Unfolding exercise
Beatriz Ribeiro Lopes (CERN), Jan Kieseler (KIT)



Plans

e Short presentation (<= 20 minutes) on unfolding
o Reminder of (or first contact with) the idea behind unfolding and the pitfalls
o  Will introduce matrix inversion, regularisation, MLE unfolding

e Hands on exercises (notebooks or shell)
o Low-level unfolding on simplified example
m Implement yourself to understand the basics
o High-level unfolding with combine
m Hides the details but practical in analysis context

e \We only need a few kB to MB of storage per person (all histograms)



Simplified unfolding example

Jupyter notebook with simple non-CMS example (particle decays) where the
unfolding is done by hand with python

In almost any experiment, the measured variable is not directly the physics quantity of interest. Instead, the answer of the experimental apparatus has to be translated by the
experimentalist, e.g., the signal height might be related to the energy of a particle.

In real experiments, it is impossible to always find the true value of the physics quantity, since the translation suffers from various uncertainties. E.g., the measured signal might be distorted
due to noise and systematic limitations of the experiment.

Moreover, the response function of the experiment is convoluted in the measured signal. In most cases, an analytical deconvolution of the signal is impossible or at least not practical.
Instead, numerical methods are applied to find the distribution of true values and their uncertainties for a given distribution of measured values. This process is called unfolding.

In this exercise, we consider only discrete distributions with /N bins, corresponding either to histograms of continuous variables (like energy) or naturally discrete variables (like the mass
number of atomic nuclei). Provided that the true and measured distributions have the same number of bins, the experimental response can be described by an N x NN migration (or
transfer) matrix R, where each element Rij describes the probability of a true value in bin 2 to be classified or measured, respectively, in bin j.

This is reflected in the relation

gi=—"R = F

where f is a vector with IN elements containing the true values for each bin, R is the migration matrix corresponding to the experimental response, and g is a vector containing the
measured [/ observed values for each bin. This means that an ideal experiment would have the unit matrix as migration matrix.

The first step of the unfolding procedure is the determination of the migration matrix by calibration measurements or simulations. We assume that this step has been done already, and the
exercises focus on the second step: unfolding of a given measured distribution provided that the migration matrix is known.
Hints:
Numpy offers several matrix operations, for example:
returns the inverse of the a (migration) matrix R. See also which performs the same operation.

returns the eigenvalues and the matrix U of eigenvecotrs you need to diagonalize R.




Regularisation

Such unphysical oscillations in the unfolded result are typical for many unfolding techniques. Suppressing them is a major challenge when unfolding real data. One way to achieve this is
regularization. There are various sophisticated methods for regularization (cf. lecture). Here is a simple method which can be programmed easily in Python:

« Diagonalize the migration matrix R: Rgiag = U~ RU such that the eigenvalues )\; of R form the diagonal of Ryiag.
« Construct the observation vector §diag = U’l’g’(,bS and multiply each component 7 of the resulting vector with the corresponding component of /\’1, where A1 is a vector containing

the reciprocals of the eigenvalues of R.

» The regularization: Set all elements ¢ of gdiag to 0, for which J; is smaller than a chosen threshold /\reg. The choice of /\,eg is critical and a compromise between suppressing the
unphysical oscillations, and keeping as much information as possible of the measurement.

« The unfolded resultis U - Ggiag-

Apply the method with different thresholds )\reg from -1 to 1. As a cross-check: if the algorithm is implemented correctly, the result should be identical to the one of the previous exercise,
provided that )\reg is smaller than the smallest eigenvalue of R. Discuss different choices for /\,eg: as measure for how similar the true and the unfolded distributions are, calculate the mean
quadratic deviation (average over all bins). For which choice of )\reg is the unfolded distribution most similar to the true distribution?




Unfolding with combine

e Based on TOP-23-002, we prepared a simplified ttgamma cross
) . ~ CMSDAS2025 [SSH: LXPLUS.CERN.CH] [} E5 U &
section measurement as a function of the photon pT e :

B c2016post_SR_p1P.input.root
= c2016post_SR_p1Pt.txt
B c2016post_zgammaCR_nje.input.root

e \We are collecting the datacards, shapes histograms, and skeleton e
. . . c2016pre_SR_p1P.input.root
scripts in a repository. The students have to: = c2016pre_SR_pTPtixt

. c2016pre_zgammaCR_nje.input.root

= c2016pre_zgammaCR_njet.txt

o Understand the datacard implementation (one process per generator-level bin to be B c2017_SR_piP.nput.root
measured, etc.) = ¢2017_SR_p1Pt.txt

B c2017_zgammaCR_nje.input.root

= ¢c2017_zgammaCR_njet.txt

B c2018_SR_p1P.input.root

= c2018_SR_p1Pt.txt

o  Plot response matrix (reco vs gen photon pT)

o  Combine datacards and define the physics model with combine B 2018_zgammaCR_nje.input.root
= c2018_zgammaCR_njet.txt

o Extract cross section modifiers from multidimensional fit to data systematics_TOP23002.yml
PlotResponseMatrix.py

o  Make the unfolded distribution e

README.md

e CMSSW_14 1 0 pred4 and combine v10 need to be installed before



