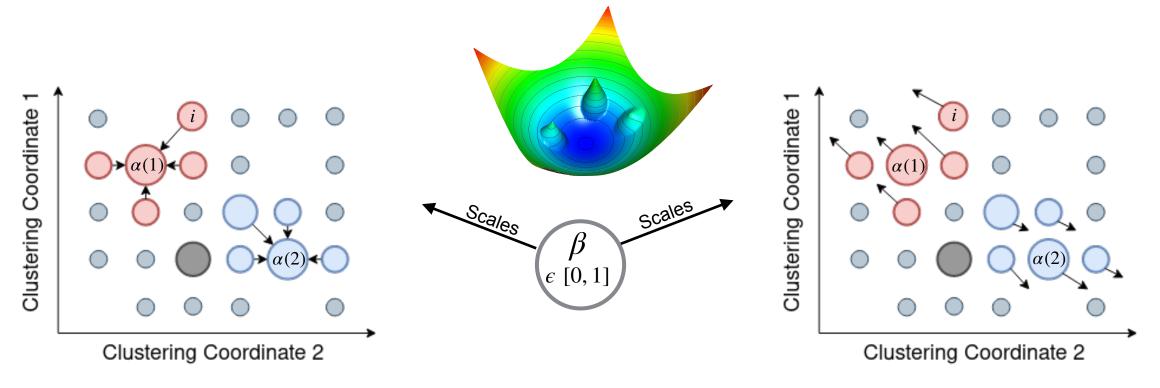
J.K., EPJC 2020

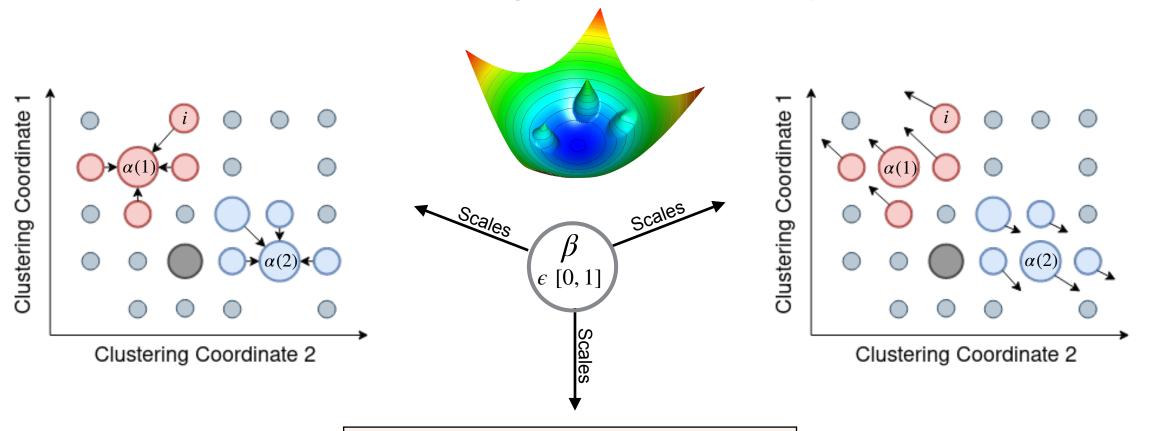


The condensation score β is central

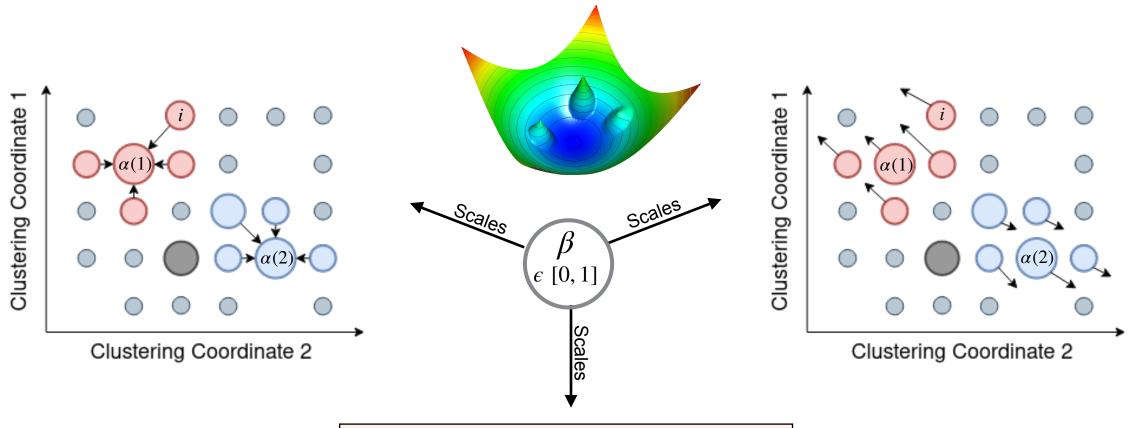








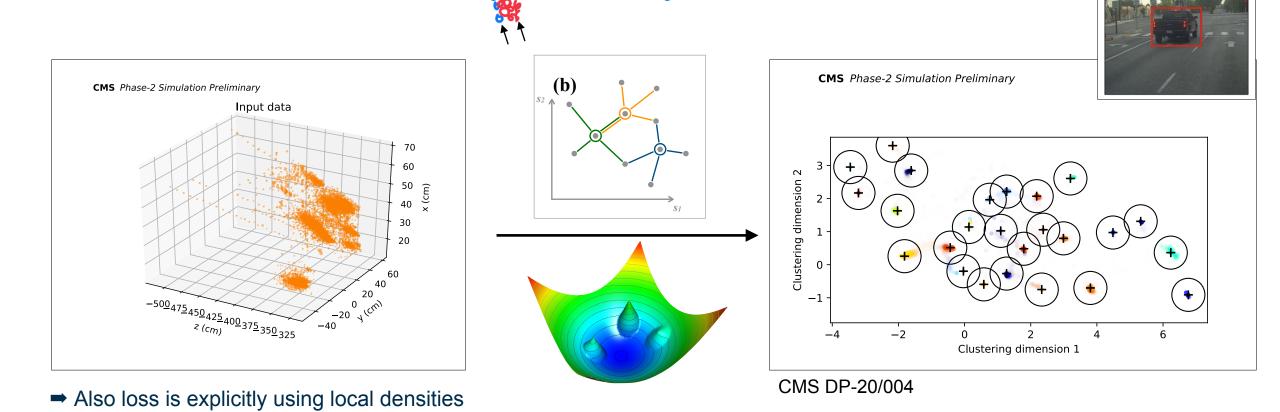
Property: cat or dog / electron or pion / energy



Property: cat or dog / electron or pion / energy

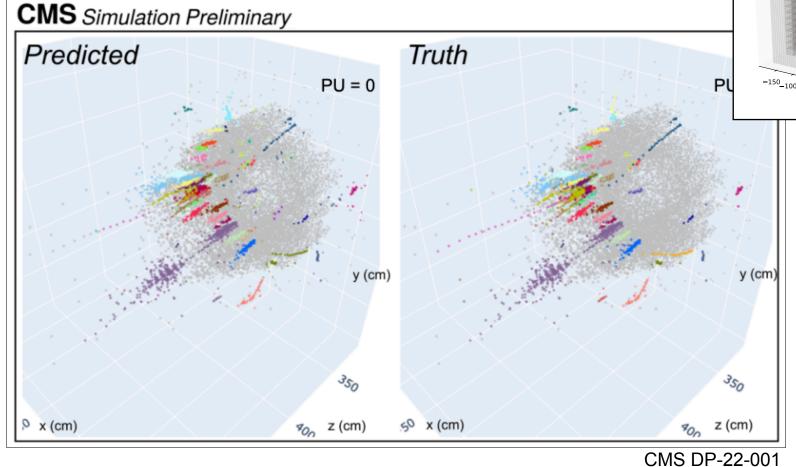
Center of each cluster also carries best property estimate: condensation point

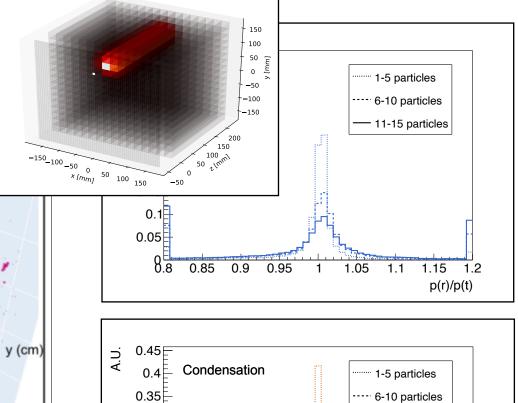
Object Condensation: Transform a complex problem into a simple one



→ However: still hand-tuned inference clustering/masking, no adaptive dimensionality reduction...
there is still work to do!

Large gains possible



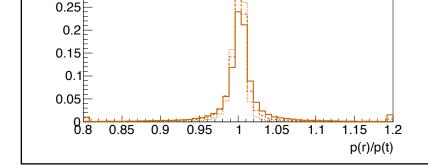


→ Very promising results

S.R. Qasim, N. Chern. J.K., arXiv:2204.01681,

S. Battarchaya, .. , J.K., et al., arXiv:2203.01189,

S. Qasim, K. Long, J.K., et al., arXiv:2106.01832 I. liyama, .. J.K., et al, arXiv:2008.03601

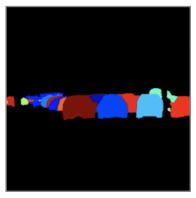


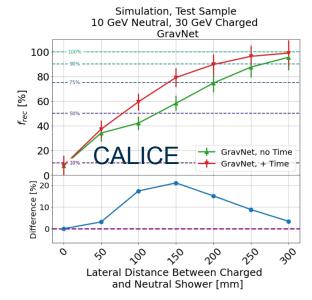
JK, arxiv:2002.03605, EPJC

0.3

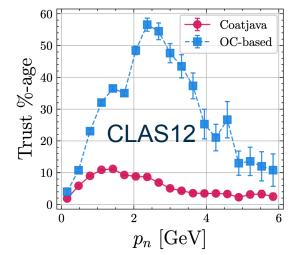
11-15 particles

Very versatile



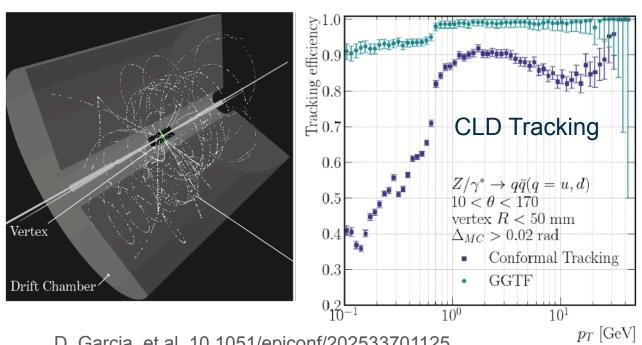


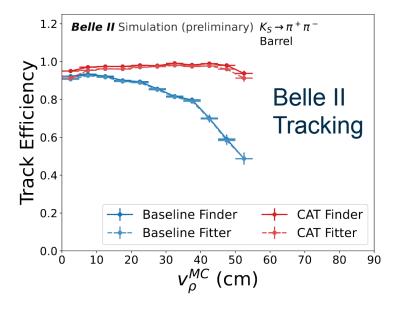
S. Lai, et al, arXiv:2407.00178



G. Matousek, V. Anselm, arxiv:2503.11277

L. Reuter, et al, arXiv:2411.13596, PRD

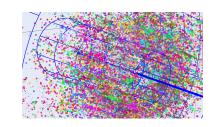




(d)
$$K_S^0 \to \pi^+ \pi^-, v_\rho^{MC}$$
.

From Hits to Physics with ML

A large territory only being explored since recently



It comes with conceptual and technical challenges that are (being) resolved Locality, Sampel priors, Robustness

Huge opportunities:

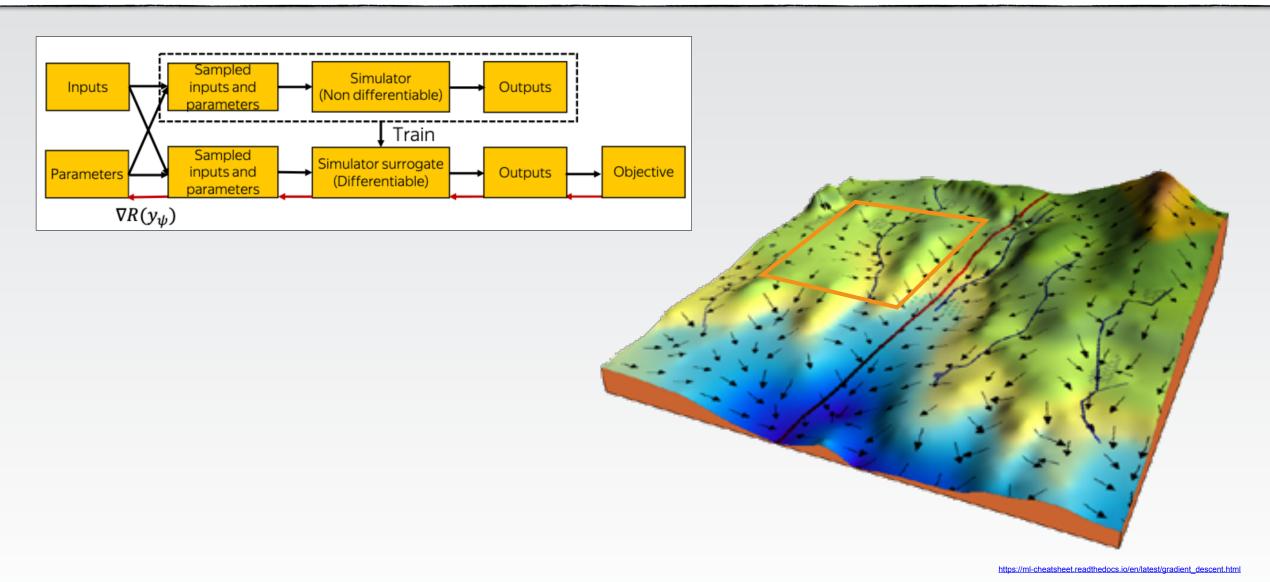
Possibility to tackle computing resource challenges

Low development, turn-around, and maintenance cost even on (novel) heterogenous hardware or different detector geometries

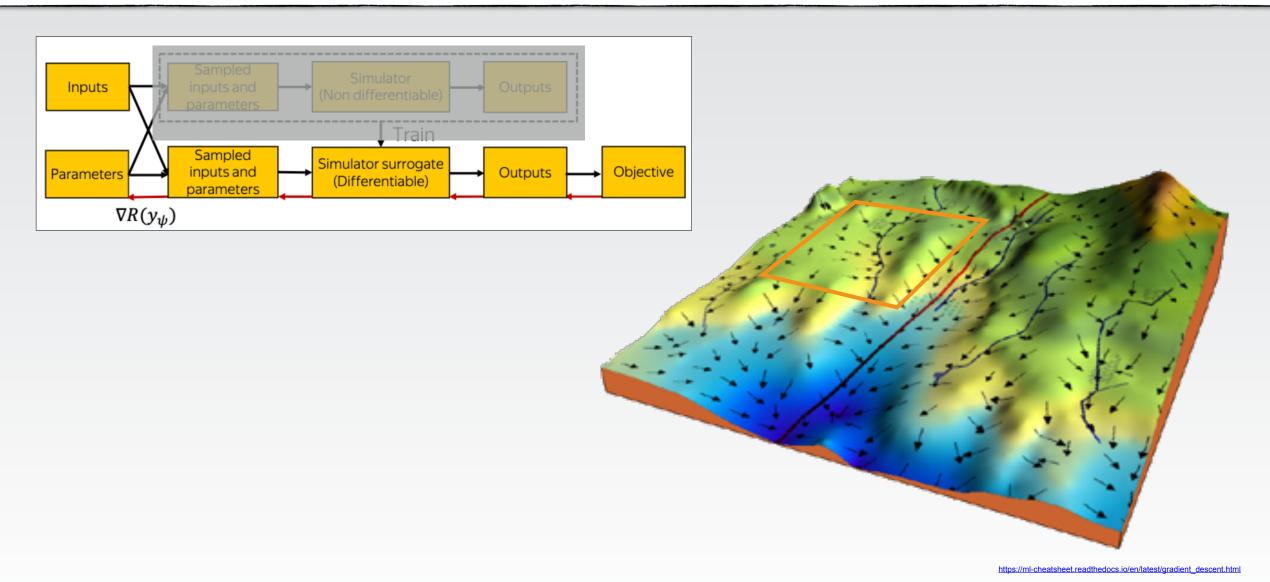
All signs point to better physics performance with tremendous lever arm for existing detectors and plenty of opportunities for developing new detectors

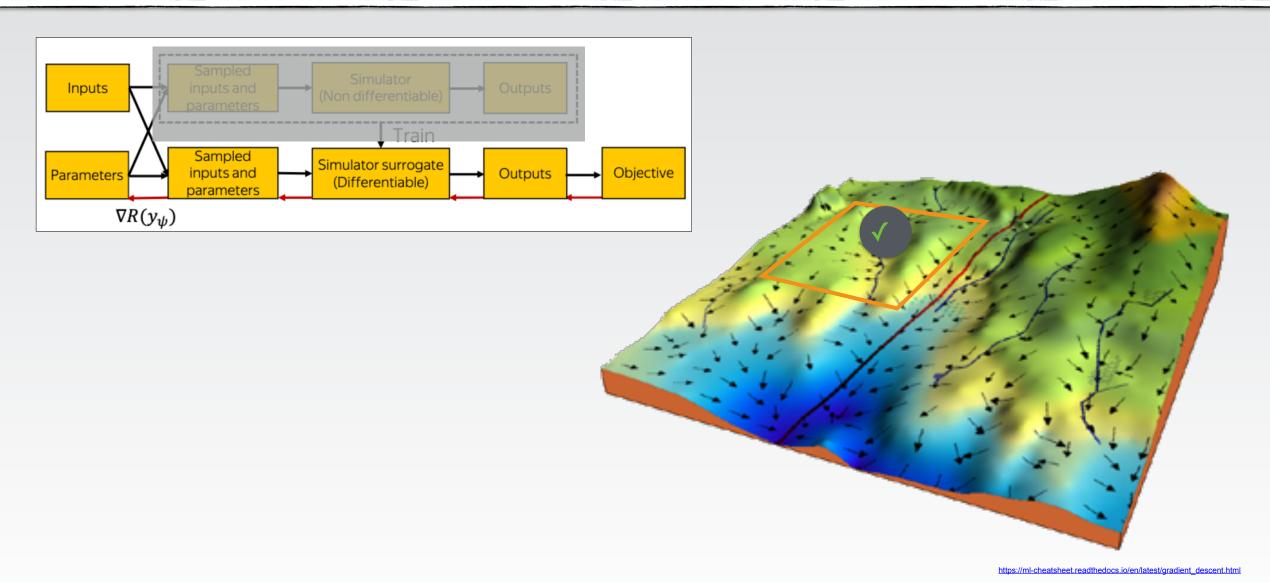
BACKUP

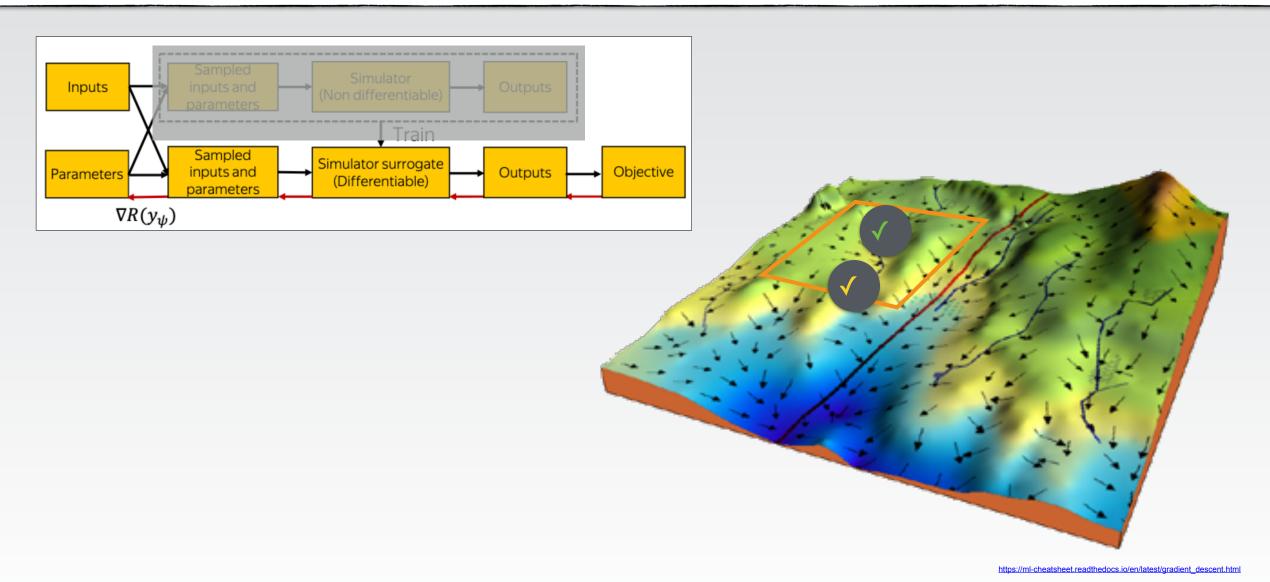
A Local Surrogate



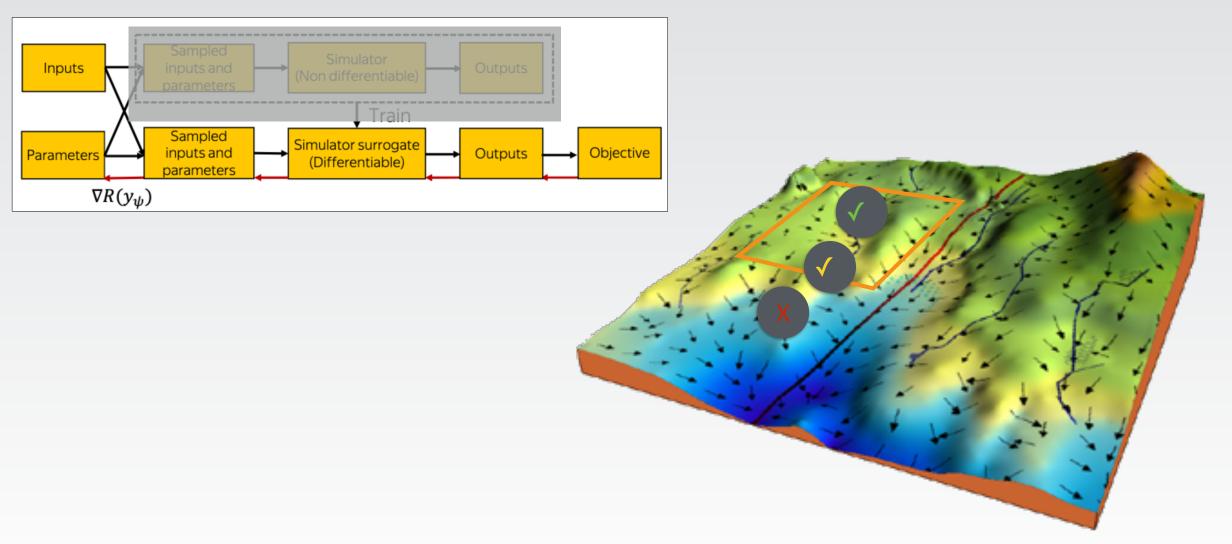
S. Shirobokov, et al., arXiv:2002.04632



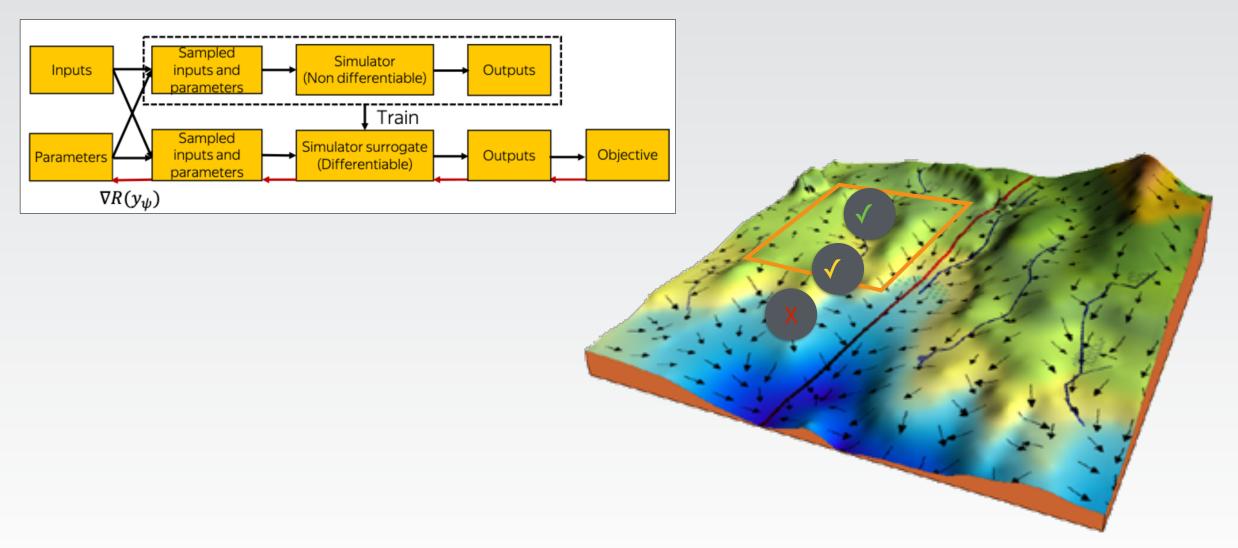




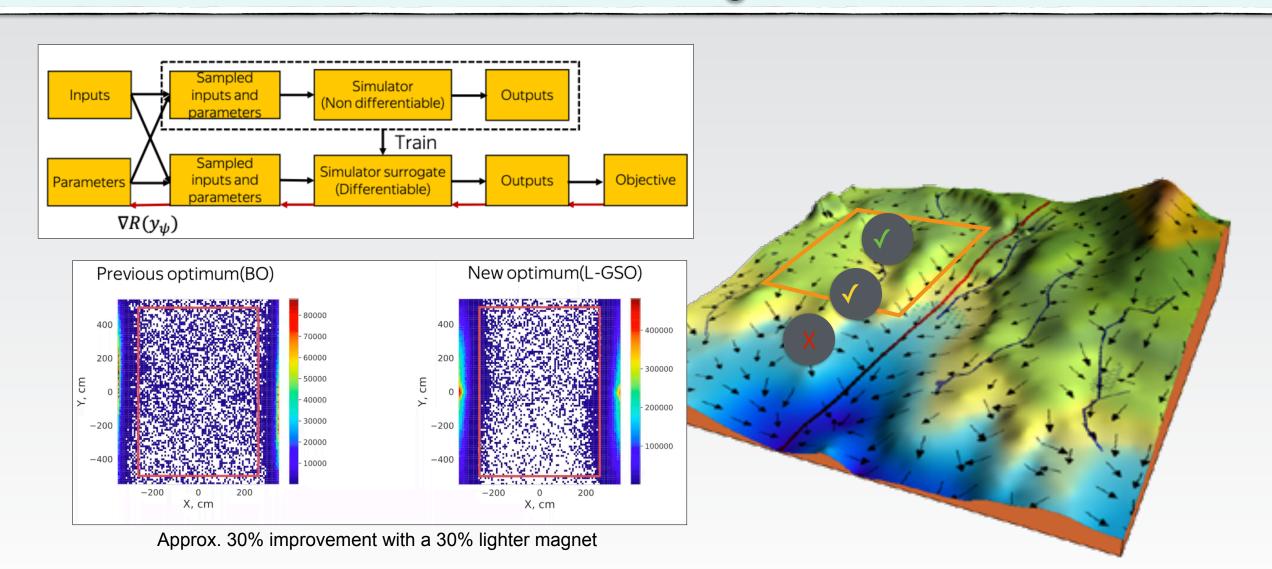
S. Shirobokov, et al., arXiv:2002.04632



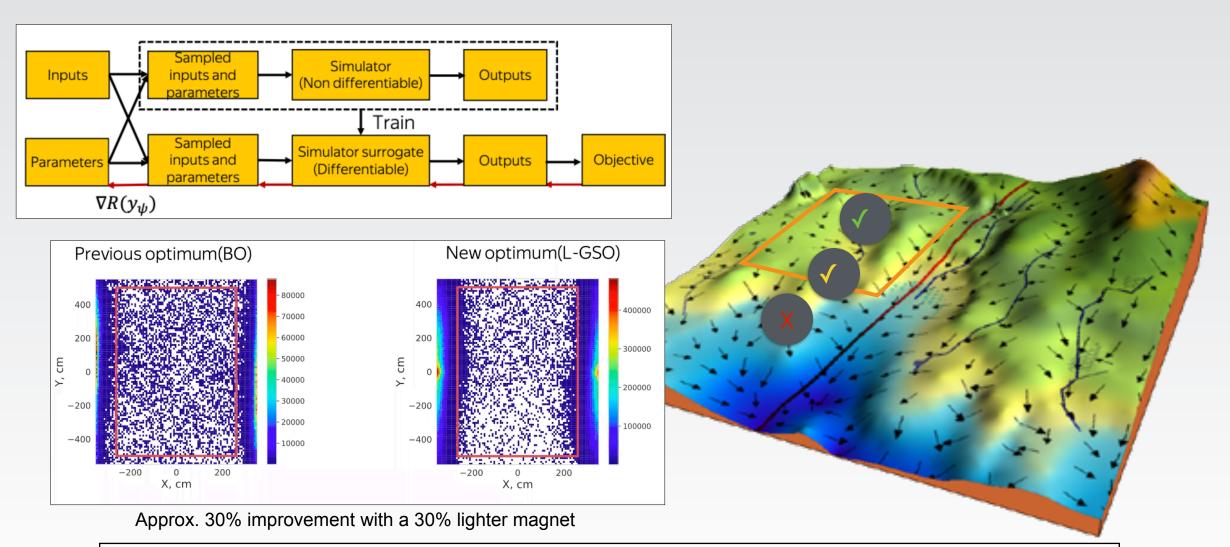
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html



https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

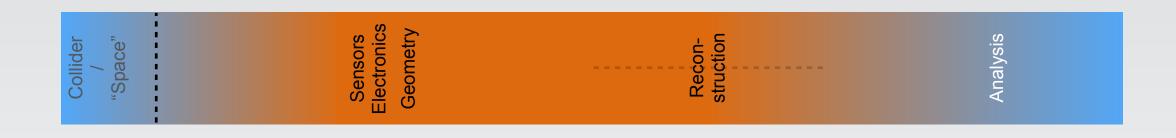


https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

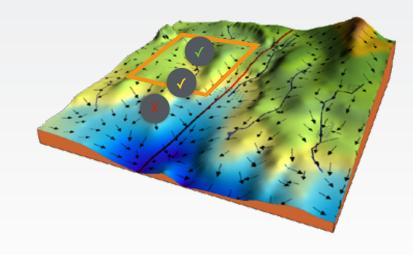


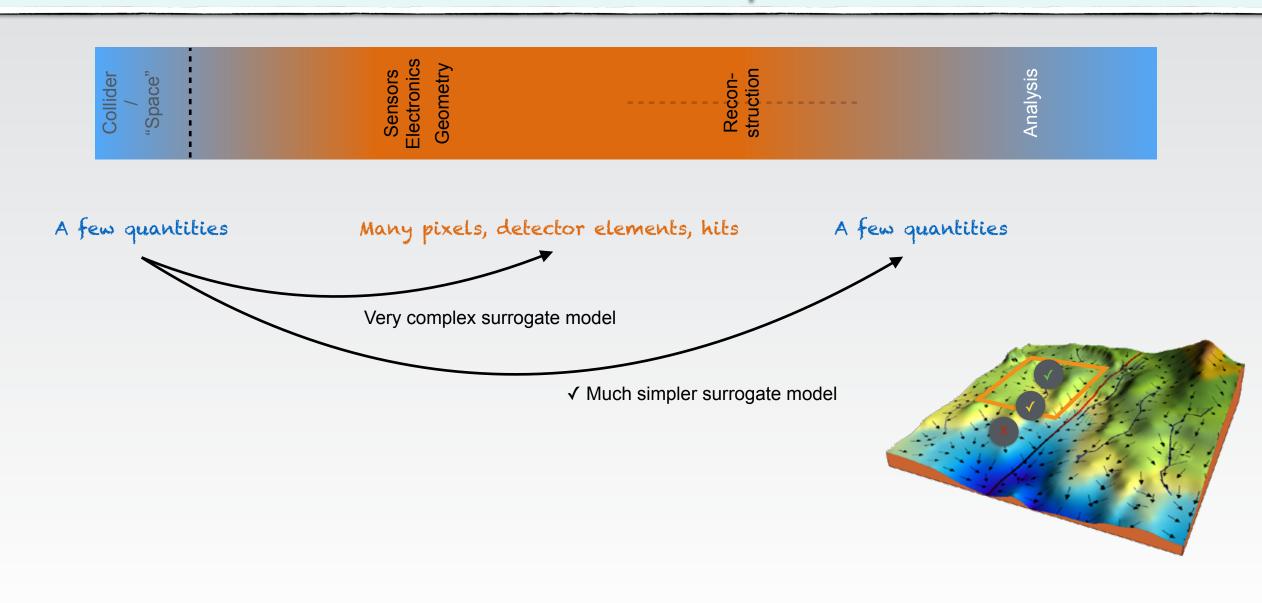
Local surrogates are a powerful tool to work around non-differentiable parts of the chain

S. Shirobokov, et al., alxiv.zuuz.u4usz

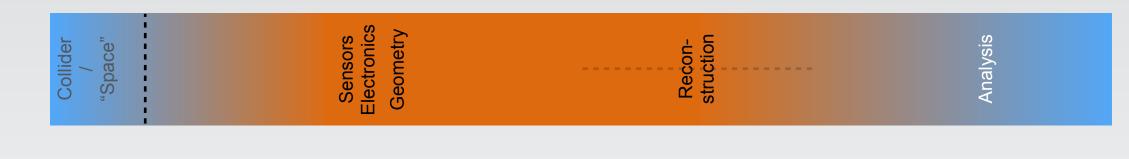


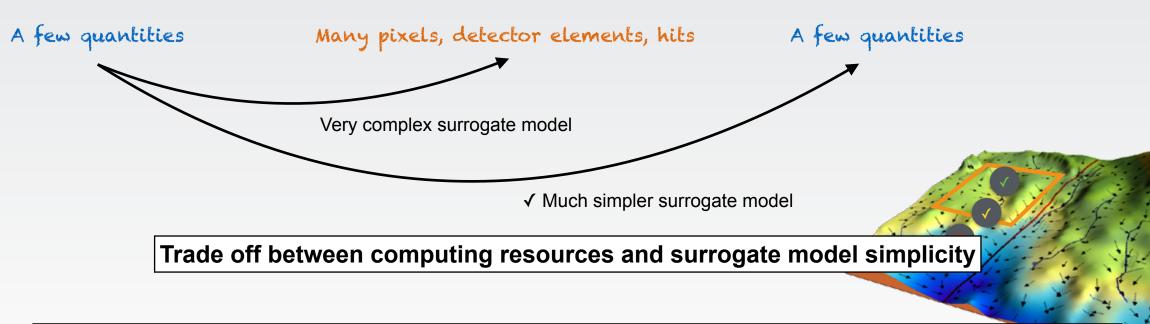
A few quantities





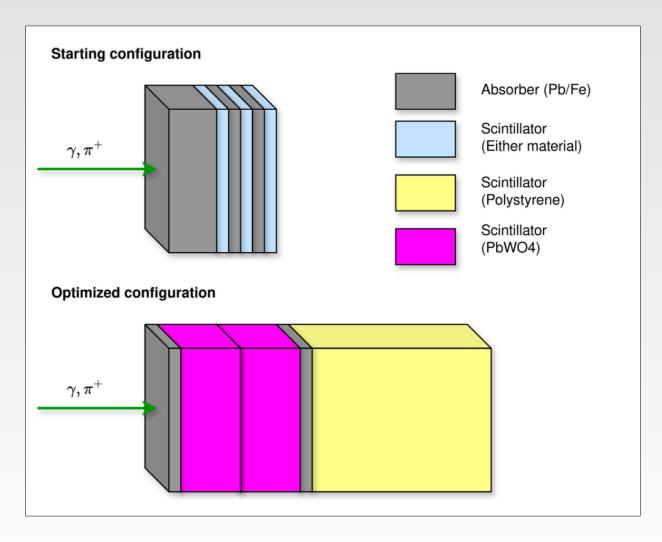




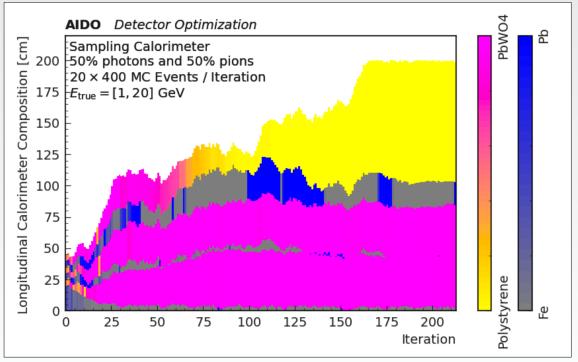


These models, applied to existing detectors, are generative (ultra) fast simulation models

Even discrete parameters get optimised



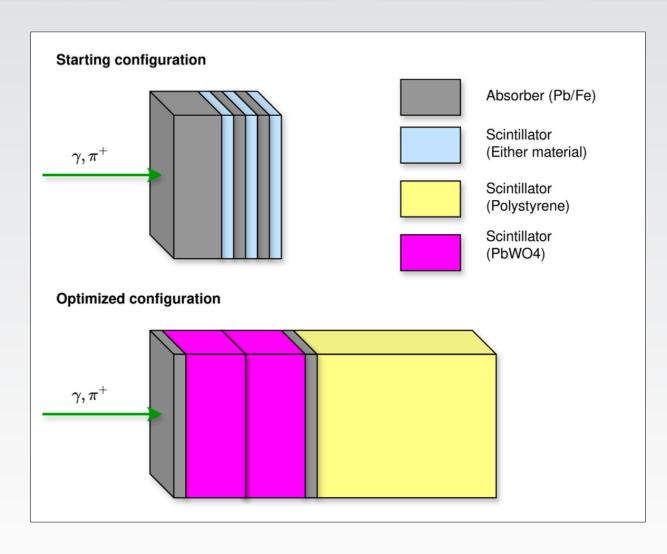
- Add cost and space constraints
- Model cost of materials carefully



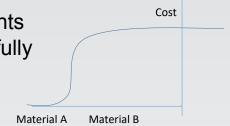
Best mean resolution of all configurations

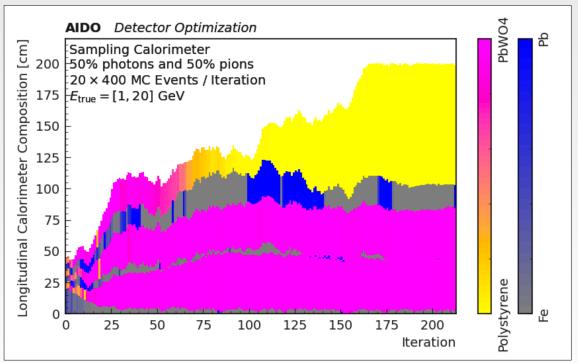
K.Schmidt, et al., arXiv:2502.02152

Even discrete parameters get optimised



- Add cost and space constraints
- Model cost of materials carefully





Best mean resolution of all configurations

K.Schmidt, et al., arXiv:2502.02152

Sample efficiency

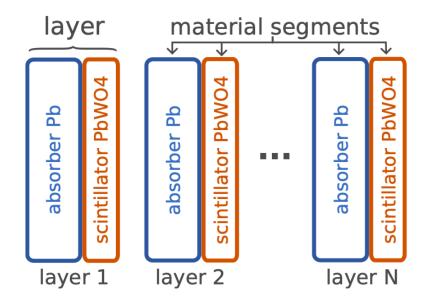
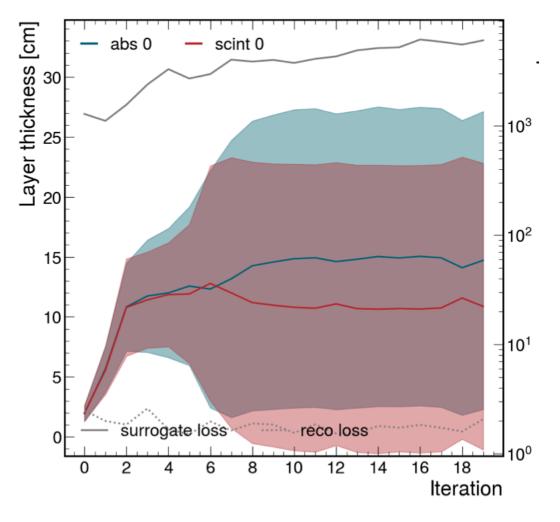


FIG. 1: Calorimeter consisting of layers of interleaved lead absorber and lead-tungstate scintillator segments.



(b) RECO-OPT without TL, 5 events

arXiv:2503.14342