## Short Exercises Preparation Meeting: BTV

Uttiya Sarkar (RWTH), Philipp Gadow (UHH)

4th September 2025 CMS DAS@Hamburg 2025 Preparation Meeting

## **BTV Short Exercise Materials**



Based on existing material from previous DAS (see e.g. [here])

All presentation and exercise materials are ready:

[Exercise-Slides] [Exercise-Notebooks]

- We want to run interactive exercises with jupyter notebooks.
- Input data and notebooks are stored on CMS EOS BTV group space.

## BTV Short Exercise flowchart





| 00 | Introductory slides Slides 01 to 11                                 | <ul> <li>Maximum 15 minutes</li> <li>Introduction of input features, IP, SV</li> <li>Introduction to flavour tagging algorithms (PNet, UParT)</li> <li>Inputs of the exercises - NanoAOD</li> </ul>                | Ö      |
|----|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 01 | Input features, Jet Flavours Slides 12 to 16                        | <ul> <li>Maximum 20 minutes</li> <li>Plotting input features, tagger discriminant scores</li> <li>Goal: better algorithms gives better discrimination power, some inputs are more important than other</li> </ul>  | Ö      |
| 02 | Performance metrics, ROC curves Slides 17 to 21                     | tagger performance in BTV                                                                                                                                                                                          | g<br>g |
| 03 | Data/MC comparison Slides 22 to 25                                  | <ul> <li>Maximum 20 minutes: exercise</li> <li>Goal: Data/MC mismatch due to MC mismodelling</li> <li>Maximum 5 minutes: Explanation of Data/MC mismatch - calibration and requirement of Scale Factors</li> </ul> | Ö<br>Ö |
| 04 | Calibration and SF derivation, iterative fit method Slides 26 to 29 | <ul> <li>Maximum 2 minutes: describe SFs (WP based and shape based)</li> <li>Maximum 20 minutes: exercise</li> <li>Goal: Data/MC agreement post calibration SFs (conclusion ~3 minutes)</li> </ul>                 | Ö<br>Ö |
| 05 | General Q&A, Discussions                                            | • 10 Minutes                                                                                                                                                                                                       | Ö      |