

Pandora Timing

Gregory Penn Yale University

Purpose

- Reco jobs w/ BIB can take O(days) in the endcap w/ threshold fix
- Severely limits stats in the forward region
 - See Rose's slides
- A couple ideas to speed up reconstruction:
 - (Re-) tighten calo thresholds (boo! Reco performance improved after this)
 - Add some hit selection based on isolation requirements
 - Simplify reconstruction
 - Add calorimeter hit time cuts
- I've timed some of these options to see which are feasible

Hit Isolation

- MUSIC team optimized hit selection to reject BIB hits before clustering
- If done correctly, this should remove many background hits from being looped over, very few signal hits removed
- Default Pandora setting: remove hits with < 2 other hits in a 2x2 cell matrix centered on the hit (left image below)
 - MUSIC optimization: < 3 other hits in a 3x3 cell matrix centered on the hit (right image below)
- Works better in the barrel than endcap
- Also sensitive to calo cell sizes. MAIA ECal size much smaller than MUSIC. Not clear if same setting would work as well (spoiler: it did not.)

Pandora Settings

Disclaimer: I still have only skimmed these files! I may be wrong about their purpose.

- Larry's config runs (in addition to the bare minimum):
 - Fast photon clustering
 - "Quick" photon ID algorithm. These "fast ID'd photons" are not considered in the rest of particle flow. If the photon
 ID is good, this could actually save time.
 - Topological merging algorithms:
 - <u>BrokenTracks</u> (figure ii): Intends to connect clusters separated by "dead" region. Fits line to cluster, searches for other clusters along that line
 - ShowerMipMerging (figure iii, iv) (<u>algorithm 1</u>, <u>algorithm 2</u>): Identifies MIP-like clusters, attempts to merge them. Not sure what this exactly does just from skimming the code. The two algorithms look similar.
 - <u>ConeBasedMerging</u> (figure viii): Opens cone around MIP fit, merges particles with sufficient number of hits in cone
 - <u>ProximityBasedMerging</u> (maybe figure vii): Merges nearby clusters. Can also account for clusters along a track projected through the calorimeter.
 - Fragment Removal <u>algorithms</u> (Main, <u>Neutral</u>, <u>Photon</u>, <u>PhotonSplitting</u>, <u>PhotonFragmentMerging</u>).
 - I left these in a few months back, as I noticed the number of clusters reconstructed in an event w/o BIB was rarely = 1 often without them. But no extensive test on calorimeter energy resolution w/ and w/o this were performed.

Calo Hit Time Cuts

- Following studies from Alyna
- 300 ps calo hit time cuts removes a large fraction of BIB hits, comparatively few signal
- Improves photon energy resolution
- Should reduce runtime of PandoraPFA
- Implemented in external <u>CaloHitSelector</u> processor
 - Cut on earliest subhit time, corrected for time of flight
 - Applied in ECal only

Test info

- I ran 7 jobs:
 - No reconstruction at all (for timing the rest of the job). Includes:
 - Overlay of BIB
 - Digitization
 - Tracking
 - Basic Pandora: Only the necessary algorithms w/o parameter optimization (like what MUSIC did on slide 13 here)
 - Larry's config (config)
 - "Larry + tight calo hit isolation"(config)
 - Uses definition from MUSIC (slide 3)
 - "Reduced Topological Merging" (config)
 - Removed BrokenTracks, ShowerMipMerging2, and ConeBasedMerging (very vibe based, no strong reason)
 - Larry's config without any fragment removal algorithms (config)
 - Larry's config with ECal hit time cuts (script)
- All test were run on the same *one* event of a charged pion going into the endcap region
 - With BIB files copied from /ospool/uc-shared/project/futurecolliders/data/fmeloni/DataMuC_MAIA_v0/v5
 - Example script

Time for each config

- Pandora time = total time time for "no reco" job
- Only relative times are helpful job times depend on machine
- These are rough estimates, but general trends make sense
 - Rounding to nearest 15 min

Reco Job Type	Total Time	Pandora Time
No reconstruction	3 hrs, 45 min	
Basic Pandora	4 hrs, 45 min	1 hr
Larry's Config	9 hrs	5 hrs, 15 min
Larry + tight calo hit isolation	9 hrs, 45 min	6 hrs
Reduced Topological Merging	8 hrs, 30 min	4 hrs, 45 min
No fragment removal	6 hrs, 15 min	2 hrs, 30 min
Calo hit timing cut	6 hrs, 15 min	2 hrs, 30 min

Conclusions

- Basic Pandora can run in significantly less time than the configs used for v5
- Tightening calo hit isolation increased run time
 - Loop over additional calo layers not worth the number of hits removed in later steps
- Fragment removal seems to be very slow! Removing all fragment removal halved the runtime of Pandora
- Topological cluster merging algorithms seem to be relatively cheap to run
- Remaining algorithms not tested (Fast photon clustering + ShowerMipMerging + ProximityBasedMerging) run in ~ 1hr
- Promising direction: Implementing ECal hit time thresholds before reconstruction

Reco Job Type	Total Time	Pandora Time
No reconstruction	3 hrs, 45 min	
Basic Pandora	4 hrs, 45 min	1 hr
Larry's Config	9 hrs	5 hrs, 15 min
Larry + tight calo hit isolation	9 hrs, 45 min	6 hrs
Reduced Topological Merging	8 hrs, 30 min	4 hrs, 45 min
No fragment removal	6 hrs, 15 min	2 hrs, 30 min
Calo hit timing cut	6 hrs, 15 min	2 hrs, 30 min