Simulations work plan for 2025 Test-Beam

Petru-Mihai Potlog

Simulations for testbeam

goal, method, steps

Goal:

• simulations of the testbeam, foreseen to evaluate sensors and experimental setups performances.

Method

- stand-alone application in Geant4 / frameworks used in Ecal community
- Fluka simulations (?)

Steps:

- implementation of various configurations geometries;
- evaluate various physics lists and check their influence;
- collect quantities of interest (eg. hits position, energy deposition);
- correlate the sensor response to the energy deposition;
- digitize the detectors response;
- evaluate the first physical observables.

Simulations supports

hardware, software

luxe.spacescience.ro

Hardware

• CPU model/make: AMD EPYC 7713P 64-Core Processor

• *CPU Core:* 64

• Thread per core: 2

Total threads: 128

Total memory: 258 G

Storage: 6 x 12 T drives in RAID6

• Total storage: 44T / 8.8T free (also for the calibrated test-beam data)

Software

- Access via SSH using Public Key Authentication
- AlmaLinux
- CernVM File System (cvmfs) installed:
 - Geant4.11.2.2
 - Root 6.34.02
 - Dd4hep
- Corryvreckan version v2.0

1. Design geometry and materials

investigated setups (layouts)

A. Create detector geometry

- ~ 20 configurations used in test-beam
- each configuration will have its own geometry file;
 - selection of each configuration will be done through Geant4 macro commands;
- easy to change between configurations;

B. Assign material properties

materials must be accurately defined with their physical properties.

C. Visualize geometry setup

- using OPENGLX Geant4 visualizing engine it is possible to visualize the detector and also some events and control simulations via commands:
 - Idle>/gun/particle e-
 - Idle>/gun/energy 5000 MeV
 - Idle>/run/beamOn 3

Expected completion:2 weeks

2. Primary particle generation & Actions

GPS source, G4RunAction, G4EventAction

A. Particle source

- define type, energy, position, and direction of primary particles.
- use GPS type source
 - easier to control via macros and commands
- create 'diverging' beam
 - the beam will have some divergence and shape
 - 12 x 12 mm2 collimator -> square source (??)
 - gaussian energy distribution with o.1% spread

B. Event handling

Implement actions for run, event, and tracking to control simulation flow and data collection

Expected completion:2 days

3. Physics list

G4VUserPhysicsListPhysics, G4VModularPhysicsList

- FTF_BIC
- FTFP BERT
- FTFP_BERT_HP
- FTFP_BERT_TRV
- FTFP_BERT_ATL
- FTFP_INCLXX
- FTFP_INCLXX_HP
- FTFP_QGSP_BERT
- LBE
- NuBeam
- QGSP_BERT
- QGSP_BERT_HP
- QGSP_BIC
- QGSP_BIC_HP
- QGSP_BIC_AllHP
- QGSP_FTFP_BERT
- QGSP_INCLXX
- QGSP_INCLXX_HP
- QGS_BIC
- Shielding
- ShieldingLEND

Select relevant physics models

- used in the last test-beam simulations: QGSP_BERT / FTFP_BERT
 with one of the _EMV, _EMZ, _EMY additions;
- b) Geant4 collaborators introduced G4HepEm
 - a solution to reduce the computing performance bottleneck experienced by the High Energy Physics (HEP) detector simulation applications;
 - targets the most performance critical part of the HEP detector simulation applications, i.e. the EM shower generation covering e / e + and y particle transport

- Expected completion:
 - 1 day for case a)
 - 1 week for case b)

4. Sensitive detectors and hits

sensitiveDetector, DigitizerModule

A. Define sensitive volumes

- each silicon sensor is defined as a sensitive volume;
- energy deposited within silicon sensors is registered in the sensitive detector;

B. Record particle interactions

- record each particle that has reached a sensitive volume
- No digitization has been applied to simulations performed for the previous test-beams

C. Digitize the signal

- digitization is performed at the end of the event;
- it accumulates the energy deposits within pads, taking into account the time cut on the arrival of signal (global time of energy deposit); by default no time cut is applied which means all the deposits are counted.
- electronic noise can be applied together with all instrumental effects

- Expected completion:
 - 2 days for B
 - 2 weeks for C

Data workflow in simulations

- experimental setups with individual files for each configuration
 - challenge: switch between experimental layouts
- full response of the sensor and the test beam setup with high statistics
 - challenge: choose/construct physics list, write data to file
- data analysis of the sensors is performed using ROOT framework challenge: extract physical quantities matching foreseen experimental data