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The need for better algorithms

More complex and overlapping patterns to reconstruct to particles: ML 

Strain on computing ressources: parallelisable algorithms (ML) on GPUs
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More need for better algorithms: 
ML approaches are highly flexible
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Hardware choices and reconstruction 
are inevitably intertwined  

“Co-Design”

New hardware capabilities

➡ML means: adaptive algorithms, low turn-around, possibility for (gradient based) detector optimisation 



Conceptual Considerations: Particle Flow
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High input multiplicities: 
Demand on resources

Physics robustness: 
Careful target definition

 particles   particle 
advanced concepts
N ≠ N ⋅ 1



GLOW

Trained and applied to CLIC detector dataset 
O(100) inputs 

Targets particles with at least a track or calorimeter deposit 

Counts particles globally*

6

arXiv:2508.20092

* similar to other HGPFlow variants
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Trained and applied to CLIC detector dataset 
O(100) inputs 

Targets particles with at least a track or calorimeter deposit 

Counts particles globally*
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arXiv:2508.20092

* similar to other HGPFlow variants

P(H0 |x) =
f (x |H0)π0

f (x |H0)π0 + f (x |H1)π1
For illustration:

Prior probabilities from  
the training dataset



CMS MLPF

Aims: 
Simplified pipeline 
Faster runtime 
Improved physics performance 

O(1000) inputs 

Define targets: 
• Charged: by track 
• Neutral: merge all in one cluster 

• Pre-define one representative point 

Fully supervised training on 
 , QCD, t t̄ Z → ττ
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(Follows a simplified object condensation paradigm)

CMS-DP-2025-033

Adapts to different geometries nicely (e.g. FCC det.) 
F. Mokhtar, et al, https://arxiv.org/abs/2503.00131



It’s hard but worth it: Improving physics and runtime

➡ Improved jet resolution over standard PF with identical inputs 
➡ Fast runtime 
➡ Including timing information in ML models is straight forward
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Locality as a must

Calibration procedures heavily rely on independence of particles reconstructed in 
(very) different detector regions
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Tag & Probe

Z/gamma jet balance

AD bump hunts
Event mixing



Include Calorimeter Hits: towards “end-to-end”

Utilise higher granular inputs from calorimeter hits 

First reconstruct all particles, then perform pileup subtraction  
(depends on PV definition) 

MLPF approach not applicable anymore: target, concepts, and resources

10



The target matters

With ML calorimeter clustering, a new more granular and general definition is 
needed for a robust algorithm 

Why: 
Example from classification: 
 

 

The more the algorithm guesses the more it relies on the priors: the less it 
generalises to different physics scenarios. 

A good truth definition leads to a robust algorithm, it relies on what we 
consider in principle resolvable by the detector.

P(H0 |x) =
f (x |H0)π0

f (x |H0)π0 + f (x |H1)π1
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Prior probabilities from  
the training dataset

K. Schäuble, KIT



Truth merging

Based on resolvability w.r.t sensors:  implement detector geometry in a generic way 

Creates a directed graph: avoids over-merging 

Performs resolvability-ordered merging: adds IRC safety

12 A. Busamolino, KIT, paper in prep.

Work in progress
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Processing a large number of sensors: GravNet
High input dimensionality 

 connections → local connections  - what are the ‘best’ connections? 

Increase robustness  
event topology prior  local particle density prior 

GravNet:

N2 N ⋅ K

→

13

Distance weighted information exchange 

xj = ∑
i ϵ Nj

(exp(−d2
ij) xi), max

i ϵ Nj
(exp(−d2

ij) xi)
✓ explicit locality

✓ interpretable

KIT

Qasim, JK, et al arXiv:1902.07987



Processing a large number of sensors: GravNet
High input dimensionality 

 connections → local connections  - what are the ‘best’ connections? 

Increase robustness  
event topology prior  local particle density prior 

GravNet:

N2 N ⋅ K

→

13

Distance weighted information exchange 

xj = ∑
i ϵ Nj

(exp(−d2
ij) xi), max

i ϵ Nj
(exp(−d2

ij) xi)
✓ explicit locality

✓ interpretable

➡Explicitly learns the graph topology 
➡Saves 10-100x in terms or resources w.r.t.  

similar approaches 
➡Adaptive explicitly translation equivariant 

variants being actively developed
KIT

Qasim, JK, et al arXiv:1902.07987



GravNet: a faster EdgeConv/DGCNN?

• Instead of generic message passing, use powerful attention  
 

 

• Can be rewritten 
 

 

• Brings a factor of about factor 100 speedup

yj = □
i ϵ N( j)

a(xj, xi) ⋅ MLP(xi)

x̃i = MLP(xi)
yj = □

i ϵ N( j)
a(xj, xi) ⋅ x̃i
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yj = □
i ϵ N( j)

MLP(xj, xj − xi)
EdgeConv / DGCNN

Per edge MLP: 
N x K x F

Does not depend on j

Per-vertex MLP: N x F

arXiv:1902.07987



Building the graph topology through attention

• Attention scales the information exchange: higher value → more 
exchange 

 

• Learn an embedding space  for each point (low dimensional: fast) 

• Chose  such that close-by means a lot of information exchange: 
 : distance weighted 

➡The K nearest points are the ones that need to exchange the most 
information: graph topology build

yj = □
i ϵ N( j)

a(xj, xi) ⋅ x̃i

S
a(xi, xj)

a(xi, xj) = exp(−10 ⋅ d2
ij)
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Multi-object detection: A look at computer vision
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Overlap removal



Multi-Particle Detection: Object Condensation

17

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

G
ra

vN
et

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

J.K., EPJC 2020

Position, energy, 
time, …



Multi-Particle Detection: Object Condensation

17

At least one point with high 
 per object. 

 semi-supervised 

Noise should have low 

β ϵ[0, 1]
→

β

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

G
ra

vN
et

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

J.K., EPJC 2020

Position, energy, 
time, …



Multi-Particle Detection: Object Condensation

17

At least one point with high 
 per object. 

 semi-supervised 

Noise should have low 

β ϵ[0, 1]
→

β

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

G
ra

vN
et

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

Hit / track

Repr. score β

Particle properties

Cluster Coordinates

J.K., EPJC 2020

The condensation score  is centralβ

Position, energy, 
time, …



Simultaneous clustering and property prediction
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Simultaneous clustering and property prediction
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Objects are clustered, the central points have high β

JK, arxiv:2002.03605, EPJC
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Simultaneous clustering and property prediction

18

 β
ϵ [0, 1]

Scales Scales

Property: cat or dog / electron or pion / energy

S
cales

Center of each cluster also carries best property estimate: condensation point

α(1)

α(2)

ii

α(1)

α(2)

JK, arxiv:2002.03605, EPJC



Object Condensation: Transform a complex problem 
into a simple one

➡ Also loss is explicitly using local densities 

➡ However: still hand-tuned inference clustering/masking, no adaptive dimensionality reduction… 
there is still work to do!19
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Large gains possible
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CMS DP-22-001

➡Very promising results
S.R. Qasim, N. Chern. J.K., arXiv:2204.01681, 
S. Battarchaya, .. , J.K., et al., arXiv:2203.01189,  
S. Qasim, K. Long, J.K., et al., arXiv:2106.01832 
I. Iiyama, .. J.K., et al, arXiv:2008.03601 
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Very versatile

21

S. Lai, et al, arXiv:2407.00178

D. Garcia, et al, 10.1051/epjconf/202533701125

L. Reuter, et al, arXiv:2411.13596, PRD

CALICE

CLD Tracking

Belle II 
Tracking

G. Matousek, V. Anselm, arxiv:2503.11277

CLAS12



From Hits to Physics with ML

A large territory only being explored since recently 

It comes with conceptual and technical challenges that are (being) resolved 
Locality, Sampel priors, Robustness 

Huge opportunities: 

Possibility to tackle computing resource challenges 

Low development, turn-around, and maintenance cost even on (novel) heterogenous  
hardware or different detector geometries 

All signs point to better physics performance with tremendous lever arm for existing detectors 
and plenty of opportunities for developing new detectors

22



BACKUP
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Local surrogates are a powerful tool to work around non-differentiable parts of the chain

Approx. 30% improvement with a 30% lighter magnet

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html


Jan Kieseler

Make Wider Steps?

25

Very complex surrogate model

C
ol

lid
er

 
/ 

“S
pa

ce
”

S
en

so
rs

G
eo

m
et

ry

A
na

ly
si

s

R
ec

on
- 

st
ru

ct
io

n

E
le

ct
ro

ni
cs

A few quantities Many pixels, detector elements, hits A few quantities

✓
X

✓



Jan Kieseler

Make Wider Steps?

25

Very complex surrogate model

✓ Much simpler surrogate model

C
ol

lid
er

 
/ 

“S
pa

ce
”

S
en

so
rs

G
eo

m
et

ry

A
na

ly
si

s

R
ec

on
- 

st
ru

ct
io

n

E
le

ct
ro

ni
cs

A few quantities Many pixels, detector elements, hits A few quantities

✓
X

✓



Jan Kieseler

Make Wider Steps?

25

Very complex surrogate model

✓ Much simpler surrogate model

C
ol

lid
er

 
/ 

“S
pa

ce
”

S
en

so
rs

G
eo

m
et

ry

A
na

ly
si

s

R
ec

on
- 

st
ru

ct
io

n

E
le

ct
ro

ni
cs

A few quantities Many pixels, detector elements, hits A few quantities

✓
X

✓

Trade off between computing resources and surrogate model simplicity



Jan Kieseler

Make Wider Steps?

25

Very complex surrogate model

✓ Much simpler surrogate model

C
ol

lid
er

 
/ 

“S
pa

ce
”

S
en

so
rs

G
eo

m
et

ry

A
na

ly
si

s

R
ec

on
- 

st
ru

ct
io

n

E
le

ct
ro

ni
cs

A few quantities Many pixels, detector elements, hits A few quantities

✓
X

✓

These models, applied to existing detectors, are generative (ultra) fast simulation models
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Even discrete parameters get optimised
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•Add cost and space constraints 
•Model cost of materials carefully

K.Schmidt, et al., arXiv:2502.02152

Cost

Material A Material B

•Best mean resolution of all configurations



Sample efficiency
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arXiv:2503.14342


