

au reconstruction at the Muon Collider

Kevin Dewyspelaere, Giacomo Da Molin, Giovanni Battista Marozzo

Under the supervision of Michele Gallinaro

August 13th, 2025

LIP - Laboratório de Instrumentação e Física Experimental de Partículas

Introduction:

10 TeV MAIA detector geometry

Singularity latest version:

/cvmfs/unpacked.cern.ch/ghcr.io/muoncollidersoft/mucoll-sim-alma9:latest

Last version of TauFinder:

- Implementation of the dynamic cone
- 1 GeV cut on all PFOs added to TauFinder
- Cut neutrons from being added to TauFinder
- dR-based truth matching (from Ethan's slides)
- Stick to requiring all 3 pions to be reconstructed (no inclusion of 2P taus)

Bug Fix on Invariant mass for $Z\Rightarrow \tau\tau$

Tauguns Efficiency comparison

15000 τ events generated: $0 \le \varphi \le 2\pi$ rad; $10^{\circ} \le \theta \le 170^{\circ}$; $20 \le pT \le 320$ GeV/c

Ethan's Plot

Similar results

Differences in the new TauFinder

Tau Multiplicity in $H\Rightarrow \tau\tau$ samples tau pairs reconstructed increased

21,5 % reconstructed tau pair in Old TauFinder against 51,4 % for New version

Differences in the new TauFinder

Tau Multiplicity in $Z\Rightarrow \tau\tau$ samples tau pairs reconstructed increased

18,4 % reconstructed tau pair in Old TauFinder against 51 % for New version

Invariant mass bug fix

I was able to generate only 2500 H/Z events due to Condor issues

Bug fix from a factor 3 difference between the y uncertainties

Plan for the next steps

Measurement of the uncertainty on the $H \rightarrow \tau \tau$ cross section:

- Check values of MadGraph cross sections
- Check for additional unreducible backgrounds
- Use Roofit tool to extract predicted uncertainty from invariant mass templates normalized to the expected luminosity

Jets study:

- For Z→jj and H→bb
- See how many jets are seen as au

Thank you for your attention

Total Efficiency comparison

Kevin's values (below)

Decay Mode	π^\pm Reco Efficiency	$ au^\pm$ Reco Efficiency
1P0N	86,25%	86,03%
3P0N	54,70%	54,30%

Ethan's values (below)

Decay Mode	π^\pm Reco Efficiency	$ au^\pm$ Reco Efficiency
1P0N	86.81%	86.70%
3P0N	58.38%	58.03%