MEASURING PHOTON-INDUCED DILEPTON PAIRS IN PROTON COLLISIONS

Summer Student Project

Yuliia Shevchuk

Supervisors:

Dr. Lydia Beresford

Daniel Werner

Weronika Stanek-Maslouska

Dr. Savannah Clawson

Dr. John Andrew Hallford

Motivation

- LHC: proton-proton → usually strong interaction
- Protons also generate EM fields → quasi-real photons (EPA)
- Close pass → γγ collisions possible
- Clean final state: dilepton (μ⁺μ⁻)
- Test QED at TeV + search new physics
- Old data: $3.2 \text{ fb}^{-1} \rightarrow \text{now } 140 \text{ fb}^{-1} \text{ (Run 2)} + 250 \text{ fb}^{-1} \text{ (Run 3)}$

Theoretical background

Photon-induced $\mu^+\mu^-$ topologies:

- a) Exclusive (both protons intact)
- b) Single dissociative (1 proton breaks)
- c) Double dissociative (both break)
- d) Additional interactions

Project tasks

Results

- Dilepton pT: background wide, signal at very low pT
- Dilepton mass: big Z peak (background), signal outside
- Motivation for cuts

Event selection

- ≥ 2 leptons
- Dilepton pT < 1.5 GeV
- Muon flavor requirement
- Invariant mass: exclude 70–105 GeV (Z region)

$$p_{\mathrm{T}}^{\dot{\mu}^+\dot{\mu}^-} < 1.5 \; \mathrm{GeV}$$

12 GeV <
$$m_{\mu^+\mu^-}$$
 < 70 GeV or $m_{\mu^+\mu^-}$ > 105 GeV

Event selection used in previous analysis [1]

Results

- Z peak suppressed in dilepton mass
- Low-pT signal becomes visible

Cutflow

- Track event counts after each cut
- See which cuts reduce background most
- Efficiency of selection strategy

1 mm vertex isolation (track-veto)

- Even after cuts → still background left
- Photon-induced: exclusive, protons intact, no extra particles
- Drell-Yan: many extra tracks from remnants
- Use 1 mm isolation window around vertex
- Extra tracks in window → event rejected
- This is the basis of the track veto

Track-veto

- Photon-induced: exactly 2 muons, nothing else
- Drell-Yan/QCD: many extra tracks from interactions
- Track veto strongly suppresses background
- Some signal lost, but background reduction much larger
- Makes selection very powerful

Photon collisions in pp data

Run Number: 304431, Event Number: 22065483

Head-on pp collision

Photon-fusion pp collision

ATLAS Run: 357620 Event: 653219636 EXPERIMENT 2018-08-06 01:08:33 CEST

Results

- Selections suppress Z peak in dilepton mass
- Background reduced by 99.6%
- Signal reduced by only ~50% (due to pile-up interactions)
- Signal-to-background ratio strongly improved

Unfolding

- Next challenge: correct detector effects
- Detector causes smearing, resolution limits, efficiency loss
- Need particle-level distributions for theory comparison
- Build response matrix from simulation
- Apply unfolding algorithms

Results (response matrix after selection)

- Nearly diagonal → good detector resolution
- Basis for profile likelihood unfolding
- Unfolding procedure still in progress

Conclusions

- Photon-induced dileptons = clean QED probe at TeV scale
- Selections + track veto → isolate signal from background
- Unfolding → physical cross-sections, compare with theory
- Run 2 & 3 datasets → most precise measurement possible

Thank you for your attention!

References:

[1] "Measurement of the exclusive $\gamma\gamma \to \mu^+\mu^-$ process in proton-proton collisions at \sqrt{s} =13 TeV with the ATLAS detector" ATLAS Collaboration

15

Phys. Lett. B, 777 (2018), p. 303, 10.1016/j.physletb.2017.12.043 arXiv:1708.04053